507 lines
20 KiB
Python
507 lines
20 KiB
Python
|
import numpy as np
|
||
|
import cv2 as cv
|
||
|
import argparse
|
||
|
import os
|
||
|
import soundfile as sf # Temporary import to load audio files
|
||
|
|
||
|
'''
|
||
|
You can download the converted onnx model from https://drive.google.com/drive/folders/1wLtxyao4ItAg8tt4Sb63zt6qXzhcQoR6?usp=sharing
|
||
|
or convert the model yourself.
|
||
|
|
||
|
You can get the original pre-trained Jasper model from NVIDIA : https://ngc.nvidia.com/catalog/models/nvidia:jasper_pyt_onnx_fp16_amp/files
|
||
|
Download and unzip : `$ wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/jasper_pyt_onnx_fp16_amp/versions/20.10.0/zip -O jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp_20.10.0.zip && unzip -o ./jasper_pyt_onnx_fp16_amp.zip`
|
||
|
|
||
|
you can get the script to convert the model here : https://gist.github.com/spazewalker/507f1529e19aea7e8417f6e935851a01
|
||
|
|
||
|
You can convert the model using the following steps:
|
||
|
1. Import onnx and load the original model
|
||
|
```
|
||
|
import onnx
|
||
|
model = onnx.load("./jasper-onnx/1/model.onnx")
|
||
|
```
|
||
|
|
||
|
3. Change data type of input layer
|
||
|
```
|
||
|
inp = model.graph.input[0]
|
||
|
model.graph.input.remove(inp)
|
||
|
inp.type.tensor_type.elem_type = 1
|
||
|
model.graph.input.insert(0,inp)
|
||
|
```
|
||
|
|
||
|
4. Change the data type of output layer
|
||
|
```
|
||
|
out = model.graph.output[0]
|
||
|
model.graph.output.remove(out)
|
||
|
out.type.tensor_type.elem_type = 1
|
||
|
model.graph.output.insert(0,out)
|
||
|
```
|
||
|
|
||
|
5. Change the data type of every initializer and cast it's values from FP16 to FP32
|
||
|
```
|
||
|
for i,init in enumerate(model.graph.initializer):
|
||
|
model.graph.initializer.remove(init)
|
||
|
init.data_type = 1
|
||
|
init.raw_data = np.frombuffer(init.raw_data, count=np.product(init.dims), dtype=np.float16).astype(np.float32).tobytes()
|
||
|
model.graph.initializer.insert(i,init)
|
||
|
```
|
||
|
|
||
|
6. Add an additional reshape node to handle the inconsistant input from python and c++ of openCV.
|
||
|
see https://github.com/opencv/opencv/issues/19091
|
||
|
Make & insert a new node with 'Reshape' operation & required initializer
|
||
|
```
|
||
|
tensor = numpy_helper.from_array(np.array([0,64,-1]),name='shape_reshape')
|
||
|
model.graph.initializer.insert(0,tensor)
|
||
|
node = onnx.helper.make_node(op_type='Reshape',inputs=['input__0','shape_reshape'], outputs=['input_reshaped'], name='reshape__0')
|
||
|
model.graph.node.insert(0,node)
|
||
|
model.graph.node[1].input[0] = 'input_reshaped'
|
||
|
```
|
||
|
|
||
|
7. Finally save the model
|
||
|
```
|
||
|
with open('jasper_dynamic_input_float.onnx','wb') as f:
|
||
|
onnx.save_model(model,f)
|
||
|
```
|
||
|
|
||
|
Original Repo : https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/SpeechRecognition/Jasper
|
||
|
'''
|
||
|
|
||
|
class FilterbankFeatures:
|
||
|
def __init__(self,
|
||
|
sample_rate=16000, window_size=0.02, window_stride=0.01,
|
||
|
n_fft=512, preemph=0.97, n_filt=64, lowfreq=0,
|
||
|
highfreq=None, log=True, dither=1e-5):
|
||
|
'''
|
||
|
Initializes pre-processing class. Default values are the values used by the Jasper
|
||
|
architecture for pre-processing. For more details, refer to the paper here:
|
||
|
https://arxiv.org/abs/1904.03288
|
||
|
'''
|
||
|
self.win_length = int(sample_rate * window_size) # frame size
|
||
|
self.hop_length = int(sample_rate * window_stride) # stride
|
||
|
self.n_fft = n_fft or 2 ** np.ceil(np.log2(self.win_length))
|
||
|
self.log = log
|
||
|
self.dither = dither
|
||
|
self.n_filt = n_filt
|
||
|
self.preemph = preemph
|
||
|
highfreq = highfreq or sample_rate / 2
|
||
|
self.window_tensor = np.hanning(self.win_length)
|
||
|
|
||
|
self.filterbanks = self.mel(sample_rate, self.n_fft, n_mels=n_filt, fmin=lowfreq, fmax=highfreq)
|
||
|
self.filterbanks.dtype=np.float32
|
||
|
self.filterbanks = np.expand_dims(self.filterbanks,0)
|
||
|
|
||
|
def normalize_batch(self, x, seq_len):
|
||
|
'''
|
||
|
Normalizes the features.
|
||
|
'''
|
||
|
x_mean = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
|
||
|
x_std = np.zeros((seq_len.shape[0], x.shape[1]), dtype=x.dtype)
|
||
|
for i in range(x.shape[0]):
|
||
|
x_mean[i, :] = np.mean(x[i, :, :seq_len[i]],axis=1)
|
||
|
x_std[i, :] = np.std(x[i, :, :seq_len[i]],axis=1)
|
||
|
# make sure x_std is not zero
|
||
|
x_std += 1e-10
|
||
|
return (x - np.expand_dims(x_mean,2)) / np.expand_dims(x_std,2)
|
||
|
|
||
|
def calculate_features(self, x, seq_len):
|
||
|
'''
|
||
|
Calculates filterbank features.
|
||
|
args:
|
||
|
x : mono channel audio
|
||
|
seq_len : length of the audio sample
|
||
|
returns:
|
||
|
x : filterbank features
|
||
|
'''
|
||
|
dtype = x.dtype
|
||
|
|
||
|
seq_len = np.ceil(seq_len / self.hop_length)
|
||
|
seq_len = np.array(seq_len,dtype=np.int32)
|
||
|
|
||
|
# dither
|
||
|
if self.dither > 0:
|
||
|
x += self.dither * np.random.randn(*x.shape)
|
||
|
|
||
|
# do preemphasis
|
||
|
if self.preemph is not None:
|
||
|
x = np.concatenate(
|
||
|
(np.expand_dims(x[0],-1), x[1:] - self.preemph * x[:-1]), axis=0)
|
||
|
|
||
|
# Short Time Fourier Transform
|
||
|
x = self.stft(x, n_fft=self.n_fft, hop_length=self.hop_length,
|
||
|
win_length=self.win_length,
|
||
|
fft_window=self.window_tensor)
|
||
|
|
||
|
# get power spectrum
|
||
|
x = (x**2).sum(-1)
|
||
|
|
||
|
# dot with filterbank energies
|
||
|
x = np.matmul(np.array(self.filterbanks,dtype=x.dtype), x)
|
||
|
|
||
|
# log features if required
|
||
|
if self.log:
|
||
|
x = np.log(x + 1e-20)
|
||
|
|
||
|
# normalize if required
|
||
|
x = self.normalize_batch(x, seq_len).astype(dtype)
|
||
|
return x
|
||
|
|
||
|
# Mel Frequency calculation
|
||
|
def hz_to_mel(self, frequencies):
|
||
|
'''
|
||
|
Converts frequencies from hz to mel scale. Input can be a number or a vector.
|
||
|
'''
|
||
|
frequencies = np.asanyarray(frequencies)
|
||
|
|
||
|
f_min = 0.0
|
||
|
f_sp = 200.0 / 3
|
||
|
|
||
|
mels = (frequencies - f_min) / f_sp
|
||
|
|
||
|
# Fill in the log-scale part
|
||
|
min_log_hz = 1000.0 # beginning of log region (Hz)
|
||
|
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
|
||
|
logstep = np.log(6.4) / 27.0 # step size for log region
|
||
|
|
||
|
if frequencies.ndim:
|
||
|
# If we have array data, vectorize
|
||
|
log_t = frequencies >= min_log_hz
|
||
|
mels[log_t] = min_log_mel + np.log(frequencies[log_t] / min_log_hz) / logstep
|
||
|
elif frequencies >= min_log_hz:
|
||
|
# If we have scalar data, directly
|
||
|
mels = min_log_mel + np.log(frequencies / min_log_hz) / logstep
|
||
|
return mels
|
||
|
|
||
|
def mel_to_hz(self, mels):
|
||
|
'''
|
||
|
Converts frequencies from mel to hz scale. Input can be a number or a vector.
|
||
|
'''
|
||
|
mels = np.asanyarray(mels)
|
||
|
|
||
|
# Fill in the linear scale
|
||
|
f_min = 0.0
|
||
|
f_sp = 200.0 / 3
|
||
|
freqs = f_min + f_sp * mels
|
||
|
|
||
|
# And now the nonlinear scale
|
||
|
min_log_hz = 1000.0 # beginning of log region (Hz)
|
||
|
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
|
||
|
logstep = np.log(6.4) / 27.0 # step size for log region
|
||
|
|
||
|
if mels.ndim:
|
||
|
# If we have vector data, vectorize
|
||
|
log_t = mels >= min_log_mel
|
||
|
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
|
||
|
elif mels >= min_log_mel:
|
||
|
# If we have scalar data, check directly
|
||
|
freqs = min_log_hz * np.exp(logstep * (mels - min_log_mel))
|
||
|
|
||
|
return freqs
|
||
|
|
||
|
def mel_frequencies(self, n_mels=128, fmin=0.0, fmax=11025.0):
|
||
|
'''
|
||
|
Calculates n mel frequencies between 2 frequencies
|
||
|
args:
|
||
|
n_mels : number of bands
|
||
|
fmin : min frequency
|
||
|
fmax : max frequency
|
||
|
returns:
|
||
|
mels : vector of mel frequencies
|
||
|
'''
|
||
|
# 'Center freqs' of mel bands - uniformly spaced between limits
|
||
|
min_mel = self.hz_to_mel(fmin)
|
||
|
max_mel = self.hz_to_mel(fmax)
|
||
|
|
||
|
mels = np.linspace(min_mel, max_mel, n_mels)
|
||
|
|
||
|
return self.mel_to_hz(mels)
|
||
|
|
||
|
def mel(self, sr, n_fft, n_mels=128, fmin=0.0, fmax=None, dtype=np.float32):
|
||
|
'''
|
||
|
Generates mel filterbank
|
||
|
args:
|
||
|
sr : Sampling rate
|
||
|
n_fft : number of FFT components
|
||
|
n_mels : number of Mel bands to generate
|
||
|
fmin : lowest frequency (in Hz)
|
||
|
fmax : highest frequency (in Hz). sr/2.0 if None
|
||
|
dtype : the data type of the output basis.
|
||
|
returns:
|
||
|
mels : Mel transform matrix
|
||
|
'''
|
||
|
# default Max freq = half of sampling rate
|
||
|
if fmax is None:
|
||
|
fmax = float(sr) / 2
|
||
|
|
||
|
# Initialize the weights
|
||
|
n_mels = int(n_mels)
|
||
|
weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
|
||
|
|
||
|
# Center freqs of each FFT bin
|
||
|
fftfreqs = np.linspace(0, float(sr) / 2, int(1 + n_fft // 2), endpoint=True)
|
||
|
|
||
|
# 'Center freqs' of mel bands - uniformly spaced between limits
|
||
|
mel_f = self.mel_frequencies(n_mels + 2, fmin=fmin, fmax=fmax)
|
||
|
|
||
|
fdiff = np.diff(mel_f)
|
||
|
ramps = np.subtract.outer(mel_f, fftfreqs)
|
||
|
|
||
|
for i in range(n_mels):
|
||
|
# lower and upper slopes for all bins
|
||
|
lower = -ramps[i] / fdiff[i]
|
||
|
upper = ramps[i + 2] / fdiff[i + 1]
|
||
|
|
||
|
# .. then intersect them with each other and zero
|
||
|
weights[i] = np.maximum(0, np.minimum(lower, upper))
|
||
|
|
||
|
# Using Slaney-style mel which is scaled to be approx constant energy per channel
|
||
|
enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
|
||
|
weights *= enorm[:, np.newaxis]
|
||
|
return weights
|
||
|
|
||
|
# STFT preperation
|
||
|
def pad_window_center(self, data, size, axis=-1, **kwargs):
|
||
|
'''
|
||
|
Centers the data and pads.
|
||
|
args:
|
||
|
data : Vector to be padded and centered
|
||
|
size : Length to pad data
|
||
|
axis : Axis along which to pad and center the data
|
||
|
kwargs : arguments passed to np.pad
|
||
|
return : centered and padded data
|
||
|
'''
|
||
|
kwargs.setdefault("mode", "constant")
|
||
|
n = data.shape[axis]
|
||
|
lpad = int((size - n) // 2)
|
||
|
lengths = [(0, 0)] * data.ndim
|
||
|
lengths[axis] = (lpad, int(size - n - lpad))
|
||
|
if lpad < 0:
|
||
|
raise Exception(
|
||
|
("Target size ({:d}) must be at least input size ({:d})").format(size, n)
|
||
|
)
|
||
|
return np.pad(data, lengths, **kwargs)
|
||
|
|
||
|
def frame(self, x, frame_length, hop_length):
|
||
|
'''
|
||
|
Slices a data array into (overlapping) frames.
|
||
|
args:
|
||
|
x : array to frame
|
||
|
frame_length : length of frame
|
||
|
hop_length : Number of steps to advance between frames
|
||
|
return : A framed view of `x`
|
||
|
'''
|
||
|
if x.shape[-1] < frame_length:
|
||
|
raise Exception(
|
||
|
"Input is too short (n={:d})"
|
||
|
" for frame_length={:d}".format(x.shape[-1], frame_length)
|
||
|
)
|
||
|
x = np.asfortranarray(x)
|
||
|
n_frames = 1 + (x.shape[-1] - frame_length) // hop_length
|
||
|
strides = np.asarray(x.strides)
|
||
|
new_stride = np.prod(strides[strides > 0] // x.itemsize) * x.itemsize
|
||
|
shape = list(x.shape)[:-1] + [frame_length, n_frames]
|
||
|
strides = list(strides) + [hop_length * new_stride]
|
||
|
return np.lib.stride_tricks.as_strided(x, shape=shape, strides=strides)
|
||
|
|
||
|
def dtype_r2c(self, d, default=np.complex64):
|
||
|
'''
|
||
|
Find the complex numpy dtype corresponding to a real dtype.
|
||
|
args:
|
||
|
d : The real-valued dtype to convert to complex.
|
||
|
default : The default complex target type, if `d` does not match a known dtype
|
||
|
return : The complex dtype
|
||
|
'''
|
||
|
mapping = {
|
||
|
np.dtype(np.float32): np.complex64,
|
||
|
np.dtype(np.float64): np.complex128,
|
||
|
}
|
||
|
dt = np.dtype(d)
|
||
|
if dt.kind == "c":
|
||
|
return dt
|
||
|
return np.dtype(mapping.get(dt, default))
|
||
|
|
||
|
def stft(self, y, n_fft, hop_length=None, win_length=None, fft_window=None, pad_mode='reflect', return_complex=False):
|
||
|
'''
|
||
|
Short Time Fourier Transform. The STFT represents a signal in the time-frequency
|
||
|
domain by computing discrete Fourier transforms (DFT) over short overlapping windows.
|
||
|
args:
|
||
|
y : input signal
|
||
|
n_fft : length of the windowed signal after padding with zeros.
|
||
|
hop_length : number of audio samples between adjacent STFT columns.
|
||
|
win_length : Each frame of audio is windowed by window of length win_length and
|
||
|
then padded with zeros to match n_fft
|
||
|
fft_window : a vector or array of length `n_fft` having values computed by a
|
||
|
window function
|
||
|
pad_mode : mode while padding the singnal
|
||
|
return_complex : returns array with complex data type if `True`
|
||
|
return : Matrix of short-term Fourier transform coefficients.
|
||
|
'''
|
||
|
if win_length is None:
|
||
|
win_length = n_fft
|
||
|
if hop_length is None:
|
||
|
hop_length = int(win_length // 4)
|
||
|
if y.ndim!=1:
|
||
|
raise Exception(f'Invalid input shape. Only Mono Channeled audio supported. Input must have shape (Audio,). Got {y.shape}')
|
||
|
|
||
|
# Pad the window out to n_fft size
|
||
|
fft_window = self.pad_window_center(fft_window, n_fft)
|
||
|
|
||
|
# Reshape so that the window can be broadcast
|
||
|
fft_window = fft_window.reshape((-1, 1))
|
||
|
|
||
|
# Pad the time series so that frames are centered
|
||
|
y = np.pad(y, int(n_fft // 2), mode=pad_mode)
|
||
|
|
||
|
# Window the time series.
|
||
|
y_frames = self.frame(y, frame_length=n_fft, hop_length=hop_length)
|
||
|
|
||
|
# Convert data type to complex
|
||
|
dtype = self.dtype_r2c(y.dtype)
|
||
|
|
||
|
# Pre-allocate the STFT matrix
|
||
|
stft_matrix = np.empty( (int(1 + n_fft // 2), y_frames.shape[-1]), dtype=dtype, order="F")
|
||
|
|
||
|
stft_matrix = np.fft.rfft( fft_window * y_frames, axis=0)
|
||
|
return stft_matrix if return_complex==True else np.stack((stft_matrix.real,stft_matrix.imag),axis=-1)
|
||
|
|
||
|
class Decoder:
|
||
|
'''
|
||
|
Used for decoding the output of jasper model.
|
||
|
'''
|
||
|
def __init__(self):
|
||
|
labels=[' ','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z',"'"]
|
||
|
self.labels_map = {i: label for i,label in enumerate(labels)}
|
||
|
self.blank_id = 28
|
||
|
|
||
|
def decode(self,x):
|
||
|
"""
|
||
|
Takes output of Jasper model and performs ctc decoding algorithm to
|
||
|
remove duplicates and special symbol. Returns prediction
|
||
|
"""
|
||
|
x = np.argmax(x,axis=-1)
|
||
|
hypotheses = []
|
||
|
prediction = x.tolist()
|
||
|
# CTC decoding procedure
|
||
|
decoded_prediction = []
|
||
|
previous = self.blank_id
|
||
|
for p in prediction:
|
||
|
if (p != previous or previous == self.blank_id) and p != self.blank_id:
|
||
|
decoded_prediction.append(p)
|
||
|
previous = p
|
||
|
hypothesis = ''.join([self.labels_map[c] for c in decoded_prediction])
|
||
|
hypotheses.append(hypothesis)
|
||
|
return hypotheses
|
||
|
|
||
|
def predict(features, net, decoder):
|
||
|
'''
|
||
|
Passes the features through the Jasper model and decodes the output to english transcripts.
|
||
|
args:
|
||
|
features : input features, calculated using FilterbankFeatures class
|
||
|
net : Jasper model dnn.net object
|
||
|
decoder : Decoder object
|
||
|
return : Predicted text
|
||
|
'''
|
||
|
# This is a workaround https://github.com/opencv/opencv/issues/19091
|
||
|
# expanding 1 dimentions allows us to pass it to the network
|
||
|
# from python. This should be resolved in the future.
|
||
|
features = np.expand_dims(features,axis=3)
|
||
|
|
||
|
# make prediction
|
||
|
net.setInput(features)
|
||
|
output = net.forward()
|
||
|
|
||
|
# decode output to transcript
|
||
|
prediction = decoder.decode(output.squeeze(0))
|
||
|
return prediction[0]
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
# Computation backends supported by layers
|
||
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
||
|
# Target Devices for computation
|
||
|
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16)
|
||
|
|
||
|
parser = argparse.ArgumentParser(description='This script runs Jasper Speech recognition model',
|
||
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||
|
parser.add_argument('--input_audio', type=str, required=True, help='Path to input audio file. OR Path to a txt file with relative path to multiple audio files in different lines')
|
||
|
parser.add_argument('--show_spectrogram', action='store_true', help='Whether to show a spectrogram of the input audio.')
|
||
|
parser.add_argument('--model', type=str, default='jasper.onnx', help='Path to the onnx file of Jasper. default="jasper.onnx"')
|
||
|
parser.add_argument('--output', type=str, help='Path to file where recognized audio transcript must be saved. Leave this to print on console.')
|
||
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||
|
help='Select a computation backend: '
|
||
|
"%d: automatically (by default) "
|
||
|
"%d: OpenVINO Inference Engine "
|
||
|
"%d: OpenCV Implementation " % backends)
|
||
|
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||
|
help='Select a target device: '
|
||
|
"%d: CPU target (by default) "
|
||
|
"%d: OpenCL "
|
||
|
"%d: OpenCL FP16 " % targets)
|
||
|
|
||
|
args, _ = parser.parse_known_args()
|
||
|
|
||
|
if args.input_audio and not os.path.isfile(args.input_audio):
|
||
|
raise OSError("Input audio file does not exist")
|
||
|
if not os.path.isfile(args.model):
|
||
|
raise OSError("Jasper model file does not exist")
|
||
|
if args.input_audio.endswith('.txt'):
|
||
|
with open(args.input_audio) as f:
|
||
|
content = f.readlines()
|
||
|
content = [x.strip() for x in content]
|
||
|
audio_file_paths = content
|
||
|
for audio_file_path in audio_file_paths:
|
||
|
if not os.path.isfile(audio_file_path):
|
||
|
raise OSError("Audio file({audio_file_path}) does not exist")
|
||
|
else:
|
||
|
audio_file_paths = [args.input_audio]
|
||
|
audio_file_paths = [os.path.abspath(x) for x in audio_file_paths]
|
||
|
|
||
|
# Read audio Files
|
||
|
features = []
|
||
|
try:
|
||
|
for audio_file_path in audio_file_paths:
|
||
|
audio = sf.read(audio_file_path)
|
||
|
# If audio is stereo, just take one channel.
|
||
|
X = audio[0] if audio[0].ndim==1 else audio[0][:,0]
|
||
|
features.append(X)
|
||
|
except:
|
||
|
raise Exception(f"Soundfile cannot read {args.input_audio}. Try a different format")
|
||
|
|
||
|
# Get Filterbank Features
|
||
|
feature_extractor = FilterbankFeatures()
|
||
|
for i in range(len(features)):
|
||
|
X = features[i]
|
||
|
seq_len = np.array([X.shape[0]], dtype=np.int32)
|
||
|
features[i] = feature_extractor.calculate_features(x=X, seq_len=seq_len)
|
||
|
|
||
|
# Load Network
|
||
|
net = cv.dnn.readNetFromONNX(args.model)
|
||
|
net.setPreferableBackend(args.backend)
|
||
|
net.setPreferableTarget(args.target)
|
||
|
|
||
|
# Show spectogram if required
|
||
|
if args.show_spectrogram and not args.input_audio.endswith('.txt'):
|
||
|
img = cv.normalize(src=features[0][0], dst=None, alpha=0, beta=255, norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U)
|
||
|
img = cv.applyColorMap(img, cv.COLORMAP_JET)
|
||
|
cv.imshow('spectogram', img)
|
||
|
cv.waitKey(0)
|
||
|
|
||
|
# Initialize decoder
|
||
|
decoder = Decoder()
|
||
|
|
||
|
# Make prediction
|
||
|
prediction = []
|
||
|
print("Predicting...")
|
||
|
for feature in features:
|
||
|
print(f"\rAudio file {len(prediction)+1}/{len(features)}", end='')
|
||
|
prediction.append(predict(feature, net, decoder))
|
||
|
print("")
|
||
|
|
||
|
# save transcript if required
|
||
|
if args.output:
|
||
|
with open(args.output,'w') as f:
|
||
|
for pred in prediction:
|
||
|
f.write(pred+'\n')
|
||
|
print("Transcript was written to {}".format(args.output))
|
||
|
else:
|
||
|
print(prediction)
|
||
|
cv.destroyAllWindows()
|