deepin-ocr/3rdparty/ncnn/tools/pnnx/tests/test_nn_AvgPool3d.py

81 lines
2.7 KiB
Python
Raw Normal View History

# Tencent is pleased to support the open source community by making ncnn available.
#
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
#
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
# in compliance with the License. You may obtain a copy of the License at
#
# https://opensource.org/licenses/BSD-3-Clause
#
# Unless required by applicable law or agreed to in writing, software distributed
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import torch
import torch.nn as nn
import torch.nn.functional as F
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.pool_0 = nn.AvgPool3d(kernel_size=3)
self.pool_1 = nn.AvgPool3d(kernel_size=4, stride=2, padding=2)
self.pool_2 = nn.AvgPool3d(kernel_size=(1,2,3), stride=1, padding=(0,1,1), ceil_mode=False, count_include_pad=True)
self.pool_3 = nn.AvgPool3d(kernel_size=(3,4,5), stride=(1,2,2), padding=(1,1,2), ceil_mode=True, count_include_pad=False)
self.pool_4 = nn.AvgPool3d(kernel_size=(5,4,3), stride=(2,1,1), padding=1, ceil_mode=False, count_include_pad=True)
self.pool_5 = nn.AvgPool3d(kernel_size=2, stride=1, padding=0, ceil_mode=True, count_include_pad=True)
self.pool_6 = nn.AvgPool3d(kernel_size=(5,4,4), stride=1, padding=2, ceil_mode=False, count_include_pad=False, divisor_override=77)
def forward(self, x, y):
x = self.pool_0(x)
x = self.pool_1(x)
x = self.pool_2(x)
x = self.pool_3(x)
x = self.pool_4(x)
x = self.pool_5(x)
x = self.pool_6(x)
y = self.pool_0(y)
y = self.pool_1(y)
y = self.pool_2(y)
y = self.pool_3(y)
y = self.pool_4(y)
y = self.pool_5(y)
y = self.pool_6(y)
return x, y
def test():
net = Model()
net.eval()
torch.manual_seed(0)
x = torch.rand(1, 12, 96, 128, 128)
y = torch.rand(12, 96, 128, 128)
a = net(x, y)
# export torchscript
mod = torch.jit.trace(net, (x, y))
mod.save("test_nn_AvgPool3d.pt")
# torchscript to pnnx
import os
os.system("../src/pnnx test_nn_AvgPool3d.pt inputshape=[1,12,96,128,128],[12,96,128,128]")
# pnnx inference
import test_nn_AvgPool3d_pnnx
b = test_nn_AvgPool3d_pnnx.test_inference()
for a0, b0 in zip(a, b):
if not torch.equal(a0, b0):
return False
return True
if __name__ == "__main__":
if test():
exit(0)
else:
exit(1)