101 lines
3.2 KiB
C++
101 lines
3.2 KiB
C++
|
// Tencent is pleased to support the open source community by making ncnn available.
|
||
|
//
|
||
|
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
// in compliance with the License. You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://opensource.org/licenses/BSD-3-Clause
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software distributed
|
||
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
// specific language governing permissions and limitations under the License.
|
||
|
|
||
|
#include "layer/batchnorm.h"
|
||
|
#include "testutil.h"
|
||
|
|
||
|
static int test_batchnorm(const ncnn::Mat& a, float eps)
|
||
|
{
|
||
|
int channels;
|
||
|
if (a.dims == 1) channels = a.w;
|
||
|
if (a.dims == 2) channels = a.h;
|
||
|
if (a.dims == 3 || a.dims == 4) channels = a.c;
|
||
|
|
||
|
ncnn::ParamDict pd;
|
||
|
pd.set(0, channels); // channels
|
||
|
pd.set(1, eps); // eps
|
||
|
|
||
|
std::vector<ncnn::Mat> weights(4);
|
||
|
weights[0] = RandomMat(channels);
|
||
|
weights[1] = RandomMat(channels);
|
||
|
weights[2] = RandomMat(channels);
|
||
|
weights[3] = RandomMat(channels);
|
||
|
|
||
|
// var must be positive
|
||
|
Randomize(weights[2], 0.001f, 2.f);
|
||
|
|
||
|
int ret = test_layer<ncnn::BatchNorm>("BatchNorm", pd, weights, a);
|
||
|
if (ret != 0)
|
||
|
{
|
||
|
fprintf(stderr, "test_batchnorm failed a.dims=%d a=(%d %d %d %d) eps=%f\n", a.dims, a.w, a.h, a.d, a.c, eps);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int test_batchnorm_0()
|
||
|
{
|
||
|
return 0
|
||
|
|| test_batchnorm(RandomMat(5, 6, 7, 24), 0.f)
|
||
|
|| test_batchnorm(RandomMat(5, 6, 7, 24), 0.01f)
|
||
|
|| test_batchnorm(RandomMat(7, 8, 9, 12), 0.f)
|
||
|
|| test_batchnorm(RandomMat(7, 8, 9, 12), 0.001f)
|
||
|
|| test_batchnorm(RandomMat(3, 4, 5, 13), 0.f)
|
||
|
|| test_batchnorm(RandomMat(3, 4, 5, 13), 0.001f);
|
||
|
}
|
||
|
|
||
|
static int test_batchnorm_1()
|
||
|
{
|
||
|
return 0
|
||
|
|| test_batchnorm(RandomMat(5, 7, 24), 0.f)
|
||
|
|| test_batchnorm(RandomMat(5, 7, 24), 0.01f)
|
||
|
|| test_batchnorm(RandomMat(7, 9, 12), 0.f)
|
||
|
|| test_batchnorm(RandomMat(7, 9, 12), 0.001f)
|
||
|
|| test_batchnorm(RandomMat(3, 5, 13), 0.f)
|
||
|
|| test_batchnorm(RandomMat(3, 5, 13), 0.001f);
|
||
|
}
|
||
|
|
||
|
static int test_batchnorm_2()
|
||
|
{
|
||
|
return 0
|
||
|
|| test_batchnorm(RandomMat(15, 24), 0.f)
|
||
|
|| test_batchnorm(RandomMat(15, 24), 0.01f)
|
||
|
|| test_batchnorm(RandomMat(17, 12), 0.f)
|
||
|
|| test_batchnorm(RandomMat(17, 12), 0.001f)
|
||
|
|| test_batchnorm(RandomMat(19, 15), 0.f)
|
||
|
|| test_batchnorm(RandomMat(19, 15), 0.001f);
|
||
|
}
|
||
|
|
||
|
static int test_batchnorm_3()
|
||
|
{
|
||
|
return 0
|
||
|
|| test_batchnorm(RandomMat(128), 0.f)
|
||
|
|| test_batchnorm(RandomMat(128), 0.001f)
|
||
|
|| test_batchnorm(RandomMat(124), 0.f)
|
||
|
|| test_batchnorm(RandomMat(124), 0.1f)
|
||
|
|| test_batchnorm(RandomMat(127), 0.f)
|
||
|
|| test_batchnorm(RandomMat(127), 0.1f);
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
SRAND(7767517);
|
||
|
|
||
|
return 0
|
||
|
|| test_batchnorm_0()
|
||
|
|| test_batchnorm_1()
|
||
|
|| test_batchnorm_2()
|
||
|
|| test_batchnorm_3();
|
||
|
}
|