69 lines
2.0 KiB
Python
69 lines
2.0 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Model, self).__init__()
|
||
|
|
||
|
self.c0 = nn.Parameter(torch.rand(12))
|
||
|
self.c2 = nn.Parameter(torch.rand(48, 12))
|
||
|
|
||
|
def forward(self, a0, a1, a2, b0, b1, b2, c1):
|
||
|
a = torch.addmm(a0, a1, a2)
|
||
|
b = torch.addmm(b0, b1, b2, beta=1.4, alpha=0.7)
|
||
|
c = torch.addmm(self.c0, c1, self.c2, beta=1, alpha=1)
|
||
|
return a, b, c
|
||
|
|
||
|
def test():
|
||
|
net = Model()
|
||
|
net.eval()
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
a0 = torch.rand(13, 1)
|
||
|
a1 = torch.rand(13, 16)
|
||
|
a2 = torch.rand(16, 23)
|
||
|
b0 = torch.rand(7, 33)
|
||
|
b1 = torch.rand(7, 26)
|
||
|
b2 = torch.rand(26, 33)
|
||
|
c1 = torch.rand(16, 48)
|
||
|
|
||
|
a = net(a0, a1, a2, b0, b1, b2, c1)
|
||
|
|
||
|
# export torchscript
|
||
|
mod = torch.jit.trace(net, (a0, a1, a2, b0, b1, b2, c1))
|
||
|
mod.save("test_torch_addmm.pt")
|
||
|
|
||
|
# torchscript to pnnx
|
||
|
import os
|
||
|
os.system("../src/pnnx test_torch_addmm.pt inputshape=[13,1],[13,16],[16,23],[7,33],[7,26],[26,33],[16,48]")
|
||
|
|
||
|
# pnnx inference
|
||
|
import test_torch_addmm_pnnx
|
||
|
b = test_torch_addmm_pnnx.test_inference()
|
||
|
|
||
|
for a0, b0 in zip(a, b):
|
||
|
if not torch.equal(a0, b0):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if test():
|
||
|
exit(0)
|
||
|
else:
|
||
|
exit(1)
|