185 lines
4.6 KiB
Python
185 lines
4.6 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import sys
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import ncnn
|
||
|
from ncnn.model_zoo import get_model
|
||
|
from ncnn.utils import draw_detection_objects
|
||
|
|
||
|
|
||
|
def draw_result(image, class_names, boxes, masks, classes, scores):
|
||
|
colors = [
|
||
|
[56, 0, 255],
|
||
|
[226, 255, 0],
|
||
|
[0, 94, 255],
|
||
|
[0, 37, 255],
|
||
|
[0, 255, 94],
|
||
|
[255, 226, 0],
|
||
|
[0, 18, 255],
|
||
|
[255, 151, 0],
|
||
|
[170, 0, 255],
|
||
|
[0, 255, 56],
|
||
|
[255, 0, 75],
|
||
|
[0, 75, 255],
|
||
|
[0, 255, 169],
|
||
|
[255, 0, 207],
|
||
|
[75, 255, 0],
|
||
|
[207, 0, 255],
|
||
|
[37, 0, 255],
|
||
|
[0, 207, 255],
|
||
|
[94, 0, 255],
|
||
|
[0, 255, 113],
|
||
|
[255, 18, 0],
|
||
|
[255, 0, 56],
|
||
|
[18, 0, 255],
|
||
|
[0, 255, 226],
|
||
|
[170, 255, 0],
|
||
|
[255, 0, 245],
|
||
|
[151, 255, 0],
|
||
|
[132, 255, 0],
|
||
|
[75, 0, 255],
|
||
|
[151, 0, 255],
|
||
|
[0, 151, 255],
|
||
|
[132, 0, 255],
|
||
|
[0, 255, 245],
|
||
|
[255, 132, 0],
|
||
|
[226, 0, 255],
|
||
|
[255, 37, 0],
|
||
|
[207, 255, 0],
|
||
|
[0, 255, 207],
|
||
|
[94, 255, 0],
|
||
|
[0, 226, 255],
|
||
|
[56, 255, 0],
|
||
|
[255, 94, 0],
|
||
|
[255, 113, 0],
|
||
|
[0, 132, 255],
|
||
|
[255, 0, 132],
|
||
|
[255, 170, 0],
|
||
|
[255, 0, 188],
|
||
|
[113, 255, 0],
|
||
|
[245, 0, 255],
|
||
|
[113, 0, 255],
|
||
|
[255, 188, 0],
|
||
|
[0, 113, 255],
|
||
|
[255, 0, 0],
|
||
|
[0, 56, 255],
|
||
|
[255, 0, 113],
|
||
|
[0, 255, 188],
|
||
|
[255, 0, 94],
|
||
|
[255, 0, 18],
|
||
|
[18, 255, 0],
|
||
|
[0, 255, 132],
|
||
|
[0, 188, 255],
|
||
|
[0, 245, 255],
|
||
|
[0, 169, 255],
|
||
|
[37, 255, 0],
|
||
|
[255, 0, 151],
|
||
|
[188, 0, 255],
|
||
|
[0, 255, 37],
|
||
|
[0, 255, 0],
|
||
|
[255, 0, 170],
|
||
|
[255, 0, 37],
|
||
|
[255, 75, 0],
|
||
|
[0, 0, 255],
|
||
|
[255, 207, 0],
|
||
|
[255, 0, 226],
|
||
|
[255, 245, 0],
|
||
|
[188, 255, 0],
|
||
|
[0, 255, 18],
|
||
|
[0, 255, 75],
|
||
|
[0, 255, 151],
|
||
|
[255, 56, 0],
|
||
|
[245, 255, 0],
|
||
|
]
|
||
|
|
||
|
color_index = 0
|
||
|
|
||
|
for box, mask, label, score in zip(boxes, masks, classes, scores):
|
||
|
if score < 0.15:
|
||
|
continue
|
||
|
|
||
|
print(
|
||
|
"%s = %.5f at %.2f %.2f %.2f x %.2f\n"
|
||
|
% (label, score, box[0], box[1], box[2], box[3])
|
||
|
)
|
||
|
|
||
|
cv2.rectangle(
|
||
|
image,
|
||
|
(int(box[0]), int(box[1])),
|
||
|
(int(box[0] + box[2]), int(int(box[1] + box[3]))),
|
||
|
(255, 0, 0),
|
||
|
)
|
||
|
|
||
|
text = "%s %.1f%%" % (class_names[int(label)], score * 100)
|
||
|
|
||
|
label_size, baseLine = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||
|
|
||
|
x = box[0]
|
||
|
y = box[1] - label_size[1] - baseLine
|
||
|
if y < 0:
|
||
|
y = 0
|
||
|
if x + label_size[0] > image.shape[1]:
|
||
|
x = image.shape[1] - label_size[0]
|
||
|
|
||
|
cv2.rectangle(
|
||
|
image,
|
||
|
(int(x), int(y)),
|
||
|
(int(x + label_size[0]), int(y + label_size[1] + baseLine)),
|
||
|
(255, 255, 255),
|
||
|
-1,
|
||
|
)
|
||
|
|
||
|
cv2.putText(
|
||
|
image,
|
||
|
text,
|
||
|
(int(x), int(y + label_size[1])),
|
||
|
cv2.FONT_HERSHEY_SIMPLEX,
|
||
|
0.5,
|
||
|
(0, 0, 0),
|
||
|
)
|
||
|
|
||
|
image[mask] = image[mask] * 0.5 + np.array(colors[color_index]) * 0.5
|
||
|
color_index += 1
|
||
|
|
||
|
cv2.imshow("image", image)
|
||
|
cv2.waitKey(0)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if len(sys.argv) != 2:
|
||
|
print("Usage: %s [imagepath]" % (sys.argv[0]))
|
||
|
sys.exit(0)
|
||
|
|
||
|
imagepath = sys.argv[1]
|
||
|
m = cv2.imread(imagepath)
|
||
|
if m is None:
|
||
|
print("cv2.imread %s failed\n" % (imagepath))
|
||
|
sys.exit(0)
|
||
|
|
||
|
net = get_model(
|
||
|
"yolact",
|
||
|
target_size=550,
|
||
|
confidence_threshold=0.05,
|
||
|
nms_threshold=0.5,
|
||
|
keep_top_k=200,
|
||
|
num_threads=4,
|
||
|
use_gpu=True,
|
||
|
)
|
||
|
|
||
|
boxes, masks, classes, scores = net(m)
|
||
|
|
||
|
draw_result(m, net.class_names, boxes, masks, classes, scores)
|