deepin-ocr/3rdparty/ncnn/tools/pnnx/tests/test_F_conv2d.py

70 lines
2.2 KiB
Python
Raw Normal View History

# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.w2 = nn.Parameter(torch.rand(12, 6, 4, 4))
self.b2 = nn.Parameter(torch.rand(12))
self.w3 = nn.Parameter(torch.rand(6, 4, 3, 3))
def forward(self, x, w0, w1, b1, y):
x = F.conv2d(x, w0, None, stride=(2,2), padding=(1,1))
if torch.__version__ < '1.9':
x = F.conv2d(x, w1, b1, stride=(1,1), padding=(1,1), dilation=(2,1), groups=2)
else:
x = F.conv2d(x, w1, b1, stride=(1,1), padding='same', dilation=(2,1), groups=2)
y = F.conv2d(y, self.w2, self.b2, stride=(2,2), padding=(2,2))
y = F.conv2d(y, self.w3, None, stride=(2,2), padding=(1,1), groups=3)
return x, y
def test():
net = Model()
net.eval()
torch.manual_seed(0)
x = torch.rand(1, 12, 52, 64)
w0 = torch.rand(16, 12, 3, 3)
w1 = torch.rand(16, 8, 5, 5)
b1 = torch.rand(16)
y = torch.rand(1, 6, 32, 25)
a0, a1 = net(x, w0, w1, b1, y)
# export torchscript
mod = torch.jit.trace(net, (x, w0, w1, b1, y))
mod.save("test_F_conv2d.pt")
# torchscript to pnnx
import os
os.system("../src/pnnx test_F_conv2d.pt inputshape=[1,12,52,64],[16,12,3,3],[16,8,5,5],[16],[1,6,32,25]")
# pnnx inference
import test_F_conv2d_pnnx
b0, b1 = test_F_conv2d_pnnx.test_inference()
return torch.equal(a0, b0) and torch.equal(a1, b1)
if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)