87 lines
2.4 KiB
Python
87 lines
2.4 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import pytest
|
||
|
|
||
|
import ncnn
|
||
|
|
||
|
alloctor = ncnn.PoolAllocator()
|
||
|
|
||
|
|
||
|
def test_extractor():
|
||
|
with pytest.raises(TypeError, match="No constructor"):
|
||
|
ex = ncnn.Extractor()
|
||
|
|
||
|
dr = ncnn.DataReaderFromEmpty()
|
||
|
|
||
|
net = ncnn.Net()
|
||
|
net.load_param("tests/test.param")
|
||
|
net.load_model(dr)
|
||
|
|
||
|
in_mat = ncnn.Mat((227, 227, 3))
|
||
|
with net.create_extractor() as ex:
|
||
|
ex.set_light_mode(True)
|
||
|
ex.set_num_threads(2)
|
||
|
|
||
|
ex.set_blob_allocator(alloctor)
|
||
|
ex.set_workspace_allocator(alloctor)
|
||
|
|
||
|
ex.input("data", in_mat)
|
||
|
ret, out_mat = ex.extract("conv0_fwd")
|
||
|
assert (
|
||
|
ret == 0
|
||
|
and out_mat.dims == 3
|
||
|
and out_mat.w == 225
|
||
|
and out_mat.h == 225
|
||
|
and out_mat.c == 3
|
||
|
)
|
||
|
|
||
|
ret, out_mat = ex.extract("output")
|
||
|
assert ret == 0 and out_mat.dims == 1 and out_mat.w == 1
|
||
|
|
||
|
|
||
|
def test_extractor_index():
|
||
|
with pytest.raises(TypeError, match="No constructor"):
|
||
|
ex = ncnn.Extractor()
|
||
|
|
||
|
dr = ncnn.DataReaderFromEmpty()
|
||
|
|
||
|
net = ncnn.Net()
|
||
|
net.load_param("tests/test.param")
|
||
|
net.load_model(dr)
|
||
|
|
||
|
in_mat = ncnn.Mat((227, 227, 3))
|
||
|
ex = net.create_extractor()
|
||
|
ex.set_light_mode(True)
|
||
|
ex.set_num_threads(2)
|
||
|
|
||
|
ex.set_blob_allocator(alloctor)
|
||
|
ex.set_workspace_allocator(alloctor)
|
||
|
|
||
|
ex.input(0, in_mat)
|
||
|
ret, out_mat = ex.extract(1)
|
||
|
assert (
|
||
|
ret == 0
|
||
|
and out_mat.dims == 3
|
||
|
and out_mat.w == 225
|
||
|
and out_mat.h == 225
|
||
|
and out_mat.c == 3
|
||
|
)
|
||
|
|
||
|
ret, out_mat = ex.extract(2)
|
||
|
assert ret == 0 and out_mat.dims == 1 and out_mat.w == 1
|
||
|
|
||
|
# not use with sentence, call clear manually to ensure ex destruct before net
|
||
|
ex.clear()
|