146 lines
5.7 KiB
Python
146 lines
5.7 KiB
Python
|
# Tencent is pleased to support the open source community by making ncnn available.
|
||
|
#
|
||
|
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
# in compliance with the License. You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://opensource.org/licenses/BSD-3-Clause
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software distributed
|
||
|
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
# specific language governing permissions and limitations under the License.
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
class Model(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(Model, self).__init__()
|
||
|
|
||
|
self.up_1d_0_0 = nn.Upsample(size=16)
|
||
|
self.up_1d_0_1 = nn.Upsample(scale_factor=2, mode='nearest')
|
||
|
self.up_1d_0_2 = nn.Upsample(size=(20), mode='nearest')
|
||
|
self.up_1d_0_3 = nn.Upsample(scale_factor=(4), mode='nearest')
|
||
|
self.up_1d_1_0 = nn.Upsample(size=16, mode='linear')
|
||
|
self.up_1d_1_1 = nn.Upsample(scale_factor=2, mode='linear')
|
||
|
self.up_1d_1_2 = nn.Upsample(size=(24), mode='linear', align_corners=True)
|
||
|
self.up_1d_1_3 = nn.Upsample(scale_factor=(3), mode='linear', align_corners=True)
|
||
|
|
||
|
self.up_2d_0_0 = nn.Upsample(size=16)
|
||
|
self.up_2d_0_1 = nn.Upsample(scale_factor=2, mode='nearest')
|
||
|
self.up_2d_0_2 = nn.Upsample(size=(20,20), mode='nearest')
|
||
|
self.up_2d_0_3 = nn.Upsample(scale_factor=(4,4), mode='nearest')
|
||
|
self.up_2d_0_4 = nn.Upsample(size=(16,24), mode='nearest')
|
||
|
self.up_2d_0_5 = nn.Upsample(scale_factor=(2,3), mode='nearest')
|
||
|
self.up_2d_1_0 = nn.Upsample(size=16, mode='bilinear')
|
||
|
self.up_2d_1_1 = nn.Upsample(scale_factor=2, mode='bilinear')
|
||
|
self.up_2d_1_2 = nn.Upsample(size=(20,20), mode='bilinear', align_corners=False)
|
||
|
self.up_2d_1_3 = nn.Upsample(scale_factor=(4,4), mode='bilinear', align_corners=False)
|
||
|
self.up_2d_1_4 = nn.Upsample(size=(16,24), mode='bilinear', align_corners=True)
|
||
|
self.up_2d_1_5 = nn.Upsample(scale_factor=(2,3), mode='bilinear', align_corners=True)
|
||
|
self.up_2d_2_0 = nn.Upsample(size=16, mode='bicubic')
|
||
|
self.up_2d_2_1 = nn.Upsample(scale_factor=2, mode='bicubic')
|
||
|
self.up_2d_2_2 = nn.Upsample(size=(20,20), mode='bicubic', align_corners=False)
|
||
|
self.up_2d_2_3 = nn.Upsample(scale_factor=(4,4), mode='bicubic', align_corners=False)
|
||
|
self.up_2d_2_4 = nn.Upsample(size=(16,24), mode='bicubic', align_corners=True)
|
||
|
self.up_2d_2_5 = nn.Upsample(scale_factor=(2,3), mode='bicubic', align_corners=True)
|
||
|
|
||
|
self.up_3d_0_0 = nn.Upsample(size=16)
|
||
|
self.up_3d_0_1 = nn.Upsample(scale_factor=2, mode='nearest')
|
||
|
self.up_3d_0_2 = nn.Upsample(size=(20,20,20), mode='nearest')
|
||
|
self.up_3d_0_3 = nn.Upsample(scale_factor=(4,4,4), mode='nearest')
|
||
|
self.up_3d_0_4 = nn.Upsample(size=(16,24,20), mode='nearest')
|
||
|
self.up_3d_0_5 = nn.Upsample(scale_factor=(2,3,4), mode='nearest')
|
||
|
self.up_3d_1_0 = nn.Upsample(size=16, mode='trilinear')
|
||
|
self.up_3d_1_1 = nn.Upsample(scale_factor=2, mode='trilinear')
|
||
|
self.up_3d_1_2 = nn.Upsample(size=(20,20,20), mode='trilinear', align_corners=False)
|
||
|
self.up_3d_1_3 = nn.Upsample(scale_factor=(4,4,4), mode='trilinear', align_corners=False)
|
||
|
self.up_3d_1_4 = nn.Upsample(size=(16,24,20), mode='trilinear', align_corners=True)
|
||
|
self.up_3d_1_5 = nn.Upsample(scale_factor=(2,3,4), mode='trilinear', align_corners=True)
|
||
|
|
||
|
self.up_w = nn.Upsample(scale_factor=(1.499,1.499), mode='nearest')
|
||
|
|
||
|
def forward(self, x, y, z, w):
|
||
|
x = self.up_1d_0_0(x)
|
||
|
x = self.up_1d_0_1(x)
|
||
|
x = self.up_1d_0_2(x)
|
||
|
x = self.up_1d_0_3(x)
|
||
|
x = self.up_1d_1_0(x)
|
||
|
x = self.up_1d_1_1(x)
|
||
|
x = self.up_1d_1_2(x)
|
||
|
x = self.up_1d_1_3(x)
|
||
|
|
||
|
y = self.up_2d_0_0(y)
|
||
|
y = self.up_2d_0_1(y)
|
||
|
y = self.up_2d_0_2(y)
|
||
|
y = self.up_2d_0_3(y)
|
||
|
y = self.up_2d_0_4(y)
|
||
|
y = self.up_2d_0_5(y)
|
||
|
y = self.up_2d_1_0(y)
|
||
|
y = self.up_2d_1_1(y)
|
||
|
y = self.up_2d_1_2(y)
|
||
|
y = self.up_2d_1_3(y)
|
||
|
y = self.up_2d_1_4(y)
|
||
|
y = self.up_2d_1_5(y)
|
||
|
y = self.up_2d_2_0(y)
|
||
|
y = self.up_2d_2_1(y)
|
||
|
y = self.up_2d_2_2(y)
|
||
|
y = self.up_2d_2_3(y)
|
||
|
y = self.up_2d_2_4(y)
|
||
|
y = self.up_2d_2_5(y)
|
||
|
|
||
|
z = self.up_3d_0_0(z)
|
||
|
z = self.up_3d_0_1(z)
|
||
|
z = self.up_3d_0_2(z)
|
||
|
z = self.up_3d_0_3(z)
|
||
|
z = self.up_3d_0_4(z)
|
||
|
z = self.up_3d_0_5(z)
|
||
|
z = self.up_3d_1_0(z)
|
||
|
z = self.up_3d_1_1(z)
|
||
|
z = self.up_3d_1_2(z)
|
||
|
z = self.up_3d_1_3(z)
|
||
|
z = self.up_3d_1_4(z)
|
||
|
z = self.up_3d_1_5(z)
|
||
|
|
||
|
w = self.up_w(w)
|
||
|
|
||
|
return x, y, z, w
|
||
|
|
||
|
def test():
|
||
|
net = Model()
|
||
|
net.eval()
|
||
|
|
||
|
torch.manual_seed(0)
|
||
|
x = torch.rand(1, 3, 32)
|
||
|
y = torch.rand(1, 3, 32, 32)
|
||
|
z = torch.rand(1, 3, 32, 32, 32)
|
||
|
w = torch.rand(1, 8, 12, 12)
|
||
|
|
||
|
a = net(x, y, z, w)
|
||
|
|
||
|
# export torchscript
|
||
|
mod = torch.jit.trace(net, (x, y, z, w))
|
||
|
mod.save("test_nn_Upsample.pt")
|
||
|
|
||
|
# torchscript to pnnx
|
||
|
import os
|
||
|
os.system("../src/pnnx test_nn_Upsample.pt inputshape=[1,3,32],[1,3,32,32],[1,3,32,32,32],[1,8,12,12]")
|
||
|
|
||
|
# pnnx inference
|
||
|
import test_nn_Upsample_pnnx
|
||
|
b = test_nn_Upsample_pnnx.test_inference()
|
||
|
|
||
|
for a0, b0 in zip(a, b):
|
||
|
if not torch.equal(a0, b0):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
if test():
|
||
|
exit(0)
|
||
|
else:
|
||
|
exit(1)
|