174 lines
5.3 KiB
C++
174 lines
5.3 KiB
C++
|
// Tencent is pleased to support the open source community by making ncnn available.
|
||
|
//
|
||
|
// Copyright (C) 2018 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
// in compliance with the License. You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://opensource.org/licenses/BSD-3-Clause
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software distributed
|
||
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
// specific language governing permissions and limitations under the License.
|
||
|
|
||
|
#include "net.h"
|
||
|
#include "platform.h"
|
||
|
|
||
|
#if defined(USE_NCNN_SIMPLEOCV)
|
||
|
#include "simpleocv.h"
|
||
|
#else
|
||
|
#include <opencv2/core/core.hpp>
|
||
|
#include <opencv2/highgui/highgui.hpp>
|
||
|
#include <opencv2/imgproc/imgproc.hpp>
|
||
|
#endif
|
||
|
#include <stdio.h>
|
||
|
#include <vector>
|
||
|
#if NCNN_VULKAN
|
||
|
#include "gpu.h"
|
||
|
#endif // NCNN_VULKAN
|
||
|
|
||
|
template<class T>
|
||
|
const T& clamp(const T& v, const T& lo, const T& hi)
|
||
|
{
|
||
|
assert(!(hi < lo));
|
||
|
return v < lo ? lo : hi < v ? hi : v;
|
||
|
}
|
||
|
|
||
|
struct Object
|
||
|
{
|
||
|
cv::Rect_<float> rect;
|
||
|
int label;
|
||
|
float prob;
|
||
|
};
|
||
|
|
||
|
static int detect_mobilenetv3(const cv::Mat& bgr, std::vector<Object>& objects)
|
||
|
{
|
||
|
ncnn::Net mobilenetv3;
|
||
|
|
||
|
#if NCNN_VULKAN
|
||
|
mobilenetv3.opt.use_vulkan_compute = true;
|
||
|
#endif // NCNN_VULKAN
|
||
|
|
||
|
// converted ncnn model from https://github.com/ujsyehao/mobilenetv3-ssd
|
||
|
mobilenetv3.load_param("./mobilenetv3_ssdlite_voc.param");
|
||
|
mobilenetv3.load_model("./mobilenetv3_ssdlite_voc.bin");
|
||
|
|
||
|
const int target_size = 300;
|
||
|
|
||
|
int img_w = bgr.cols;
|
||
|
int img_h = bgr.rows;
|
||
|
|
||
|
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, bgr.cols, bgr.rows, target_size, target_size);
|
||
|
|
||
|
const float mean_vals[3] = {123.675f, 116.28f, 103.53f};
|
||
|
const float norm_vals[3] = {1.0f, 1.0f, 1.0f};
|
||
|
in.substract_mean_normalize(mean_vals, norm_vals);
|
||
|
|
||
|
ncnn::Extractor ex = mobilenetv3.create_extractor();
|
||
|
|
||
|
ex.input("input", in);
|
||
|
|
||
|
ncnn::Mat out;
|
||
|
ex.extract("detection_out", out);
|
||
|
|
||
|
// printf("%d %d %d\n", out.w, out.h, out.c);
|
||
|
objects.clear();
|
||
|
for (int i = 0; i < out.h; i++)
|
||
|
{
|
||
|
const float* values = out.row(i);
|
||
|
|
||
|
Object object;
|
||
|
object.label = values[0];
|
||
|
object.prob = values[1];
|
||
|
|
||
|
// filter out cross-boundary
|
||
|
float x1 = clamp(values[2] * target_size, 0.f, float(target_size - 1)) / target_size * img_w;
|
||
|
float y1 = clamp(values[3] * target_size, 0.f, float(target_size - 1)) / target_size * img_h;
|
||
|
float x2 = clamp(values[4] * target_size, 0.f, float(target_size - 1)) / target_size * img_w;
|
||
|
float y2 = clamp(values[5] * target_size, 0.f, float(target_size - 1)) / target_size * img_h;
|
||
|
|
||
|
object.rect.x = x1;
|
||
|
object.rect.y = y1;
|
||
|
object.rect.width = x2 - x1;
|
||
|
object.rect.height = y2 - y1;
|
||
|
|
||
|
objects.push_back(object);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void draw_objects(const cv::Mat& bgr, const std::vector<Object>& objects)
|
||
|
{
|
||
|
static const char* class_names[] = {"background",
|
||
|
"aeroplane", "bicycle", "bird", "boat",
|
||
|
"bottle", "bus", "car", "cat", "chair",
|
||
|
"cow", "diningtable", "dog", "horse",
|
||
|
"motorbike", "person", "pottedplant",
|
||
|
"sheep", "sofa", "train", "tvmonitor"
|
||
|
};
|
||
|
|
||
|
cv::Mat image = bgr.clone();
|
||
|
|
||
|
for (size_t i = 0; i < objects.size(); i++)
|
||
|
{
|
||
|
if (objects[i].prob > 0.6)
|
||
|
{
|
||
|
const Object& obj = objects[i];
|
||
|
|
||
|
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
|
||
|
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
|
||
|
|
||
|
cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));
|
||
|
|
||
|
char text[256];
|
||
|
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
|
||
|
|
||
|
int baseLine = 0;
|
||
|
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
||
|
|
||
|
int x = obj.rect.x;
|
||
|
int y = obj.rect.y - label_size.height - baseLine;
|
||
|
if (y < 0)
|
||
|
y = 0;
|
||
|
if (x + label_size.width > image.cols)
|
||
|
x = image.cols - label_size.width;
|
||
|
|
||
|
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
|
||
|
cv::Scalar(255, 255, 255), -1);
|
||
|
|
||
|
cv::putText(image, text, cv::Point(x, y + label_size.height),
|
||
|
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cv::imshow("image", image);
|
||
|
cv::waitKey(0);
|
||
|
}
|
||
|
|
||
|
int main(int argc, char** argv)
|
||
|
{
|
||
|
if (argc != 2)
|
||
|
{
|
||
|
fprintf(stderr, "Usage: %s [imagepath]\n", argv[0]);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
const char* imagepath = argv[1];
|
||
|
|
||
|
cv::Mat m = cv::imread(imagepath, 1);
|
||
|
if (m.empty())
|
||
|
{
|
||
|
fprintf(stderr, "cv::imread %s failed\n", imagepath);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
std::vector<Object> objects;
|
||
|
detect_mobilenetv3(m, objects);
|
||
|
|
||
|
draw_objects(m, objects);
|
||
|
|
||
|
return 0;
|
||
|
}
|