91 lines
4.6 KiB
Python
91 lines
4.6 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Model, self).__init__()
|
||
|
|
||
|
def forward(self, x, xg1, xg2, y, yg1, yg2):
|
||
|
x = F.grid_sample(x, xg1, mode='bilinear', padding_mode='zeros', align_corners=False)
|
||
|
x = F.grid_sample(x, xg2, mode='bilinear', padding_mode='border', align_corners=False)
|
||
|
x = F.grid_sample(x, xg1, mode='bilinear', padding_mode='reflection', align_corners=False)
|
||
|
x = F.grid_sample(x, xg2, mode='nearest', padding_mode='zeros', align_corners=False)
|
||
|
x = F.grid_sample(x, xg1, mode='nearest', padding_mode='border', align_corners=False)
|
||
|
x = F.grid_sample(x, xg2, mode='nearest', padding_mode='reflection', align_corners=False)
|
||
|
x = F.grid_sample(x, xg1, mode='bicubic', padding_mode='zeros', align_corners=False)
|
||
|
x = F.grid_sample(x, xg2, mode='bicubic', padding_mode='border', align_corners=False)
|
||
|
x = F.grid_sample(x, xg1, mode='bicubic', padding_mode='reflection', align_corners=False)
|
||
|
x = F.grid_sample(x, xg2, mode='bilinear', padding_mode='zeros', align_corners=True)
|
||
|
x = F.grid_sample(x, xg1, mode='bilinear', padding_mode='border', align_corners=True)
|
||
|
x = F.grid_sample(x, xg2, mode='bilinear', padding_mode='reflection', align_corners=True)
|
||
|
x = F.grid_sample(x, xg1, mode='nearest', padding_mode='zeros', align_corners=True)
|
||
|
x = F.grid_sample(x, xg2, mode='nearest', padding_mode='border', align_corners=True)
|
||
|
x = F.grid_sample(x, xg1, mode='nearest', padding_mode='reflection', align_corners=True)
|
||
|
x = F.grid_sample(x, xg2, mode='bicubic', padding_mode='zeros', align_corners=True)
|
||
|
x = F.grid_sample(x, xg1, mode='bicubic', padding_mode='border', align_corners=True)
|
||
|
x = F.grid_sample(x, xg2, mode='bicubic', padding_mode='reflection', align_corners=True)
|
||
|
|
||
|
y = F.grid_sample(y, yg1, mode='bilinear', padding_mode='zeros', align_corners=False)
|
||
|
y = F.grid_sample(y, yg2, mode='bilinear', padding_mode='border', align_corners=False)
|
||
|
y = F.grid_sample(y, yg1, mode='bilinear', padding_mode='reflection', align_corners=False)
|
||
|
y = F.grid_sample(y, yg2, mode='nearest', padding_mode='zeros', align_corners=False)
|
||
|
y = F.grid_sample(y, yg1, mode='nearest', padding_mode='border', align_corners=False)
|
||
|
y = F.grid_sample(y, yg2, mode='nearest', padding_mode='reflection', align_corners=False)
|
||
|
y = F.grid_sample(y, yg1, mode='bilinear', padding_mode='zeros', align_corners=True)
|
||
|
y = F.grid_sample(y, yg2, mode='bilinear', padding_mode='border', align_corners=True)
|
||
|
y = F.grid_sample(y, yg1, mode='bilinear', padding_mode='reflection', align_corners=True)
|
||
|
y = F.grid_sample(y, yg2, mode='nearest', padding_mode='zeros', align_corners=True)
|
||
|
y = F.grid_sample(y, yg1, mode='nearest', padding_mode='border', align_corners=True)
|
||
|
y = F.grid_sample(y, yg2, mode='nearest', padding_mode='reflection', align_corners=True)
|
||
|
|
||
|
return x, y
|
||
|
|
||
|
def test():
|
||
|
net = Model()
|
||
|
net.eval()
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
x = torch.rand(1, 3, 12, 16)
|
||
|
xg1 = torch.rand(1, 21, 27, 2)
|
||
|
xg2 = torch.rand(1, 12, 16, 2)
|
||
|
y = torch.rand(1, 5, 10, 12, 16)
|
||
|
yg1 = torch.rand(1, 10, 21, 27, 3)
|
||
|
yg2 = torch.rand(1, 10, 12, 16, 3)
|
||
|
|
||
|
a0, a1 = net(x, xg1, xg2, y, yg1, yg2)
|
||
|
|
||
|
# export torchscript
|
||
|
mod = torch.jit.trace(net, (x, xg1, xg2, y, yg1, yg2))
|
||
|
mod.save("test_F_grid_sample.pt")
|
||
|
|
||
|
# torchscript to pnnx
|
||
|
import os
|
||
|
os.system("../src/pnnx test_F_grid_sample.pt inputshape=[1,3,12,16],[1,21,27,2],[1,12,16,2],[1,5,10,12,16],[1,10,21,27,3],[1,10,12,16,3]")
|
||
|
|
||
|
# pnnx inference
|
||
|
import test_F_grid_sample_pnnx
|
||
|
b0, b1 = test_F_grid_sample_pnnx.test_inference()
|
||
|
|
||
|
return torch.equal(a0, b0) and torch.equal(a1, b1)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if test():
|
||
|
exit(0)
|
||
|
else:
|
||
|
exit(1)
|