deepin-ocr/3rdparty/ncnn/docs/developer-guide/operators.md

1644 lines
59 KiB
Markdown
Raw Normal View History

* [AbsVal](#absval)
* [ArgMax](#argmax)
* [BatchNorm](#batchnorm)
* [Bias](#bias)
* [BinaryOp](#binaryop)
* [BNLL](#bnll)
* [Cast](#cast)
* [Clip](#clip)
* [Concat](#concat)
* [Convolution](#convolution)
* [Convolution1D](#convolution1d)
* [Convolution3D](#convolution3d)
* [ConvolutionDepthWise](#convolutiondepthwise)
* [ConvolutionDepthWise1D](#convolutiondepthwise1d)
* [ConvolutionDepthWise3D](#convolutiondepthwise3d)
* [Crop](#crop)
* [Deconvolution](#deconvolution)
* [Deconvolution1D](#deconvolution1d)
* [Deconvolution3D](#deconvolution3d)
* [DeconvolutionDepthWise](#deconvolutiondepthwise)
* [DeconvolutionDepthWise1D](#deconvolutiondepthwise1d)
* [DeconvolutionDepthWise3D](#deconvolutiondepthwise3d)
* [Dequantize](#dequantize)
* [Dropout](#dropout)
* [Eltwise](#eltwise)
* [ELU](#elu)
* [Exp](#exp)
* [Flatten](#flatten)
* [GELU](#gelu)
* [Gemm](#gemm)
* [GroupNorm](#groupnorm)
* [GRU](#gru)
* [HardSigmoid](#hardsigmoid)
* [HardSwish](#hardswish)
* [InnerProduct](#innerproduct)
* [Input](#input)
* [InstanceNorm](#instancenorm)
* [Interp](#interp)
* [LayerNorm](#layernorm)
* [Log](#log)
* [LRN](#lrn)
* [LSTM](#lstm)
* [MemoryData](#memorydata)
* [Mish](#mish)
* [MultiHeadAttention](#multiheadattention)
* [MVN](#mvn)
* [Noop](#noop)
* [Normalize](#normalize)
* [Packing](#packing)
* [Padding](#padding)
* [Permute](#permute)
* [PixelShuffle](#pixelshuffle)
* [Pooling](#pooling)
* [Pooling1D](#pooling1d)
* [Pooling3D](#pooling3d)
* [Power](#power)
* [PReLU](#prelu)
* [Quantize](#quantize)
* [Reduction](#reduction)
* [ReLU](#relu)
* [Reorg](#reorg)
* [Requantize](#requantize)
* [Reshape](#reshape)
* [RNN](#rnn)
* [Scale](#scale)
* [SELU](#selu)
* [ShuffleChannel](#shufflechannel)
* [Sigmoid](#sigmoid)
* [Slice](#slice)
* [Softmax](#softmax)
* [Softplus](#softplus)
* [Split](#split)
* [Swish](#swish)
* [TanH](#tanh)
* [Threshold](#threshold)
* [Tile](#tile)
* [UnaryOp](#unaryop)
# AbsVal
```
y = abs(x)
```
* one_blob_only
* support_inplace
# ArgMax
```
y = argmax(x, out_max_val, topk)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | out_max_val | int | 0 | |
| 1 | topk | int | 1 | |
# BatchNorm
```
y = (x - mean) / sqrt(var + eps) * slope + bias
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | channels | int | 0 | |
| 1 | eps | float | 0.f | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| slope_data | float | [channels] |
| mean_data | float | [channels] |
| var_data | float | [channels] |
| bias_data | float | [channels] |
# Bias
```
y = x + bias
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | bias_data_size| int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| bias_data | float | [channels] |
# BinaryOp
This operation is used for binary computation, and the calculation rule depends on the [broadcasting rule](https://github.com/Tencent/ncnn/wiki/binaryop-broadcasting).
```
C = binaryop(A, B)
```
if with_scalar = 1:
- one_blob_only
- support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | op_type | int | 0 | Operation type as follows |
| 1 | with_scalar | int | 0 | with_scalar=0 B is a matrix, with_scalar=1 B is a scalar |
| 2 | b | float | 0.f | When B is a scalar, B = b |
Operation type:
- 0 = ADD
- 1 = SUB
- 2 = MUL
- 3 = DIV
- 4 = MAX
- 5 = MIN
- 6 = POW
- 7 = RSUB
- 8 = RDIV
# BNLL
```
y = log(1 + e^(-x)) , x > 0
y = log(1 + e^x), x < 0
```
* one_blob_only
* support_inplace
# Cast
```
y = cast(x)
```
* one_blob_only
* support_packing
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | type_from | int | 0 | |
| 1 | type_to | int | 0 | |
Element type:
- 0 = auto
- 1 = float32
- 2 = float16
- 3 = int8
- 4 = bfloat16
# Clip
```
y = clamp(x, min, max)
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | min | float | -FLT_MAX | |
| 1 | max | float | FLT_MAX | |
# Concat
```
y = concat(x0, x1, x2, ...) by axis
```
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | axis | int | 0 | |
# Convolution
```
x2 = pad(x, pads, pad_value)
x3 = conv(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 8 | int8_scale_term| int | 0 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 11 | kernel_h | int | kernel_w | |
| 12 | dilation_h | int | dilation_w | |
| 13 | stride_h | int | stride_w | |
| 14 | pad_top | int | pad_left | |
| 15 | pad_right | int | pad_left | |
| 16 | pad_bottom | int | pad_top | |
| 18 | pad_value | float | 0.f | |
| 19 | dynamic_weight| int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] |
| bias_data | float | [num_output] |
| weight_data_int8_scales| float | [num_output] |
| bottom_blob_int8_scales| float | [1] |
| top_blob_int8_scales| float | [1] |
# Convolution1D
```
x2 = pad(x, pads, pad_value)
x3 = conv1d(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 15 | pad_right | int | pad_left | |
| 18 | pad_value | float | 0.f | |
| 19 | dynamic_weight| int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16/int8 | [kernel_w, num_input, num_output] |
| bias_data | float | [num_output] |
# Convolution3D
```
x2 = pad(x, pads, pad_value)
x3 = conv3d(x2, weight, kernel, stride, dilation) + bias
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 11 | kernel_h | int | kernel_w | |
| 12 | dilation_h | int | dilation_w | |
| 13 | stride_h | int | stride_w | |
| 14 | pad_top | int | pad_left | |
| 15 | pad_right | int | pad_left | |
| 16 | pad_bottom | int | pad_top | |
| 17 | pad_behind | int | pad_front | |
| 18 | pad_value | float | 0.f | |
| 21 | kernel_d | int | kernel_w | |
| 22 | dilation_d | int | dilation_w | |
| 23 | stride_d | int | stride_w | |
| 24 | pad_front | int | pad_left | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input, num_output] |
| bias_data | float | [num_output] |
# ConvolutionDepthWise
```
x2 = pad(x, pads, pad_value)
x3 = conv(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 7 | group | int | 1 | |
| 8 | int8_scale_term| int | 0 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 11 | kernel_h | int | kernel_w | |
| 12 | dilation_h | int | dilation_w | |
| 13 | stride_h | int | stride_w | |
| 14 | pad_top | int | pad_left | |
| 15 | pad_right | int | pad_left | |
| 16 | pad_bottom | int | pad_top | |
| 18 | pad_value | float | 0.f | |
| 19 | dynamic_weight| int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input / group, num_output / group, group] |
| bias_data | float | [num_output] |
| weight_data_int8_scales| float | [group] |
| bottom_blob_int8_scales| float | [1] |
| top_blob_int8_scales| float | [1] |
# ConvolutionDepthWise1D
```
x2 = pad(x, pads, pad_value)
x3 = conv1d(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 7 | group | int | 1 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 15 | pad_right | int | pad_left | |
| 18 | pad_value | float | 0.f | |
| 19 | dynamic_weight| int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16/int8 | [kernel_w, num_input / group, num_output / group, group] |
| bias_data | float | [num_output] |
# ConvolutionDepthWise3D
```
x2 = pad(x, pads, pad_value)
x3 = conv3d(x2, weight, kernel, stride, dilation, group) + bias
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 7 | group | int | 1 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 11 | kernel_h | int | kernel_w | |
| 12 | dilation_h | int | dilation_w | |
| 13 | stride_h | int | stride_w | |
| 14 | pad_top | int | pad_left | |
| 15 | pad_right | int | pad_left | |
| 16 | pad_bottom | int | pad_top | |
| 17 | pad_behind | int | pad_front | |
| 18 | pad_value | float | 0.f | |
| 21 | kernel_d | int | kernel_w | |
| 22 | dilation_d | int | dilation_w | |
| 23 | stride_d | int | stride_w | |
| 24 | pad_front | int | pad_left | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
| bias_data | float | [num_output] |
# Crop
```
y = crop(x)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | woffset | int | 0 | |
| 1 | hoffset | int | 0 | |
| 2 | coffset | int | 1 | |
| 3 | outw | int | 1 | |
| 4 | outh | int | 0 | |
| 5 | outc | int | 0 | |
| 6 | woffset2 | int | 0 | |
| 7 | hoffset2 | int | 1 | |
| 8 | coffset2 | int | 0 | |
| 9 | starts | array | [ ] | |
| 10 | ends | array | [ ] | |
| 11 | axes | array | [ ] | |
# Deconvolution
```
x2 = deconv(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 11 | kernel_h | int | kernel_w | |
| 12 | dilation_h | int | dilation_w | |
| 13 | stride_h | int | stride_w | |
| 14 | pad_top | int | pad_left | |
| 15 | pad_right | int | pad_left | |
| 16 | pad_bottom | int | pad_top | |
| 18 | output_pad_right| int | 0 | |
| 19 | output_pad_bottom| int | output_pad_right | |
| 20 | output_w | int | 0 | |
| 21 | output_h | int | output_w | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16 | [kernel_w, kernel_h, num_input, num_output] |
| bias_data | float | [num_output] |
# Deconvolution1D
```
x2 = deconv1d(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 15 | pad_right | int | pad_left | |
| 18 | output_pad_right| int | 0 | |
| 20 | output_w | int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16 | [kernel_w, num_input, num_output] |
| bias_data | float | [num_output] |
# Deconvolution3D
```
x2 = deconv3d(x, weight, kernel, stride, dilation) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 11 | kernel_h | int | kernel_w | |
| 12 | dilation_h | int | dilation_w | |
| 13 | stride_h | int | stride_w | |
| 14 | pad_top | int | pad_left | |
| 15 | pad_right | int | pad_left | |
| 16 | pad_bottom | int | pad_top | |
| 17 | pad_behind | int | pad_front | |
| 18 | output_pad_right| int | 0 | |
| 19 | output_pad_bottom| int | output_pad_right | |
| 20 | output_pad_behind| int | output_pad_right | |
| 21 | kernel_d | int | kernel_w | |
| 22 | dilation_d | int | dilation_w | |
| 23 | stride_d | int | stride_w | |
| 24 | pad_front | int | pad_left | |
| 25 | output_w | int | 0 | |
| 26 | output_h | int | output_w | |
| 27 | output_d | int | output_w | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input, num_output] |
| bias_data | float | [num_output] |
# DeconvolutionDepthWise
```
x2 = deconv(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 7 | group | int | 1 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 11 | kernel_h | int | kernel_w | |
| 12 | dilation_h | int | dilation_w | |
| 13 | stride_h | int | stride_w | |
| 14 | pad_top | int | pad_left | |
| 15 | pad_right | int | pad_left | |
| 16 | pad_bottom | int | pad_top | |
| 18 | output_pad_right| int | 0 | |
| 19 | output_pad_bottom| int | output_pad_right | |
| 20 | output_w | int | 0 | |
| 21 | output_h | int | output_w | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16 | [kernel_w, kernel_h, num_input / group, num_output / group, group] |
| bias_data | float | [num_output] |
# DeconvolutionDepthWise1D
```
x2 = deconv1d(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 7 | group | int | 1 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 15 | pad_right | int | pad_left | |
| 18 | output_pad_right| int | 0 | |
| 20 | output_w | int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16 | [kernel_w, num_input / group, num_output / group, group] |
| bias_data | float | [num_output] |
# DeconvolutionDepthWise3D
```
x2 = deconv3d(x, weight, kernel, stride, dilation, group) + bias
x3 = depad(x2, pads, pad_value)
y = activation(x3, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | dilation_w | int | 1 | |
| 3 | stride_w | int | 1 | |
| 4 | pad_left | int | 0 | |
| 5 | bias_term | int | 0 | |
| 6 | weight_data_size| int | 0 | |
| 7 | group | int | 1 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| 11 | kernel_h | int | kernel_w | |
| 12 | dilation_h | int | dilation_w | |
| 13 | stride_h | int | stride_w | |
| 14 | pad_top | int | pad_left | |
| 15 | pad_right | int | pad_left | |
| 16 | pad_bottom | int | pad_top | |
| 17 | pad_behind | int | pad_front | |
| 18 | output_pad_right| int | 0 | |
| 19 | output_pad_bottom| int | output_pad_right | |
| 20 | output_pad_behind| int | output_pad_right | |
| 21 | kernel_d | int | kernel_w | |
| 22 | dilation_d | int | dilation_w | |
| 23 | stride_d | int | stride_w | |
| 24 | pad_front | int | pad_left | |
| 25 | output_w | int | 0 | |
| 26 | output_h | int | output_w | |
| 27 | output_d | int | output_w | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] |
| bias_data | float | [num_output] |
# Dequantize
```
y = x * scale + bias
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | scale_data_size| int | 1 | |
| 1 | bias_data_size| int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| scale_data | float | [scale_data_size] |
| bias_data | float | [bias_data_size] |
# Dropout
```
y = x * scale
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | scale | float | 1.f | |
# Eltwise
```
y = elementwise_op(x0, x1, ...)
```
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | op_type | int | 0 | |
| 1 | coeffs | array | [ ] | |
Operation type:
- 0 = PROD
- 1 = SUM
- 2 = MAX
# ELU
```
if x < 0 y = (exp(x) - 1) * alpha
else y = x
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | alpha | float | 0.1f | |
# Exp
```
if base == -1 y = exp(shift + x * scale)
else y = pow(base, (shift + x * scale))
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | base | float | -1.f | |
| 1 | scale | float | 1.f | |
| 2 | shift | float | 0.f | |
# Flatten
Reshape blob to 1 dimension
* one_blob_only
# GELU
```
if fast_gelu == 1 y = 0.5 * x * (1 + tanh(0.79788452 * (x + 0.044715 * x * x * x)));
else y = 0.5 * x * erfc(-0.70710678 * x)
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | fast_gelu | int | 0 | use approximation |
# Gemm
```
a = transA ? transpose(x0) : x0
b = transb ? transpose(x1) : x1
c = x2
y = gemm(a, b) * alpha + c * beta
```
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | alpha | float | 1.f | |
| 1 | beta | float | 1.f | |
| 2 | transA | int | 0 | |
| 3 | transb | int | 0 | |
# GroupNorm
```
split x along channel axis into group x0, x1 ...
l2 normalize for each group x0, x1 ...
y = x * gamma + beta
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | group | int | 1 | |
| 1 | channels | int | 0 | |
| 2 | eps | float | 0.001f | x = x / sqrt(var + eps) |
| 3 | affine | int | 1 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| gamma_data | float | [channels] |
| beta_data | float | [channels] |
# GRU
Apply a single-layer GRU to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`.
```
y = gru(x)
y0, hidden y1 = gru(x0, hidden x1)
```
* one_blob_only if bidirectional
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | hidden size of output |
| 1 | weight_data_size| int | 0 | total size of weight matrix |
| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_xc_data| float/fp16/int8 | [input_size, num_output * 3, num_directions] |
| bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] |
| weight_hc_data| float/fp16/int8 | [num_output, num_output * 3, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
# HardSigmoid
```
y = clamp(x * alpha + beta, 0, 1)
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | alpha | float | 0.2f | |
| 1 | beta | float | 0.5f | |
# HardSwish
```
y = x * clamp(x * alpha + beta, 0, 1)
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | alpha | float | 0.2f | |
| 1 | beta | float | 0.5f | |
# InnerProduct
```
x2 = innerproduct(x, weight) + bias
y = activation(x2, act_type, act_params)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | |
| 1 | bias_term | int | 0 | |
| 2 | weight_data_size| int | 0 | |
| 8 | int8_scale_term| int | 0 | |
| 9 | activation_type| int | 0 | |
| 10 | activation_params| array | [ ] | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_data | float/fp16/int8 | [num_input, num_output] |
| bias_data | float | [num_output] |
| weight_data_int8_scales| float | [num_output] |
| bottom_blob_int8_scales| float | [1] |
# Input
```
y = input
```
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | w | int | 0 | |
| 1 | h | int | 0 | |
| 11 | d | int | 0 | |
| 2 | c | int | 0 | |
# InstanceNorm
```
split x along channel axis into instance x0, x1 ...
l2 normalize for each channel instance x0, x1 ...
y = x * gamma + beta
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | channels | int | 0 | |
| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) |
| 2 | affine | int | 1 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| gamma_data | float | [channels] |
| beta_data | float | [channels] |
# Interp
```
if dynamic_target_size == 0 y = resize(x) by fixed size or scale
else y = resize(x0, size(x1))
```
* one_blob_only if dynamic_target_size == 0
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | resize_type | int | 0 | |
| 1 | height_scale | float | 1.f | |
| 2 | width_scale | float | 1.f | |
| 3 | output_height | int | 0 | |
| 4 | output_width | int | 0 | |
| 5 | dynamic_target_size| int | 0 | |
| 6 | align_corner | int | 0 | |
Resize type:
- 1 = Nearest
- 2 = Bilinear
- 3 = Bicubic
# LayerNorm
```
split x along outmost axis into part x0, x1 ...
l2 normalize for each part x0, x1 ...
y = x * gamma + beta by elementwise
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | affine_size | int | 0 | |
| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) |
| 2 | affine | int | 1 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| gamma_data | float | [affine_size] |
| beta_data | float | [affine_size] |
# Log
```
if base == -1 y = log(shift + x * scale)
else y = log(shift + x * scale) / log(base)
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | base | float | -1.f | |
| 1 | scale | float | 1.f | |
| 2 | shift | float | 0.f | |
# LRN
```
if region_type == ACROSS_CHANNELS square_sum = sum of channel window of local_size
if region_type == WITHIN_CHANNEL square_sum = sum of spatial window of local_size
y = x * pow(bias + alpha * square_sum / (local_size * local_size), -beta)
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | region_type | int | 0 | |
| 1 | local_size | int | 5 | |
| 2 | alpha | float | 1.f | |
| 3 | beta | float | 0.75f | |
| 4 | bias | float | 1.f | |
Region type:
- 0 = ACROSS_CHANNELS
- 1 = WITHIN_CHANNEL
# LSTM
Apply a single-layer LSTM to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`.
```
y = lstm(x)
y0, hidden y1, cell y2 = lstm(x0, hidden x1, cell x2)
```
* one_blob_only if bidirectional
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | hidden size of output |
| 1 | weight_data_size| int | 0 | total size of IFOG weight matrix |
| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_xc_data| float/fp16/int8 | [input_size, num_output * 4, num_directions] |
| bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] |
| weight_hc_data| float/fp16/int8 | [num_output, num_output * 4, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
# MemoryData
```
y = data
```
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | w | int | 0 | |
| 1 | h | int | 0 | |
| 11 | d | int | 0 | |
| 2 | c | int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| data | float | [w, h, d, c] |
# Mish
```
y = x * tanh(log(exp(x) + 1))
```
* one_blob_only
* support_inplace
# MultiHeadAttention
```
split q k v into num_head part q0, k0, v0, q1, k1, v1 ...
for each num_head part
xq = affine(q) / (embed_dim / num_head)
xk = affine(k)
xv = affine(v)
xqk = xq * xk
softmax_inplace(xqk)
xqkv = xqk * xv
merge xqkv to out
y = affine(out)
```
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | embed_dim | int | 0 | |
| 1 | num_head | int | 1 | |
| 2 | weight_data_size| int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| q_weight_data | float/fp16/int8 | [weight_data_size] |
| q_bias_data | float | [embed_dim] |
| k_weight_data | float/fp16/int8 | [weight_data_size] |
| k_bias_data | float | [embed_dim] |
| v_weight_data | float/fp16/int8 | [weight_data_size] |
| v_bias_data | float | [embed_dim] |
| out_weight_data| float/fp16/int8 | [weight_data_size] |
| out_bias_data | float | [embed_dim] |
# MVN
```
if normalize_variance == 1 && across_channels == 1 y = (x - mean) / (sqrt(var) + eps) of whole blob
if normalize_variance == 1 && across_channels == 0 y = (x - mean) / (sqrt(var) + eps) of each channel
if normalize_variance == 0 && across_channels == 1 y = x - mean of whole blob
if normalize_variance == 0 && across_channels == 0 y = x - mean of each channel
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | normalize_variance| int | 0 | |
| 1 | across_channels| int | 0 | |
| 2 | eps | float | 0.0001f | x = x / (sqrt(var) + eps) |
# Noop
```
y = x
```
# Normalize
```
if across_spatial == 1 && across_channel == 1 x2 = normalize(x) of whole blob
if across_spatial == 1 && across_channel == 0 x2 = normalize(x) of each channel
if across_spatial == 0 && across_channel == 1 x2 = normalize(x) of each position
y = x2 * scale
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | across_spatial| int | 0 | |
| 1 | channel_shared| int | 0 | |
| 2 | eps | float | 0.0001f | see eps mode |
| 3 | scale_data_size| int | 0 | |
| 4 | across_channel| int | 0 | |
| 9 | eps_mode | int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| scale_data | float | [scale_data_size] |
Eps Mode:
- 0 = caffe/mxnet x = x / sqrt(var + eps)
- 1 = pytorch x = x / max(sqrt(var), eps)
- 2 = tensorflow x = x / sqrt(max(var, eps))
# Packing
```
y = wrap_packing(x)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | out_elempack | int | 1 | |
| 1 | use_padding | int | 0 | |
| 2 | cast_type_from| int | 0 | |
| 3 | cast_type_to | int | 0 | |
| 4 | storage_type_from| int | 0 | |
| 5 | storage_type_to| int | 0 | |
# Padding
```
y = pad(x, pads)
```
| param id | name | type | default | description |
| --------- | ------------- | ---- | --------- | ----------------- |
| 0 | top | int | 0 | |
| 1 | bottom | int | 0 | |
| 2 | left | int | 0 | |
| 3 | right | int | 0 | |
| 4 | type | int | 0 | |
| 5 | value | float | 0 | |
| 6 | per_channel_pad_data_size| int | 0 | |
| 7 | front | int | stride_w | |
| 8 | behind | int | pad_left | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| per_channel_pad_data| float | [per_channel_pad_data_size] |
Padding type:
- 0 = CONSTANT
- 1 = REPLICATE
- 2 = REFLECT
# Permute
```
y = reorder(x)
```
| param id | name | type | default | description |
| --------- | ------------- | ---- | --------- | ----------------- |
| 0 | order_type | int | 0 | |
Order Type:
- 0 = WH WHC WHDC
- 1 = HW HWC HWDC
- 2 = WCH WDHC
- 3 = CWH DWHC
- 4 = HCW HDWC
- 5 = CHW DHWC
- 6 = WHCD
- 7 = HWCD
- 8 = WCHD
- 9 = CWHD
- 10 = HCWD
- 11 = CHWD
- 12 = WDCH
- 13 = DWCH
- 14 = WCDH
- 15 = CWDH
- 16 = DCWH
- 17 = CDWH
- 18 = HDCW
- 19 = DHCW
- 20 = HCDW
- 21 = CHDW
- 22 = DCHW
- 23 = CDHW
# PixelShuffle
```
if mode == 0 y = depth_to_space(x) where x channel order is sw-sh-outc
if mode == 1 y = depth_to_space(x) where x channel order is outc-sw-sh
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ---- | --------- | ----------------- |
| 0 | upscale_factor| int | 1 | |
| 1 | mode | int | 0 | |
# Pooling
```
x2 = pad(x, pads)
x3 = pooling(x2, kernel, stride)
```
| param id | name | type | default | description |
| --------- | --------------| ---- | --------- | ----------------- |
| 0 | pooling_type | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | stride_w | int | 1 | |
| 3 | pad_left | int | 0 | |
| 4 | global_pooling| int | 0 | |
| 5 | pad_mode | int | 0 | |
| 6 | avgpool_count_include_pad| int | 0 | |
| 7 | adaptive_pooling| int | 0 | |
| 8 | out_w | int | 0 | |
| 11 | kernel_h | int | kernel_w | |
| 12 | stride_h | int | stride_w | |
| 13 | pad_top | int | pad_left | |
| 14 | pad_right | int | pad_left | |
| 15 | pad_bottom | int | pad_top | |
| 18 | out_h | int | out_w | |
Pooling type:
- 0 = MAX
- 1 = AVG
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
# Pooling1D
```
x2 = pad(x, pads)
x3 = pooling1d(x2, kernel, stride)
```
| param id | name | type | default | description |
| --------- | --------------| ---- | --------- | ----------------- |
| 0 | pooling_type | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | stride_w | int | 1 | |
| 3 | pad_left | int | 0 | |
| 4 | global_pooling| int | 0 | |
| 5 | pad_mode | int | 0 | |
| 6 | avgpool_count_include_pad| int | 0 | |
| 7 | adaptive_pooling| int | 0 | |
| 8 | out_w | int | 0 | |
| 14 | pad_right | int | pad_left | |
Pooling type:
- 0 = MAX
- 1 = AVG
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
# Pooling3D
```
x2 = pad(x, pads)
x3 = pooling3d(x2, kernel, stride)
```
| param id | name | type | default | description |
| --------- | --------------| ---- | --------- | ----------------- |
| 0 | pooling_type | int | 0 | |
| 1 | kernel_w | int | 0 | |
| 2 | stride_w | int | 1 | |
| 3 | pad_left | int | 0 | |
| 4 | global_pooling| int | 0 | |
| 5 | pad_mode | int | 0 | |
| 6 | avgpool_count_include_pad| int | 0 | |
| 7 | adaptive_pooling| int | 0 | |
| 8 | out_w | int | 0 | |
| 11 | kernel_h | int | kernel_w | |
| 12 | stride_h | int | stride_w | |
| 13 | pad_top | int | pad_left | |
| 14 | pad_right | int | pad_left | |
| 15 | pad_bottom | int | pad_top | |
| 16 | pad_behind | int | pad_front | |
| 18 | out_h | int | out_w | |
| 21 | kernel_d | int | kernel_w | |
| 22 | stride_d | int | stride_w | |
| 23 | pad_front | int | pad_left | |
| 28 | out_d | int | out_w | |
Pooling type:
- 0 = MAX
- 1 = AVG
Pad mode:
- 0 = full padding
- 1 = valid padding
- 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER
- 3 = onnx padding=SAME_LOWER
# Power
```
y = pow((shift + x * scale), power)
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | power | float | 1.f | |
| 1 | scale | float | 1.f | |
| 2 | shift | float | 0.f | |
# PReLU
```
if x < 0 y = x * slope
else y = x
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_slope | int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| slope_data | float | [num_slope] |
# Quantize
```
y = float2int8(x * scale)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | scale_data_size| int | 1 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| scale_data | float | [scale_data_size] |
# Reduction
```
y = reduce_op(x * coeff)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | operation | int | 0 | |
| 1 | reduce_all | int | 1 | |
| 2 | coeff | float | 1.f | |
| 3 | axes | array | [ ] | |
| 4 | keepdims | int | 0 | |
Operation type:
- 0 = SUM
- 1 = ASUM
- 2 = SUMSQ
- 3 = MEAN
- 4 = MAX
- 5 = MIN
- 6 = PROD
- 7 = L1
- 8 = L2
- 9 = LogSum
- 10 = LogSumExp
# ReLU
```
if x < 0 y = x * slope
else y = x
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | slope | float | 0.f | |
# Reorg
```
if mode == 0 y = space_to_depth(x) where x channel order is sw-sh-outc
if mode == 1 y = space_to_depth(x) where x channel order is outc-sw-sh
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ---- | --------- | ----------------- |
| 0 | stride | int | 1 | |
| 1 | mode | int | 0 | |
# Requantize
```
x2 = x * scale_in + bias
x3 = activation(x2)
y = float2int8(x3 * scale_out)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | scale_in_data_size| int | 1 | |
| 1 | scale_out_data_size| int | 1 | |
| 2 | bias_data_size| int | 0 | |
| 3 | activation_type| int | 0 | |
| 4 | activation_params| int | [ ] | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| scale_in_data | float | [scale_in_data_size] |
| scale_out_data| float | [scale_out_data_size] |
| bias_data | float | [bias_data_size] |
# Reshape
```
if permute == 1 y = hwc2chw(reshape(chw2hwc(x)))
else y = reshape(x)
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | w | int | -233 | |
| 1 | h | int | -233 | |
| 11 | d | int | -233 | |
| 2 | c | int | -233 | |
| 3 | permute | int | 0 | |
Reshape flag:
- 0 = copy from bottom
- -1 = remaining
- -233 = drop this dim(default)
# RNN
Apply a single-layer RNN to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`.
```
y = rnn(x)
y0, hidden y1 = rnn(x0, hidden x1)
```
* one_blob_only if bidirectional
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | num_output | int | 0 | hidden size of output |
| 1 | weight_data_size| int | 0 | total size of weight matrix |
| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| weight_xc_data| float/fp16/int8 | [input_size, num_output, num_directions] |
| bias_c_data | float/fp16/int8 | [num_output, 1, num_directions] |
| weight_hc_data| float/fp16/int8 | [num_output, num_output, num_directions] |
Direction flag:
- 0 = forward only
- 1 = reverse only
- 2 = bidirectional
# Scale
```
if scale_data_size == -233 y = x0 * x1
else y = x * scale + bias
```
* one_blob_only if scale_data_size != -233
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | scale_data_size| int | 0 | |
| 1 | bias_term | int | 0 | |
| weight | type | shape |
| ------------- | ----- | --------------------- |
| scale_data | float | [scale_data_size] |
| bias_data | float | [scale_data_size] |
# SELU
```
if x < 0 y = (exp(x) - 1.f) * alpha * lambda
else y = x * lambda
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | alpha | float | 1.67326324f| |
| 1 | lambda | float | 1.050700987f| |
# ShuffleChannel
```
if reverse == 0 y = shufflechannel(x) by group
if reverse == 1 y = shufflechannel(x) by channel / group
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ---- | --------- | ----------------- |
| 0 | group | int | 1 | |
| 1 | reverse | int | 0 | |
# Sigmoid
```
y = 1 / (1 + exp(-x))
```
* one_blob_only
* support_inplace
# Slice
```
split x along axis into slices, each part slice size is based on slices array
```
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | slices | array | [ ] | |
| 1 | axis | int | 0 | |
# Softmax
```
softmax(x, axis)
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | axis | int | 0 | |
| 1 | fixbug0 | int | 0 | hack for bug fix, should be 1 |
# Softplus
```
y = log(exp(x) + 1)
```
* one_blob_only
* support_inplace
# Split
```
y0, y1 ... = x
```
# Swish
```
y = x / (1 + exp(-x))
```
* one_blob_only
* support_inplace
# TanH
```
y = tanh(x)
```
* one_blob_only
* support_inplace
# Threshold
```
if x > threshold y = 1
else y = 0
```
* one_blob_only
* support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | threshold | float | 0.f | |
# Tile
```
y = repeat tiles along axis for x
```
* one_blob_only
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | axis | int | 0 | |
| 1 | tiles | int | 1 | |
| 2 | repeats | array | [ ] | |
# UnaryOp
```
y = unaryop(x)
```
- one_blob_only
- support_inplace
| param id | name | type | default | description |
| --------- | ------------- | ----- | --------- | ----------------- |
| 0 | op_type | int | 0 | Operation type as follows |
Operation type:
- 0 = ABS
- 1 = NEG
- 2 = FLOOR
- 3 = CEIL
- 4 = SQUARE
- 5 = SQRT
- 6 = RSQ
- 7 = EXP
- 8 = LOG
- 9 = SIN
- 10 = COS
- 11 = TAN
- 12 = ASIN
- 13 = ACOS
- 14 = ATAN
- 15 = RECIPROCAL
- 16 = TANH