75 lines
2.3 KiB
Python
75 lines
2.3 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Model, self).__init__()
|
||
|
|
||
|
def forward(self, x, y, z, w):
|
||
|
x = F.pad(x, (3,4), mode='constant', value=1.3)
|
||
|
x = F.pad(x, (2,2))
|
||
|
|
||
|
y = F.pad(y, (5,6), mode='reflect')
|
||
|
y = F.pad(y, (2,1), mode='replicate')
|
||
|
y = F.pad(y, (3,4), mode='constant', value=1.3)
|
||
|
y = F.pad(y, (1,1))
|
||
|
|
||
|
z = F.pad(z, (3,4,3,4), mode='reflect')
|
||
|
z = F.pad(z, (2,1,2,0), mode='replicate')
|
||
|
z = F.pad(z, (1,0,2,0), mode='constant', value=1.3)
|
||
|
z = F.pad(z, (3,3,3,3))
|
||
|
|
||
|
#w = F.pad(w, (1,2,3,4,5,6), mode='reflect')
|
||
|
w = F.pad(w, (5,0,1,2,0,2), mode='replicate')
|
||
|
w = F.pad(w, (0,2,2,1,3,4), mode='constant', value=1.3)
|
||
|
w = F.pad(w, (2,2,2,2,2,2))
|
||
|
|
||
|
return x, y, z, w
|
||
|
|
||
|
def test():
|
||
|
net = Model()
|
||
|
net.eval()
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
x = torch.rand(1, 16)
|
||
|
y = torch.rand(12, 2, 16)
|
||
|
z = torch.rand(1, 3, 12, 16)
|
||
|
w = torch.rand(1, 5, 7, 9, 11)
|
||
|
|
||
|
a0, a1, a2, a3 = net(x, y, z, w)
|
||
|
|
||
|
# export torchscript
|
||
|
mod = torch.jit.trace(net, (x, y, z, w))
|
||
|
mod.save("test_F_pad.pt")
|
||
|
|
||
|
# torchscript to pnnx
|
||
|
import os
|
||
|
os.system("../src/pnnx test_F_pad.pt inputshape=[1,16],[12,2,16],[1,3,12,16],[1,5,7,9,11]")
|
||
|
|
||
|
# pnnx inference
|
||
|
import test_F_pad_pnnx
|
||
|
b0, b1, b2, b3 = test_F_pad_pnnx.test_inference()
|
||
|
|
||
|
return torch.equal(a0, b0) and torch.equal(a1, b1) and torch.equal(a2, b2) and torch.equal(a3, b3)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if test():
|
||
|
exit(0)
|
||
|
else:
|
||
|
exit(1)
|