69 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			69 lines
		
	
	
		
			2.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | # Tencent is pleased to support the open source community by making ncnn available. | ||
|  | # | ||
|  | # Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved. | ||
|  | # | ||
|  | # Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | ||
|  | # in compliance with the License. You may obtain a copy of the License at | ||
|  | # | ||
|  | # https://opensource.org/licenses/BSD-3-Clause | ||
|  | # | ||
|  | # Unless required by applicable law or agreed to in writing, software distributed | ||
|  | # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
|  | # CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
|  | # specific language governing permissions and limitations under the License. | ||
|  | 
 | ||
|  | import torch | ||
|  | import torch.nn as nn | ||
|  | import torch.nn.functional as F | ||
|  | 
 | ||
|  | class Model(nn.Module): | ||
|  |     def __init__(self): | ||
|  |         super(Model, self).__init__() | ||
|  | 
 | ||
|  |         self.pool_0 = nn.LPPool1d(norm_type=2, kernel_size=3) | ||
|  |         self.pool_1 = nn.LPPool1d(norm_type=2, kernel_size=4, stride=2) | ||
|  |         self.pool_2 = nn.LPPool1d(norm_type=1, kernel_size=3, stride=1, ceil_mode=False) | ||
|  |         self.pool_3 = nn.LPPool1d(norm_type=1, kernel_size=5, stride=1, ceil_mode=True) | ||
|  |         self.pool_4 = nn.LPPool1d(norm_type=1.2, kernel_size=3, stride=2, ceil_mode=False) | ||
|  |         self.pool_5 = nn.LPPool1d(norm_type=0.5, kernel_size=2, stride=1, ceil_mode=True) | ||
|  |         self.pool_6 = nn.LPPool1d(norm_type=0.1, kernel_size=4, stride=1, ceil_mode=False) | ||
|  | 
 | ||
|  |     def forward(self, x): | ||
|  |         x = self.pool_0(x) | ||
|  |         x = self.pool_1(x) | ||
|  |         x = self.pool_2(x) | ||
|  |         x = self.pool_3(x) | ||
|  |         x = self.pool_4(x) | ||
|  |         x = self.pool_5(x) | ||
|  |         x = self.pool_6(x) | ||
|  |         return x | ||
|  | 
 | ||
|  | def test(): | ||
|  |     net = Model() | ||
|  |     net.eval() | ||
|  | 
 | ||
|  |     torch.manual_seed(0) | ||
|  |     x = torch.rand(1, 12, 128) | ||
|  | 
 | ||
|  |     a = net(x) | ||
|  | 
 | ||
|  |     # export torchscript | ||
|  |     mod = torch.jit.trace(net, x) | ||
|  |     mod.save("test_nn_LPPool1d.pt") | ||
|  | 
 | ||
|  |     # torchscript to pnnx | ||
|  |     import os | ||
|  |     os.system("../src/pnnx test_nn_LPPool1d.pt inputshape=[1,12,128]") | ||
|  | 
 | ||
|  |     # pnnx inference | ||
|  |     import test_nn_LPPool1d_pnnx | ||
|  |     b = test_nn_LPPool1d_pnnx.test_inference() | ||
|  | 
 | ||
|  |     return torch.equal(a, b) | ||
|  | 
 | ||
|  | if __name__ == "__main__": | ||
|  |     if test(): | ||
|  |         exit(0) | ||
|  |     else: | ||
|  |         exit(1) |