deepin-ocr/3rdparty/ncnn/tools/ncnnoptimize.cpp

2857 lines
84 KiB
C++
Raw Permalink Normal View History

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#ifdef _MSC_VER
#define _CRT_SECURE_NO_DEPRECATE
#endif
#include <algorithm>
#include <map>
#include <set>
#include <vector>
// ncnn public header
#include "datareader.h"
#include "layer.h"
#include "layer_type.h"
#include "net.h"
// ncnn private header
#include "modelwriter.h"
class DataReaderFromEmpty : public ncnn::DataReader
{
public:
virtual int scan(const char* format, void* p) const
{
return 0;
}
virtual size_t read(void* buf, size_t size) const
{
memset(buf, 0, size);
return size;
}
};
class NetOptimize : public ModelWriter
{
public:
NetOptimize();
public:
int fuse_batchnorm_scale();
int fuse_convolution_batchnorm();
int fuse_convolution_mul();
int fuse_convolution_add();
int fuse_convolutiondepthwise_batchnorm();
int fuse_convolutiondepthwise_mul();
int fuse_convolutiondepthwise_add();
int fuse_deconvolution_batchnorm();
int fuse_deconvolution_mul();
int fuse_deconvolution_add();
int fuse_deconvolutiondepthwise_batchnorm();
int fuse_innerproduct_batchnorm();
int fuse_innerproduct_add();
int fuse_innerproduct_dropout();
int fuse_convolution_activation();
int fuse_convolutiondepthwise_activation();
int fuse_deconvolution_activation();
int fuse_deconvolutiondepthwise_activation();
int fuse_innerproduct_activation();
int fuse_memorydata_binaryop();
int fuse_binaryop_eltwise();
int eliminate_dropout();
int eliminate_pooling1x1();
int eliminate_noop();
int eliminate_split();
int eliminate_orphaned_memorydata();
int eliminate_flatten_after_global_pooling();
int eliminate_reshape_after_global_pooling();
int eliminate_flatten_after_innerproduct();
int eliminate_reshape_before_binaryop();
int replace_reduction_with_global_pooling();
int replace_prelu_with_leaky_relu();
int replace_convolution_with_innerproduct_after_global_pooling();
int replace_convolution_with_innerproduct_after_innerproduct();
};
NetOptimize::NetOptimize()
: ModelWriter()
{
}
int NetOptimize::fuse_batchnorm_scale()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "BatchNorm")
continue;
// BatchNorm - Scale
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "Scale")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse BatchNorm - Scale to BatchNorm
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[i];
ncnn::Scale* scale = (ncnn::Scale*)layers[j];
fprintf(stderr, "fuse_batchnorm_scale %s %s\n", batchnorm->name.c_str(), scale->name.c_str());
{
// v = ((v - mean) / sqrt(var + eps) * slope + bias) * s + b
// = (v - mean) / sqrt(var + eps) * (slope * s) + (bias * s + b)
int channels = batchnorm->channels;
float* slope = batchnorm->slope_data;
float* bias = batchnorm->bias_data;
for (int q = 0; q < channels; q++)
{
slope[q] = slope[q] * scale->scale_data[q];
if (scale->bias_term)
bias[q] = bias[q] * scale->scale_data[q] + scale->bias_data[q];
else
bias[q] = bias[q] * scale->scale_data[q];
}
}
int top_blob_index_final = scale->tops[0];
batchnorm->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
scale->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_convolution_batchnorm()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Convolution")
continue;
// Convolution - BatchNorm
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BatchNorm")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Convolution - BatchNorm to Convolution
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i];
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
fprintf(stderr, "fuse_convolution_batchnorm %s %s\n", convolution->name.c_str(), batchnorm->name.c_str());
{
int channels = batchnorm->channels;
float eps = batchnorm->eps;
// a = bias - slope * mean / sqrt(var + eps)
// b = slope / sqrt(var + eps)
// value = value * b + a
std::vector<float> a(channels);
std::vector<float> b(channels);
for (int i = 0; i < channels; i++)
{
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
b[i] = batchnorm->slope_data[i] / sqrt_var;
}
if (convolution->bias_term == 0)
{
// init bias as zero
convolution->bias_term = 1;
convolution->bias_data = ncnn::Mat(channels);
convolution->bias_data.fill(0.f);
}
const int weight_per_outch = convolution->weight_data_size / channels;
float* weight = convolution->weight_data;
float* bias = convolution->bias_data;
for (int i = 0; i < channels; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= b[i];
}
bias[i] = bias[i] * b[i] + a[i];
}
}
int top_blob_index_final = batchnorm->tops[0];
convolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
batchnorm->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_convolution_mul()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Convolution")
continue;
// Convolution - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Convolution - BinaryOp to Convolution
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
if (binaryop->op_type != 2 || binaryop->with_scalar)
continue;
// MemoryData - ..... - BinaryOp
size_t k = 0;
for (; k < j; k++)
{
if (layers[k]->type != "MemoryData")
continue;
if (layers[k]->tops[0] == binaryop->bottoms[1])
break;
}
if (k == j)
continue;
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
int channels = convolution->num_output;
if (memorydata->w != channels || memorydata->h != 0 || memorydata->c != 0)
{
// not bias-like broadcasting type
continue;
}
fprintf(stderr, "fuse_convolution_mul %s %s\n", convolution->name.c_str(), binaryop->name.c_str());
{
const int weight_per_outch = convolution->weight_data_size / channels;
float* weight = convolution->weight_data;
float* bias = convolution->bias_data;
for (int i = 0; i < channels; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= memorydata->data[i];
}
if (bias)
{
bias[i] = bias[i] * memorydata->data[i];
}
}
}
int top_blob_index_final = binaryop->tops[0];
convolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
binaryop->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_convolution_add()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Convolution")
continue;
// Convolution - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Convolution - BinaryOp to Convolution
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
if (binaryop->op_type != 0 || binaryop->with_scalar)
continue;
// MemoryData - ..... - BinaryOp
size_t k = 0;
for (; k < j; k++)
{
if (layers[k]->type != "MemoryData")
continue;
if (layers[k]->tops[0] == binaryop->bottoms[1])
break;
}
if (k == j)
continue;
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
int channels = convolution->num_output;
bool broadcasting_type_ok = false;
if (memorydata->w == channels && memorydata->h == 0 && memorydata->c == 0)
broadcasting_type_ok = true;
if (memorydata->w == 1 && memorydata->h == 1 && memorydata->c == channels)
broadcasting_type_ok = true;
if (!broadcasting_type_ok)
{
// not bias-like broadcasting type
continue;
}
fprintf(stderr, "fuse_convolution_add %s %s\n", convolution->name.c_str(), binaryop->name.c_str());
ncnn::Mat bias_data = memorydata->data.reshape(channels);
{
if (convolution->bias_term == 0)
{
// init bias
convolution->bias_term = 1;
convolution->bias_data = bias_data;
}
else
{
float* bias = convolution->bias_data;
for (int i = 0; i < channels; i++)
{
bias[i] = bias[i] + bias_data[i];
}
}
}
int top_blob_index_final = binaryop->tops[0];
convolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
binaryop->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_convolutiondepthwise_batchnorm()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "ConvolutionDepthWise")
continue;
// ConvolutionDepthWise - BatchNorm
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BatchNorm")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse ConvolutionDepthWise - BatchNorm to ConvolutionDepthWise
ncnn::ConvolutionDepthWise* convolutiondepthwise = (ncnn::ConvolutionDepthWise*)layers[i];
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
fprintf(stderr, "fuse_convolutiondepthwise_batchnorm %s %s\n", convolutiondepthwise->name.c_str(), batchnorm->name.c_str());
{
int channels = batchnorm->channels;
float eps = batchnorm->eps;
// a = bias - slope * mean / sqrt(var + eps)
// b = slope / sqrt(var + eps)
// value = value * b + a
std::vector<float> a(channels);
std::vector<float> b(channels);
for (int i = 0; i < channels; i++)
{
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
b[i] = batchnorm->slope_data[i] / sqrt_var;
}
if (convolutiondepthwise->bias_term == 0)
{
// init bias as zero
convolutiondepthwise->bias_term = 1;
convolutiondepthwise->bias_data = ncnn::Mat(channels);
convolutiondepthwise->bias_data.fill(0.f);
}
const int weight_per_outch = convolutiondepthwise->weight_data_size / channels;
float* weight = convolutiondepthwise->weight_data;
float* bias = convolutiondepthwise->bias_data;
for (int i = 0; i < channels; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= b[i];
}
bias[i] = bias[i] * b[i] + a[i];
}
}
int top_blob_index_final = batchnorm->tops[0];
convolutiondepthwise->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
batchnorm->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_convolutiondepthwise_mul()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "ConvolutionDepthWise")
continue;
// ConvolutionDepthWise - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse ConvolutionDepthWise - BinaryOp to ConvolutionDepthWise
ncnn::ConvolutionDepthWise* convolutiondepthwise = (ncnn::ConvolutionDepthWise*)layers[i];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
if (binaryop->op_type != 2 || binaryop->with_scalar)
continue;
// MemoryData - ..... - BinaryOp
size_t k = 0;
for (; k < j; k++)
{
if (layers[k]->type != "MemoryData")
continue;
if (layers[k]->tops[0] == binaryop->bottoms[1])
break;
}
if (k == j)
continue;
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
int channels = convolutiondepthwise->num_output;
if (memorydata->w != channels || memorydata->h != 0 || memorydata->c != 0)
{
// not bias-like broadcasting type
continue;
}
fprintf(stderr, "fuse_convolutiondepthwise_mul %s %s\n", convolutiondepthwise->name.c_str(), binaryop->name.c_str());
{
const int weight_per_outch = convolutiondepthwise->weight_data_size / channels;
float* weight = convolutiondepthwise->weight_data;
float* bias = convolutiondepthwise->bias_data;
for (int i = 0; i < channels; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= memorydata->data[i];
}
if (bias)
{
bias[i] = bias[i] * memorydata->data[i];
}
}
}
int top_blob_index_final = binaryop->tops[0];
convolutiondepthwise->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
binaryop->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_convolutiondepthwise_add()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "ConvolutionDepthWise")
continue;
// ConvolutionDepthWise - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse ConvolutionDepthWise - BinaryOp to ConvolutionDepthWise
ncnn::ConvolutionDepthWise* convolutiondepthwise = (ncnn::ConvolutionDepthWise*)layers[i];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
if (binaryop->op_type != 0 || binaryop->with_scalar)
continue;
// MemoryData - ..... - BinaryOp
size_t k = 0;
for (; k < j; k++)
{
if (layers[k]->type != "MemoryData")
continue;
if (layers[k]->tops[0] == binaryop->bottoms[1])
break;
}
if (k == j)
continue;
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
int channels = convolutiondepthwise->num_output;
bool broadcasting_type_ok = false;
if (memorydata->w == channels && memorydata->h == 0 && memorydata->c == 0)
broadcasting_type_ok = true;
if (memorydata->w == 1 && memorydata->h == 1 && memorydata->c == channels)
broadcasting_type_ok = true;
if (!broadcasting_type_ok)
{
// not bias-like broadcasting type
continue;
}
fprintf(stderr, "fuse_convolutiondepthwise_add %s %s\n", convolutiondepthwise->name.c_str(), binaryop->name.c_str());
ncnn::Mat bias_data = memorydata->data.reshape(channels);
{
if (convolutiondepthwise->bias_term == 0)
{
// init bias
convolutiondepthwise->bias_term = 1;
convolutiondepthwise->bias_data = bias_data;
}
else
{
float* bias = convolutiondepthwise->bias_data;
for (int i = 0; i < channels; i++)
{
bias[i] = bias[i] + bias_data[i];
}
}
}
int top_blob_index_final = binaryop->tops[0];
convolutiondepthwise->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
binaryop->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_deconvolution_batchnorm()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Deconvolution")
continue;
// Deconvolution - BatchNorm
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BatchNorm")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Deconvolution - BatchNorm to Deconvolution
ncnn::Deconvolution* deconvolution = (ncnn::Deconvolution*)layers[i];
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
fprintf(stderr, "fuse_deconvolution_batchnorm %s %s\n", deconvolution->name.c_str(), batchnorm->name.c_str());
{
int channels = batchnorm->channels;
float eps = batchnorm->eps;
// a = bias - slope * mean / sqrt(var + eps)
// b = slope / sqrt(var + eps)
// value = value * b + a
std::vector<float> a(channels);
std::vector<float> b(channels);
for (int i = 0; i < channels; i++)
{
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
b[i] = batchnorm->slope_data[i] / sqrt_var;
}
if (deconvolution->bias_term == 0)
{
// init bias as zero
deconvolution->bias_term = 1;
deconvolution->bias_data = ncnn::Mat(channels);
deconvolution->bias_data.fill(0.f);
}
const int weight_per_outch = deconvolution->weight_data_size / channels;
float* weight = deconvolution->weight_data;
float* bias = deconvolution->bias_data;
for (int i = 0; i < channels; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= b[i];
}
bias[i] = bias[i] * b[i] + a[i];
}
}
int top_blob_index_final = batchnorm->tops[0];
deconvolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
batchnorm->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_deconvolution_mul()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Deconvolution")
continue;
// Deconvolution - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Deconvolution - BinaryOp to Deconvolution
ncnn::Deconvolution* deconvolution = (ncnn::Deconvolution*)layers[i];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
if (binaryop->op_type != 2 || binaryop->with_scalar)
continue;
// MemoryData - ..... - BinaryOp
size_t k = 0;
for (; k < j; k++)
{
if (layers[k]->type != "MemoryData")
continue;
if (layers[k]->tops[0] == binaryop->bottoms[1])
break;
}
if (k == j)
continue;
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
int channels = deconvolution->num_output;
if (memorydata->w != channels || memorydata->h != 0 || memorydata->c != 0)
{
// not bias-like broadcasting type
continue;
}
fprintf(stderr, "fuse_deconvolution_mul %s %s\n", deconvolution->name.c_str(), binaryop->name.c_str());
{
const int weight_per_outch = deconvolution->weight_data_size / channels;
float* weight = deconvolution->weight_data;
float* bias = deconvolution->bias_data;
for (int i = 0; i < channels; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= memorydata->data[i];
}
if (bias)
{
bias[i] = bias[i] * memorydata->data[i];
}
}
}
int top_blob_index_final = binaryop->tops[0];
deconvolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
binaryop->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_deconvolution_add()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Deconvolution")
continue;
// Deconvolution - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Deconvolution - BinaryOp to Deconvolution
ncnn::Deconvolution* deconvolution = (ncnn::Deconvolution*)layers[i];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
if (binaryop->op_type != 0 || binaryop->with_scalar)
continue;
// MemoryData - ..... - BinaryOp
size_t k = 0;
for (; k < j; k++)
{
if (layers[k]->type != "MemoryData")
continue;
if (layers[k]->tops[0] == binaryop->bottoms[1])
break;
}
if (k == j)
continue;
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
int channels = deconvolution->num_output;
bool broadcasting_type_ok = false;
if (memorydata->w == channels && memorydata->h == 0 && memorydata->c == 0)
broadcasting_type_ok = true;
if (memorydata->w == 1 && memorydata->h == 1 && memorydata->c == channels)
broadcasting_type_ok = true;
if (!broadcasting_type_ok)
{
// not bias-like broadcasting type
continue;
}
fprintf(stderr, "fuse_deconvolution_add %s %s\n", deconvolution->name.c_str(), binaryop->name.c_str());
ncnn::Mat bias_data = memorydata->data.reshape(channels);
{
if (deconvolution->bias_term == 0)
{
// init bias
deconvolution->bias_term = 1;
deconvolution->bias_data = bias_data;
}
else
{
float* bias = deconvolution->bias_data;
for (int i = 0; i < channels; i++)
{
bias[i] = bias[i] + bias_data[i];
}
}
}
int top_blob_index_final = binaryop->tops[0];
deconvolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
binaryop->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_deconvolutiondepthwise_batchnorm()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "DeconvolutionDepthWise")
continue;
// DeconvolutionDepthWise - BatchNorm
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BatchNorm")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse DeconvolutionDepthWise - BatchNorm to DeconvolutionDepthWise
ncnn::DeconvolutionDepthWise* deconvolutiondepthwise = (ncnn::DeconvolutionDepthWise*)layers[i];
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
fprintf(stderr, "fuse_deconvolutiondepthwise_batchnorm %s %s\n", deconvolutiondepthwise->name.c_str(), batchnorm->name.c_str());
{
int channels = batchnorm->channels;
float eps = batchnorm->eps;
// a = bias - slope * mean / sqrt(var + eps)
// b = slope / sqrt(var + eps)
// value = value * b + a
std::vector<float> a(channels);
std::vector<float> b(channels);
for (int i = 0; i < channels; i++)
{
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
b[i] = batchnorm->slope_data[i] / sqrt_var;
}
if (deconvolutiondepthwise->bias_term == 0)
{
// init bias as zero
deconvolutiondepthwise->bias_term = 1;
deconvolutiondepthwise->bias_data = ncnn::Mat(channels);
deconvolutiondepthwise->bias_data.fill(0.f);
}
const int weight_per_outch = deconvolutiondepthwise->weight_data_size / channels;
float* weight = deconvolutiondepthwise->weight_data;
float* bias = deconvolutiondepthwise->bias_data;
for (int i = 0; i < channels; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= b[i];
}
bias[i] = bias[i] * b[i] + a[i];
}
}
int top_blob_index_final = batchnorm->tops[0];
deconvolutiondepthwise->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
batchnorm->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_innerproduct_batchnorm()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "InnerProduct")
continue;
// InnerProduct - BatchNorm
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BatchNorm")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse InnerProduct - BatchNorm to InnerProduct
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
ncnn::BatchNorm* batchnorm = (ncnn::BatchNorm*)layers[j];
fprintf(stderr, "fuse_innerproduct_batchnorm %s %s\n", innerproduct->name.c_str(), batchnorm->name.c_str());
{
int channels = batchnorm->channels;
float eps = batchnorm->eps;
// a = bias - slope * mean / sqrt(var + eps)
// b = slope / sqrt(var + eps)
// value = value * b + a
std::vector<float> a(channels);
std::vector<float> b(channels);
for (int i = 0; i < channels; i++)
{
float sqrt_var = static_cast<float>(sqrt(batchnorm->var_data[i] + eps));
a[i] = batchnorm->bias_data[i] - batchnorm->slope_data[i] * batchnorm->mean_data[i] / sqrt_var;
b[i] = batchnorm->slope_data[i] / sqrt_var;
}
if (innerproduct->bias_term == 0)
{
// init bias as zero
innerproduct->bias_term = 1;
innerproduct->bias_data = ncnn::Mat(channels);
innerproduct->bias_data.fill(0.f);
}
const int weight_per_outch = innerproduct->weight_data_size / channels;
float* weight = innerproduct->weight_data;
float* bias = innerproduct->bias_data;
for (int i = 0; i < channels; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= b[i];
}
bias[i] = bias[i] * b[i] + a[i];
}
}
int top_blob_index_final = batchnorm->tops[0];
innerproduct->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
batchnorm->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_innerproduct_add()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "InnerProduct")
continue;
// InnerProduct - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse InnerProduct - BinaryOp to InnerProduct
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
if (binaryop->op_type != 0 || binaryop->with_scalar)
continue;
// MemoryData - ..... - BinaryOp
size_t k = 0;
for (; k < j; k++)
{
if (layers[k]->type != "MemoryData")
continue;
if (layers[k]->tops[0] == binaryop->bottoms[1])
break;
}
if (k == j)
continue;
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[k];
int channels = innerproduct->num_output;
bool broadcasting_type_ok = false;
if (memorydata->w == channels && memorydata->h == 0 && memorydata->c == 0)
broadcasting_type_ok = true;
if (memorydata->w == 1 && memorydata->h == 1 && memorydata->c == channels)
broadcasting_type_ok = true;
if (!broadcasting_type_ok)
{
// not bias-like broadcasting type
continue;
}
fprintf(stderr, "fuse_innerproduct_add %s %s\n", innerproduct->name.c_str(), binaryop->name.c_str());
ncnn::Mat bias_data = memorydata->data.reshape(channels);
{
if (innerproduct->bias_term == 0)
{
// init bias
innerproduct->bias_term = 1;
innerproduct->bias_data = bias_data;
}
else
{
float* bias = innerproduct->bias_data;
for (int i = 0; i < channels; i++)
{
bias[i] = bias[i] + bias_data[i];
}
}
}
int top_blob_index_final = binaryop->tops[0];
innerproduct->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
binaryop->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_innerproduct_dropout()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "InnerProduct")
continue;
// InnerProduct - Dropout
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "Dropout")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse InnerProduct - Dropout to InnerProduct
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
ncnn::Dropout* dropout = (ncnn::Dropout*)layers[j];
fprintf(stderr, "fuse_innerproduct_dropout %s %s\n", innerproduct->name.c_str(), dropout->name.c_str());
float scale = dropout->scale;
if (scale != 1.f)
{
const int num_output = innerproduct->num_output;
const int weight_per_outch = innerproduct->weight_data_size / num_output;
float* weight = innerproduct->weight_data;
for (int i = 0; i < num_output; i++)
{
float* conv_weight_outch = weight + weight_per_outch * i;
for (int j = 0; j < weight_per_outch; j++)
{
conv_weight_outch[j] *= scale;
}
}
if (innerproduct->bias_term)
{
float* bias = innerproduct->bias_data;
for (int i = 0; i < num_output; i++)
{
bias[i] *= scale;
}
}
}
int top_blob_index_final = dropout->tops[0];
innerproduct->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
dropout->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_convolution_activation()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Convolution")
continue;
// Convolution - Activation
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid" && layers[j]->type != "Mish" && layers[j]->type != "HardSwish")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Convolution - Activation to Convolution
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[i];
ncnn::Layer* activation = layers[j];
fprintf(stderr, "fuse_convolution_activation %s %s\n", convolution->name.c_str(), activation->name.c_str());
if (activation->type == "ReLU")
{
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
if (relu->slope == 0.f)
{
convolution->activation_type = 1;
}
else
{
convolution->activation_type = 2;
convolution->activation_params = ncnn::Mat(1);
convolution->activation_params[0] = relu->slope;
}
}
else if (activation->type == "Clip")
{
ncnn::Clip* clip = (ncnn::Clip*)activation;
convolution->activation_type = 3;
convolution->activation_params = ncnn::Mat(2);
convolution->activation_params[0] = clip->min;
convolution->activation_params[1] = clip->max;
}
else if (activation->type == "Sigmoid")
{
convolution->activation_type = 4;
}
else if (activation->type == "Mish")
{
convolution->activation_type = 5;
}
else if (activation->type == "HardSwish")
{
ncnn::HardSwish* hardswish = (ncnn::HardSwish*)activation;
convolution->activation_type = 6;
convolution->activation_params = ncnn::Mat(2);
convolution->activation_params[0] = hardswish->alpha;
convolution->activation_params[1] = hardswish->beta;
}
int top_blob_index_final = activation->tops[0];
convolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
activation->type = "ncnnfused";
}
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Convolution1D")
continue;
// Convolution1D - Activation
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid" && layers[j]->type != "Mish")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Convolution1D - Activation to Convolution1D
ncnn::Convolution1D* convolution = (ncnn::Convolution1D*)layers[i];
ncnn::Layer* activation = layers[j];
fprintf(stderr, "fuse_convolution1d_activation %s %s\n", convolution->name.c_str(), activation->name.c_str());
if (activation->type == "ReLU")
{
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
if (relu->slope == 0.f)
{
convolution->activation_type = 1;
}
else
{
convolution->activation_type = 2;
convolution->activation_params = ncnn::Mat(1);
convolution->activation_params[0] = relu->slope;
}
}
else if (activation->type == "Clip")
{
ncnn::Clip* clip = (ncnn::Clip*)activation;
convolution->activation_type = 3;
convolution->activation_params = ncnn::Mat(2);
convolution->activation_params[0] = clip->min;
convolution->activation_params[1] = clip->max;
}
else if (activation->type == "Sigmoid")
{
convolution->activation_type = 4;
}
else if (activation->type == "Mish")
{
convolution->activation_type = 5;
}
int top_blob_index_final = activation->tops[0];
convolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
activation->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_convolutiondepthwise_activation()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "ConvolutionDepthWise")
continue;
// ConvolutionDepthWise - Activation
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid" && layers[j]->type != "Mish" && layers[j]->type != "HardSwish")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse ConvolutionDepthWise - Activation to ConvolutionDepthWise
ncnn::ConvolutionDepthWise* convolutiondepthwise = (ncnn::ConvolutionDepthWise*)layers[i];
ncnn::Layer* activation = layers[j];
fprintf(stderr, "fuse_convolutiondepthwise_activation %s %s\n", convolutiondepthwise->name.c_str(), activation->name.c_str());
if (activation->type == "ReLU")
{
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
if (relu->slope == 0.f)
{
convolutiondepthwise->activation_type = 1;
}
else
{
convolutiondepthwise->activation_type = 2;
convolutiondepthwise->activation_params = ncnn::Mat(1);
convolutiondepthwise->activation_params[0] = relu->slope;
}
}
else if (activation->type == "Clip")
{
ncnn::Clip* clip = (ncnn::Clip*)activation;
convolutiondepthwise->activation_type = 3;
convolutiondepthwise->activation_params = ncnn::Mat(2);
convolutiondepthwise->activation_params[0] = clip->min;
convolutiondepthwise->activation_params[1] = clip->max;
}
else if (activation->type == "Sigmoid")
{
convolutiondepthwise->activation_type = 4;
}
else if (activation->type == "Mish")
{
convolutiondepthwise->activation_type = 5;
}
else if (activation->type == "HardSwish")
{
ncnn::HardSwish* hardswish = (ncnn::HardSwish*)activation;
convolutiondepthwise->activation_type = 6;
convolutiondepthwise->activation_params = ncnn::Mat(2);
convolutiondepthwise->activation_params[0] = hardswish->alpha;
convolutiondepthwise->activation_params[1] = hardswish->beta;
}
int top_blob_index_final = activation->tops[0];
convolutiondepthwise->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
activation->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_deconvolution_activation()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Deconvolution")
continue;
// Deconvolution - Activation
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse Deconvolution - Activation to Deconvolution
ncnn::Deconvolution* deconvolution = (ncnn::Deconvolution*)layers[i];
ncnn::Layer* activation = layers[j];
fprintf(stderr, "fuse_deconvolution_activation %s %s\n", deconvolution->name.c_str(), activation->name.c_str());
if (activation->type == "ReLU")
{
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
if (relu->slope == 0.f)
{
deconvolution->activation_type = 1;
}
else
{
deconvolution->activation_type = 2;
deconvolution->activation_params = ncnn::Mat(1);
deconvolution->activation_params[0] = relu->slope;
}
}
else if (activation->type == "Clip")
{
ncnn::Clip* clip = (ncnn::Clip*)activation;
deconvolution->activation_type = 3;
deconvolution->activation_params = ncnn::Mat(2);
deconvolution->activation_params[0] = clip->min;
deconvolution->activation_params[1] = clip->max;
}
else if (activation->type == "Sigmoid")
{
deconvolution->activation_type = 4;
}
int top_blob_index_final = activation->tops[0];
deconvolution->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
activation->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_deconvolutiondepthwise_activation()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "DeconvolutionDepthWise")
continue;
// DeconvolutionDepthWise - Activation
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse DeconvolutionDepthWise - Activation to DeconvolutionDepthWise
ncnn::DeconvolutionDepthWise* deconvolutiondepthwise = (ncnn::DeconvolutionDepthWise*)layers[i];
ncnn::Layer* activation = layers[j];
fprintf(stderr, "fuse_deconvolutiondepthwise_activation %s %s\n", deconvolutiondepthwise->name.c_str(), activation->name.c_str());
if (activation->type == "ReLU")
{
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
if (relu->slope == 0.f)
{
deconvolutiondepthwise->activation_type = 1;
}
else
{
deconvolutiondepthwise->activation_type = 2;
deconvolutiondepthwise->activation_params = ncnn::Mat(1);
deconvolutiondepthwise->activation_params[0] = relu->slope;
}
}
else if (activation->type == "Clip")
{
ncnn::Clip* clip = (ncnn::Clip*)activation;
deconvolutiondepthwise->activation_type = 3;
deconvolutiondepthwise->activation_params = ncnn::Mat(2);
deconvolutiondepthwise->activation_params[0] = clip->min;
deconvolutiondepthwise->activation_params[1] = clip->max;
}
else if (activation->type == "Sigmoid")
{
deconvolutiondepthwise->activation_type = 4;
}
int top_blob_index_final = activation->tops[0];
deconvolutiondepthwise->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
activation->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_innerproduct_activation()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "InnerProduct")
continue;
// InnerProduct - Activation
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "ReLU" && layers[j]->type != "Clip" && layers[j]->type != "Sigmoid" && layers[j]->type != "Mish" && layers[j]->type != "HardSwish")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse InnerProduct - Activation to InnerProduct
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
ncnn::Layer* activation = layers[j];
fprintf(stderr, "fuse_innerproduct_activation %s %s\n", innerproduct->name.c_str(), activation->name.c_str());
if (activation->type == "ReLU")
{
ncnn::ReLU* relu = (ncnn::ReLU*)activation;
if (relu->slope == 0.f)
{
innerproduct->activation_type = 1;
}
else
{
innerproduct->activation_type = 2;
innerproduct->activation_params = ncnn::Mat(1);
innerproduct->activation_params[0] = relu->slope;
}
}
else if (activation->type == "Clip")
{
ncnn::Clip* clip = (ncnn::Clip*)activation;
innerproduct->activation_type = 3;
innerproduct->activation_params = ncnn::Mat(2);
innerproduct->activation_params[0] = clip->min;
innerproduct->activation_params[1] = clip->max;
}
else if (activation->type == "Sigmoid")
{
innerproduct->activation_type = 4;
}
else if (activation->type == "Mish")
{
innerproduct->activation_type = 5;
}
else if (activation->type == "HardSwish")
{
ncnn::HardSwish* hardswish = (ncnn::HardSwish*)activation;
innerproduct->activation_type = 6;
innerproduct->activation_params = ncnn::Mat(2);
innerproduct->activation_params[0] = hardswish->alpha;
innerproduct->activation_params[1] = hardswish->beta;
}
int top_blob_index_final = activation->tops[0];
innerproduct->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
activation->type = "ncnnfused";
}
return 0;
}
int NetOptimize::fuse_memorydata_binaryop()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "MemoryData")
continue;
// MemoryData - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index || layers[j]->bottoms[1] == top_blob_index)
break;
}
if (j == layer_count)
continue;
// fuse MemoryData - BinaryOp to BinaryOp
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[i];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
if (memorydata->w != 1 || memorydata->h != 0 || memorydata->c != 0)
{
// not a scalar
continue;
}
int memorydata_index = 1;
if (binaryop->bottoms[0] == top_blob_index)
{
int op_type = binaryop->op_type;
if (op_type == ncnn::BinaryOp::Operation_ADD
|| op_type == ncnn::BinaryOp::Operation_MUL
|| op_type == ncnn::BinaryOp::Operation_MAX
|| op_type == ncnn::BinaryOp::Operation_MIN)
{
memorydata_index = 0;
}
else if (op_type == ncnn::BinaryOp::Operation_SUB)
{
binaryop->op_type = ncnn::BinaryOp::Operation_RSUB;
memorydata_index = 0;
}
else if (op_type == ncnn::BinaryOp::Operation_DIV)
{
binaryop->op_type = ncnn::BinaryOp::Operation_RDIV;
memorydata_index = 0;
}
else
{
// non interchangeable binaryop
continue;
}
}
float scalar = memorydata->data[0];
binaryop->with_scalar = 1;
binaryop->b = scalar;
fprintf(stderr, "fuse_memorydata_binaryop %s %s\n", memorydata->name.c_str(), binaryop->name.c_str());
binaryop->bottoms.erase(binaryop->bottoms.begin() + memorydata_index);
memorydata->type = "ncnnfused";
}
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "MemoryData")
continue;
// MemoryData - Split - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j0 = i + 1;
for (; j0 < layer_count; j0++)
{
if (layers[j0]->type != "Split")
continue;
if (layers[j0]->bottoms.size() != 1)
continue;
if (layers[j0]->bottoms[0] == top_blob_index)
break;
}
if (j0 == layer_count)
continue;
int split_top_blob_index = -1;
size_t j1 = j0 + 1;
for (; j1 < layer_count; j1++)
{
if (layers[j1]->type != "BinaryOp")
continue;
if (layers[j1]->bottoms.size() != 2)
continue;
for (int k = 0; k < (int)layers[j0]->tops.size(); k++)
{
if (layers[j1]->bottoms[0] == layers[j0]->tops[k] || layers[j1]->bottoms[1] == layers[j0]->tops[k])
{
split_top_blob_index = k;
break;
}
}
if (split_top_blob_index != -1)
break;
}
if (j1 == layer_count)
continue;
// fuse MemoryData - Split - BinaryOp to BinaryOp
ncnn::MemoryData* memorydata = (ncnn::MemoryData*)layers[i];
ncnn::Split* split = (ncnn::Split*)layers[j0];
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j1];
if (memorydata->w != 1 || memorydata->h != 0 || memorydata->c != 0)
{
// not a scalar
continue;
}
int memorydata_index = 1;
if (binaryop->bottoms[0] == split->tops[split_top_blob_index])
{
int op_type = binaryop->op_type;
if (op_type == ncnn::BinaryOp::Operation_ADD
|| op_type == ncnn::BinaryOp::Operation_MUL
|| op_type == ncnn::BinaryOp::Operation_MAX
|| op_type == ncnn::BinaryOp::Operation_MIN)
{
memorydata_index = 0;
}
else if (op_type == ncnn::BinaryOp::Operation_SUB)
{
binaryop->op_type = ncnn::BinaryOp::Operation_RSUB;
memorydata_index = 0;
}
else if (op_type == ncnn::BinaryOp::Operation_DIV)
{
binaryop->op_type = ncnn::BinaryOp::Operation_RDIV;
memorydata_index = 0;
}
else
{
// non interchangeable binaryop
continue;
}
}
float scalar = memorydata->data[0];
binaryop->with_scalar = 1;
binaryop->b = scalar;
fprintf(stderr, "fuse_memorydata_binaryop %s %s\n", memorydata->name.c_str(), binaryop->name.c_str());
binaryop->bottoms.erase(binaryop->bottoms.begin() + memorydata_index);
split->tops.erase(split->tops.begin() + split_top_blob_index);
if (split->tops.empty())
{
split->type = "ncnnfused";
memorydata->type = "ncnnfused";
}
i--;
}
return 0;
}
int NetOptimize::fuse_binaryop_eltwise()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "BinaryOp")
continue;
if (layers[i]->bottoms.size() != 2)
continue;
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[i];
if (binaryop->op_type != ncnn::BinaryOp::Operation_ADD)
continue;
if (binaryop->with_scalar)
continue;
// BinaryOp - BinaryOp - BinaryOp
int bottom_blob_index_0 = binaryop->bottoms[0];
int bottom_blob_index_1 = binaryop->bottoms[1];
size_t j0 = 0;
for (; j0 < i; j0++)
{
if (layers[j0]->type != "BinaryOp")
continue;
if (layers[j0]->bottoms.size() != 1)
continue;
if (((ncnn::BinaryOp*)layers[j0])->op_type != ncnn::BinaryOp::Operation_MUL)
continue;
if (layers[j0]->tops[0] == bottom_blob_index_0)
break;
}
size_t j1 = 0;
for (; j1 < i; j1++)
{
if (layers[j1]->type != "BinaryOp")
continue;
if (layers[j1]->bottoms.size() != 1)
continue;
if (((ncnn::BinaryOp*)layers[j1])->op_type != ncnn::BinaryOp::Operation_MUL)
continue;
if (layers[j1]->tops[0] == bottom_blob_index_1)
break;
}
if (j0 == i && j1 == i)
continue;
ncnn::BinaryOp* binaryop0 = (ncnn::BinaryOp*)layers[j0];
ncnn::BinaryOp* binaryop1 = (ncnn::BinaryOp*)layers[j1];
fprintf(stderr, "fuse_binaryop_eltwise %s %s %s\n", binaryop0->name.c_str(), binaryop1->name.c_str(), binaryop->name.c_str());
ncnn::Eltwise* eltwise = (ncnn::Eltwise*)ncnn::create_layer("Eltwise");
eltwise->type = "Eltwise";
eltwise->name = binaryop->name;
eltwise->bottoms = binaryop->bottoms;
eltwise->tops = binaryop->tops;
ncnn::ParamDict pd;
eltwise->load_param(pd);
eltwise->op_type = ncnn::Eltwise::Operation_SUM;
eltwise->coeffs = ncnn::Mat(2);
if (j0 != i && j1 != i)
{
// fuse BinaryOp - BinaryOp - BinaryOp to Eltwise
eltwise->coeffs[0] = binaryop0->b;
eltwise->coeffs[1] = binaryop1->b;
eltwise->bottoms[0] = binaryop0->bottoms[0];
eltwise->bottoms[1] = binaryop1->bottoms[0];
binaryop0->type = "ncnnfused";
binaryop1->type = "ncnnfused";
}
if (j0 != i && j1 == i)
{
// fuse BinaryOp - X - BinaryOp to Eltwise
eltwise->coeffs[0] = binaryop0->b;
eltwise->coeffs[1] = 1.f;
eltwise->bottoms[0] = binaryop0->bottoms[0];
binaryop0->type = "ncnnfused";
}
if (j0 == i && j1 != i)
{
// fuse X - BinaryOp - BinaryOp to Eltwise
eltwise->coeffs[0] = 1.f;
eltwise->coeffs[1] = binaryop1->b;
eltwise->bottoms[1] = binaryop1->bottoms[0];
binaryop1->type = "ncnnfused";
}
layers[i] = eltwise;
delete binaryop;
}
return 0;
}
int NetOptimize::eliminate_dropout()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Dropout")
continue;
ncnn::Dropout* dropout = (ncnn::Dropout*)layers[i];
if (dropout->scale != 1.f)
continue;
// Any - Dropout
int bottom_blob_index = layers[i]->bottoms[0];
int j = i - 1;
for (; j >= 0; j--)
{
if (layers[j]->type == "ncnnfused")
continue;
if (layers[j]->tops.size() != 1)
continue;
if (layers[j]->tops[0] == bottom_blob_index)
break;
}
if (j == -1)
continue;
ncnn::Layer* any = layers[j];
fprintf(stderr, "eliminate_dropout %s %s\n", any->name.c_str(), dropout->name.c_str());
int top_blob_index_final = dropout->tops[0];
any->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = j;
dropout->type = "ncnnfused";
}
return 0;
}
int NetOptimize::eliminate_pooling1x1()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Pooling")
continue;
ncnn::Pooling* pooling = (ncnn::Pooling*)layers[i];
if (pooling->pad_left != 0 || pooling->pad_right != 0 || pooling->pad_top != 0 || pooling->pad_bottom != 0)
continue;
if (pooling->kernel_w != 1 || pooling->kernel_h != 1 || pooling->stride_w != 1 || pooling->stride_h != 1)
continue;
if (pooling->global_pooling != 0)
continue;
// Any - Pooling
int bottom_blob_index = layers[i]->bottoms[0];
int top_i = -1;
int j = i - 1;
for (; j >= 0; j--)
{
if (layers[j]->type == "ncnnfused")
continue;
for (size_t k = 0; k < layers[j]->tops.size(); k++)
{
if (layers[j]->tops[k] == bottom_blob_index)
{
top_i = k;
break;
}
}
if (top_i != -1)
break;
}
if (j == -1)
continue;
ncnn::Layer* any = layers[j];
fprintf(stderr, "eliminate_pooling1x1 %s %s\n", any->name.c_str(), pooling->name.c_str());
int top_blob_index_final = pooling->tops[0];
any->tops[top_i] = top_blob_index_final;
blobs[top_blob_index_final].producer = j;
pooling->type = "ncnnfused";
}
return 0;
}
int NetOptimize::eliminate_noop()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Noop")
continue;
ncnn::Layer* noop = layers[i];
if (noop->bottoms.empty())
{
// Noop
fprintf(stderr, "eliminate_noop %s\n", noop->name.c_str());
size_t top_blob_count = noop->tops.size();
for (size_t j = 0; j < top_blob_count; j++)
{
int top_blob_index_final = noop->tops[j];
blobs[top_blob_index_final].producer = -1;
}
noop->type = "ncnnfused";
continue;
}
// Any - Noop
int bottom_blob_index = noop->bottoms[0];
int j = i - 1;
int any_k = -1;
for (; j >= 0; j--)
{
if (layers[j]->type == "ncnnfused")
continue;
bool link_noop = false;
size_t top_blob_count = layers[j]->tops.size();
for (size_t k = 0; k < top_blob_count; k++)
{
if (layers[j]->tops[k] == bottom_blob_index)
{
link_noop = true;
any_k = k;
break;
}
}
if (link_noop)
break;
}
if (j == -1 || any_k == -1)
continue;
ncnn::Layer* any = layers[j];
fprintf(stderr, "eliminate_noop %s %s\n", any->name.c_str(), noop->name.c_str());
int top_blob_index_final = noop->tops[0];
any->tops[any_k] = top_blob_index_final;
blobs[top_blob_index_final].producer = j;
noop->type = "ncnnfused";
}
return 0;
}
int NetOptimize::eliminate_split()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Split")
continue;
ncnn::Layer* split = layers[i];
int real_split_output_count = 0;
int real_split_top_blob_index = -1;
size_t top_blob_count = split->tops.size();
for (size_t j = 0; j < top_blob_count; j++)
{
int top_blob_index_final = split->tops[j];
if (blobs[top_blob_index_final].consumer != -1)
{
real_split_output_count += 1;
real_split_top_blob_index = j;
}
}
if (real_split_output_count > 1)
continue;
// Any - Pooling
int bottom_blob_index = split->bottoms[0];
int top_i = -1;
int j = i - 1;
for (; j >= 0; j--)
{
if (layers[j]->type == "ncnnfused")
continue;
for (size_t k = 0; k < layers[j]->tops.size(); k++)
{
if (layers[j]->tops[k] == bottom_blob_index)
{
top_i = k;
break;
}
}
if (top_i != -1)
break;
}
if (j == -1)
continue;
ncnn::Layer* any = layers[j];
fprintf(stderr, "eliminate_split %s %s\n", any->name.c_str(), split->name.c_str());
int top_blob_index_final = split->tops[real_split_top_blob_index];
any->tops[top_i] = top_blob_index_final;
blobs[top_blob_index_final].producer = j;
split->type = "ncnnfused";
}
return 0;
}
int NetOptimize::eliminate_orphaned_memorydata()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "MemoryData")
continue;
// MemoryData - X
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type == "ncnnfused")
continue;
bool orphaned = true;
for (size_t k = 0; k < layers[j]->bottoms.size(); k++)
{
if (layers[j]->bottoms[k] == top_blob_index)
{
orphaned = false;
break;
}
}
if (!orphaned)
break;
}
if (j < layer_count)
continue;
// assert orphaned == true
fprintf(stderr, "eliminate_orphaned_memorydata %s\n", layers[i]->name.c_str());
layers[i]->type = "ncnnfused";
}
return 0;
}
int NetOptimize::eliminate_reshape_after_global_pooling()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Pooling")
continue;
ncnn::Pooling* pooling = (ncnn::Pooling*)layers[i];
if (pooling->global_pooling == 0)
continue;
// Pooling - Reshape
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "Reshape")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
ncnn::Reshape* reshape = (ncnn::Reshape*)layers[j];
if (reshape->h != -233 || reshape->c != -233 || reshape->permute != 0)
continue;
fprintf(stderr, "eliminate_reshape_after_global_pooling %s %s\n", pooling->name.c_str(), reshape->name.c_str());
int top_blob_index_final = reshape->tops[0];
pooling->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
reshape->type = "ncnnfused";
}
return 0;
}
int NetOptimize::eliminate_flatten_after_global_pooling()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Pooling")
continue;
ncnn::Pooling* pooling = (ncnn::Pooling*)layers[i];
if (pooling->global_pooling == 0)
continue;
// Pooling - Flatten
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "Flatten")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
ncnn::Flatten* flatten = (ncnn::Flatten*)layers[j];
fprintf(stderr, "eliminate_flatten_after_global_pooling %s %s\n", pooling->name.c_str(), flatten->name.c_str());
int top_blob_index_final = flatten->tops[0];
pooling->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
flatten->type = "ncnnfused";
}
return 0;
}
int NetOptimize::eliminate_flatten_after_innerproduct()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "InnerProduct")
continue;
// InnerProduct - Flatten
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "Flatten")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
ncnn::Flatten* flatten = (ncnn::Flatten*)layers[j];
fprintf(stderr, "eliminate_flatten_after_innerproduct %s %s\n", innerproduct->name.c_str(), flatten->name.c_str());
int top_blob_index_final = flatten->tops[0];
innerproduct->tops[0] = top_blob_index_final;
blobs[top_blob_index_final].producer = i;
flatten->type = "ncnnfused";
}
return 0;
}
int NetOptimize::eliminate_reshape_before_binaryop()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Reshape")
continue;
ncnn::Reshape* reshape = (ncnn::Reshape*)layers[i];
if (reshape->w != 1 || reshape->h != 1 || reshape->permute != 0)
continue;
// Reshape - BinaryOp
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "BinaryOp")
continue;
if (layers[j]->bottoms.size() != 2)
continue;
if (layers[j]->bottoms[0] == top_blob_index || layers[j]->bottoms[1] == top_blob_index)
break;
}
if (j == layer_count)
continue;
ncnn::BinaryOp* binaryop = (ncnn::BinaryOp*)layers[j];
fprintf(stderr, "eliminate_reshape_before_binaryop %s %s\n", reshape->name.c_str(), binaryop->name.c_str());
int bottom_blob_index_final = reshape->bottoms[0];
if (layers[j]->bottoms[0] == top_blob_index)
binaryop->bottoms[0] = bottom_blob_index_final;
if (layers[j]->bottoms[1] == top_blob_index)
binaryop->bottoms[1] = bottom_blob_index_final;
blobs[bottom_blob_index_final].consumer = j;
reshape->type = "ncnnfused";
}
return 0;
}
int NetOptimize::replace_reduction_with_global_pooling()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Reduction")
continue;
ncnn::Reduction* reduction1 = (ncnn::Reduction*)layers[i];
if (reduction1->operation != 3 || reduction1->reduce_all != 0 || reduction1->coeff != 1.f)
continue;
if (reduction1->axes.w != 1)
continue;
const int* axes_ptr = reduction1->axes;
if (axes_ptr[0] != 2 && axes_ptr[0] != 3)
continue;
// Reduction(2/3) - Reduction(2)
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "Reduction")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
ncnn::Reduction* reduction2 = (ncnn::Reduction*)layers[j];
if (reduction2->operation != 3 || reduction2->reduce_all != 0 || reduction2->coeff != 1.f)
continue;
if (reduction2->axes.w != 1)
continue;
const int* axes2_ptr = reduction2->axes;
if (axes2_ptr[0] != 2)
continue;
fprintf(stderr, "replace_reduction_with_global_pooling %s %s\n", reduction1->name.c_str(), reduction2->name.c_str());
ncnn::Pooling* pooling = (ncnn::Pooling*)ncnn::create_layer("Pooling");
pooling->type = "Pooling";
pooling->name = reduction2->name;
pooling->bottoms = reduction2->bottoms;
pooling->tops = reduction2->tops;
ncnn::ParamDict pd;
pooling->load_param(pd);
pooling->pooling_type = 1;
pooling->global_pooling = 1;
layers[j] = pooling;
delete reduction2;
int bottom_blob_index_final = reduction1->bottoms[0];
pooling->bottoms[0] = bottom_blob_index_final;
blobs[bottom_blob_index_final].consumer = j;
reduction1->type = "ncnnfused";
}
return 0;
}
int NetOptimize::replace_prelu_with_leaky_relu()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "PReLU")
continue;
ncnn::PReLU* prelu = (ncnn::PReLU*)layers[i];
if (prelu->num_slope != 1)
continue;
fprintf(stderr, "replace_prelu_with_leaky_relu %s\n", prelu->name.c_str());
ncnn::ReLU* relu = (ncnn::ReLU*)ncnn::create_layer("ReLU");
relu->type = "ReLU";
relu->name = prelu->name;
relu->bottoms = prelu->bottoms;
relu->tops = prelu->tops;
ncnn::ParamDict pd;
relu->load_param(pd);
relu->slope = prelu->slope_data[0];
layers[i] = relu;
delete prelu;
}
return 0;
}
int NetOptimize::replace_convolution_with_innerproduct_after_global_pooling()
{
const size_t layer_count = layers.size();
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "Pooling")
continue;
ncnn::Pooling* pooling = (ncnn::Pooling*)layers[i];
if (pooling->global_pooling == 0)
continue;
// Pooling - Convolution
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "Convolution")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[j];
fprintf(stderr, "replace_convolution_with_innerproduct_after_global_pooling %s %s\n", pooling->name.c_str(), convolution->name.c_str());
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)ncnn::create_layer("InnerProduct");
innerproduct->type = "InnerProduct";
innerproduct->name = convolution->name;
innerproduct->bottoms = convolution->bottoms;
innerproduct->tops = convolution->tops;
ncnn::ParamDict pd;
innerproduct->load_param(pd);
innerproduct->num_output = convolution->num_output;
innerproduct->bias_term = convolution->bias_term;
innerproduct->weight_data_size = convolution->weight_data_size;
innerproduct->int8_scale_term = convolution->int8_scale_term;
innerproduct->weight_data = convolution->weight_data;
innerproduct->bias_data = convolution->bias_data;
#if NCNN_INT8
innerproduct->weight_data_int8_scales = convolution->weight_data_int8_scales;
innerproduct->bottom_blob_int8_scales = convolution->bottom_blob_int8_scales;
#endif
innerproduct->activation_type = convolution->activation_type;
innerproduct->activation_params = convolution->activation_params;
layers[j] = innerproduct;
delete convolution;
}
return 0;
}
int NetOptimize::replace_convolution_with_innerproduct_after_innerproduct()
{
const size_t layer_count = layers.size();
for (;;)
{
bool replaced = false;
for (size_t i = 0; i < layer_count; i++)
{
if (layers[i]->type != "InnerProduct")
continue;
// InnerProduct - Convolution
int top_blob_index = layers[i]->tops[0];
size_t j = i + 1;
for (; j < layer_count; j++)
{
if (layers[j]->type != "Convolution")
continue;
if (layers[j]->bottoms.size() != 1)
continue;
if (layers[j]->bottoms[0] == top_blob_index)
break;
}
if (j == layer_count)
continue;
ncnn::InnerProduct* innerproduct = (ncnn::InnerProduct*)layers[i];
ncnn::Convolution* convolution = (ncnn::Convolution*)layers[j];
fprintf(stderr, "replace_convolution_with_innerproduct_after_innerproduct %s %s\n", innerproduct->name.c_str(), convolution->name.c_str());
ncnn::InnerProduct* innerproduct2 = (ncnn::InnerProduct*)ncnn::create_layer("InnerProduct");
innerproduct2->type = "InnerProduct";
innerproduct2->name = convolution->name;
innerproduct2->bottoms = convolution->bottoms;
innerproduct2->tops = convolution->tops;
ncnn::ParamDict pd;
innerproduct2->load_param(pd);
innerproduct2->num_output = convolution->num_output;
innerproduct2->bias_term = convolution->bias_term;
innerproduct2->weight_data_size = convolution->weight_data_size;
innerproduct->int8_scale_term = convolution->int8_scale_term;
innerproduct2->weight_data = convolution->weight_data;
innerproduct2->bias_data = convolution->bias_data;
#if NCNN_INT8
innerproduct->weight_data_int8_scales = convolution->weight_data_int8_scales;
innerproduct->bottom_blob_int8_scales = convolution->bottom_blob_int8_scales;
#endif
innerproduct2->activation_type = convolution->activation_type;
innerproduct2->activation_params = convolution->activation_params;
layers[j] = innerproduct2;
delete convolution;
replaced = true;
}
if (!replaced)
break;
}
return 0;
}
int main(int argc, char** argv)
{
if (argc < 6)
{
fprintf(stderr, "usage: %s [inparam] [inbin] [outparam] [outbin] [flag] [cutstart] [cutend]\n", argv[0]);
return -1;
}
const char* inparam = argv[1];
const char* inbin = argv[2];
const char* outparam = argv[3];
const char* outbin = argv[4];
int flag = atoi(argv[5]);
const char* cutstartname = nullptr;
const char* cutendname = nullptr;
if (argc > 6)
{
cutstartname = argv[6];
}
if (argc > 7)
{
cutendname = argv[7];
}
NetOptimize optimizer;
if (flag == 65536 || flag == 1)
{
optimizer.storage_type = 1;
}
else
{
optimizer.storage_type = 0;
}
optimizer.load_param(inparam);
if (strcmp(inbin, "null") == 0)
{
DataReaderFromEmpty dr;
optimizer.load_model(dr);
optimizer.gen_random_weight = true;
}
else
optimizer.load_model(inbin);
if (optimizer.set_cutparam(cutstartname, cutendname) < 0)
{
return -1;
}
optimizer.fuse_batchnorm_scale();
optimizer.fuse_convolution_batchnorm();
optimizer.fuse_convolution_mul();
optimizer.fuse_convolution_add();
optimizer.fuse_convolutiondepthwise_batchnorm();
optimizer.fuse_convolutiondepthwise_mul();
optimizer.fuse_convolutiondepthwise_add();
optimizer.fuse_deconvolution_batchnorm();
optimizer.fuse_deconvolution_mul();
optimizer.fuse_deconvolution_add();
optimizer.fuse_deconvolutiondepthwise_batchnorm();
optimizer.fuse_innerproduct_batchnorm();
optimizer.fuse_innerproduct_add();
optimizer.fuse_innerproduct_dropout();
optimizer.replace_reduction_with_global_pooling();
optimizer.replace_prelu_with_leaky_relu();
optimizer.fuse_convolution_activation();
optimizer.fuse_convolutiondepthwise_activation();
optimizer.fuse_deconvolution_activation();
optimizer.fuse_deconvolutiondepthwise_activation();
optimizer.fuse_innerproduct_activation();
optimizer.fuse_memorydata_binaryop();
optimizer.fuse_binaryop_eltwise();
optimizer.eliminate_dropout();
optimizer.eliminate_pooling1x1();
optimizer.eliminate_noop();
optimizer.eliminate_split();
optimizer.eliminate_flatten_after_global_pooling();
optimizer.eliminate_reshape_after_global_pooling();
optimizer.eliminate_reshape_before_binaryop();
optimizer.replace_convolution_with_innerproduct_after_global_pooling();
optimizer.replace_convolution_with_innerproduct_after_innerproduct();
optimizer.eliminate_flatten_after_innerproduct();
optimizer.eliminate_orphaned_memorydata();
optimizer.shape_inference();
optimizer.estimate_memory_footprint();
optimizer.save(outparam, outbin);
return 0;
}