70 lines
2.2 KiB
Python
70 lines
2.2 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Model, self).__init__()
|
||
|
|
||
|
self.w2 = nn.Parameter(torch.rand(12, 6, 4))
|
||
|
self.b2 = nn.Parameter(torch.rand(12))
|
||
|
self.w3 = nn.Parameter(torch.rand(6, 4, 3))
|
||
|
|
||
|
def forward(self, x, w0, w1, b1, y):
|
||
|
x = F.conv1d(x, w0, None, stride=2, padding=1)
|
||
|
if torch.__version__ < '1.9':
|
||
|
x = F.conv1d(x, w1, b1, stride=1, padding=1, dilation=2, groups=2)
|
||
|
else:
|
||
|
x = F.conv1d(x, w1, b1, stride=1, padding='same', dilation=2, groups=2)
|
||
|
|
||
|
y = F.conv1d(y, self.w2, self.b2, stride=2, padding=2)
|
||
|
y = F.conv1d(y, self.w3, None, stride=2, padding=1, groups=3)
|
||
|
return x, y
|
||
|
|
||
|
def test():
|
||
|
net = Model()
|
||
|
net.eval()
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
x = torch.rand(1, 12, 52)
|
||
|
w0 = torch.rand(16, 12, 3)
|
||
|
w1 = torch.rand(16, 8, 5)
|
||
|
b1 = torch.rand(16)
|
||
|
y = torch.rand(1, 6, 25)
|
||
|
|
||
|
a0, a1 = net(x, w0, w1, b1, y)
|
||
|
|
||
|
# export torchscript
|
||
|
mod = torch.jit.trace(net, (x, w0, w1, b1, y))
|
||
|
mod.save("test_F_conv1d.pt")
|
||
|
|
||
|
# torchscript to pnnx
|
||
|
import os
|
||
|
os.system("../src/pnnx test_F_conv1d.pt inputshape=[1,12,52],[16,12,3],[16,8,5],[16],[1,6,25]")
|
||
|
|
||
|
# pnnx inference
|
||
|
import test_F_conv1d_pnnx
|
||
|
b0, b1 = test_F_conv1d_pnnx.test_inference()
|
||
|
|
||
|
return torch.equal(a0, b0) and torch.equal(a1, b1)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if test():
|
||
|
exit(0)
|
||
|
else:
|
||
|
exit(1)
|