deepin-ocr/3rdparty/ncnn/tools/pnnx/tests/test_F_affine_grid.py

59 lines
1.7 KiB
Python
Raw Normal View History

# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
def forward(self, x, y):
x = F.affine_grid(x, torch.Size((32, 3, 24, 24)), align_corners=False)
y = F.affine_grid(y, torch.Size((12, 3, 10, 20, 30)), align_corners=False)
return x, y
def test():
net = Model()
net.eval()
torch.manual_seed(0)
x = torch.rand(32, 2, 3)
y = torch.rand(12, 3, 4)
a0, a1 = net(x, y)
# export torchscript
mod = torch.jit.trace(net, (x, y))
mod.save("test_F_affine_grid.pt")
# torchscript to pnnx
import os
os.system("../src/pnnx test_F_affine_grid.pt inputshape=[32,2,3],[12,3,4]")
# pnnx inference
import test_F_affine_grid_pnnx
b0, b1 = test_F_affine_grid_pnnx.test_inference()
return torch.equal(a0, b0) and torch.equal(a1, b1)
if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)