80 lines
2.3 KiB
C++
80 lines
2.3 KiB
C++
|
// Tencent is pleased to support the open source community by making ncnn available.
|
||
|
//
|
||
|
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
// in compliance with the License. You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://opensource.org/licenses/BSD-3-Clause
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software distributed
|
||
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
// specific language governing permissions and limitations under the License.
|
||
|
|
||
|
#include "layer/lrn.h"
|
||
|
#include "testutil.h"
|
||
|
|
||
|
static int test_lrn(const ncnn::Mat& a, int region_type, int local_size, float alpha, float beta, float bias)
|
||
|
{
|
||
|
ncnn::ParamDict pd;
|
||
|
pd.set(0, region_type);
|
||
|
pd.set(1, local_size);
|
||
|
pd.set(2, alpha);
|
||
|
pd.set(3, beta);
|
||
|
pd.set(4, bias);
|
||
|
|
||
|
std::vector<ncnn::Mat> weights(0);
|
||
|
|
||
|
int ret = test_layer<ncnn::LRN>("LRN", pd, weights, a);
|
||
|
if (ret != 0)
|
||
|
{
|
||
|
fprintf(stderr, "test_lrn failed a.dims=%d a=(%d %d %d) region_type=%d local_size=%d alpha=%f beta=%f bias=%f\n", a.dims, a.w, a.h, a.c, region_type, local_size, alpha, beta, bias);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int test_lrn_0()
|
||
|
{
|
||
|
ncnn::Mat a = RandomMat(11, 7, 12);
|
||
|
|
||
|
return 0
|
||
|
|| test_lrn(a, 0, 1, 1.f, 0.75f, 1.f)
|
||
|
|| test_lrn(a, 0, 5, 2.f, 0.12f, 1.33f)
|
||
|
|| test_lrn(a, 1, 1, 0.6f, 0.4f, 2.4f)
|
||
|
|| test_lrn(a, 1, 3, 1.f, 0.75f, 0.5f);
|
||
|
}
|
||
|
|
||
|
static int test_lrn_1()
|
||
|
{
|
||
|
ncnn::Mat a = RandomMat(10, 8, 16);
|
||
|
|
||
|
return 0
|
||
|
|| test_lrn(a, 0, 1, 1.f, 0.75f, 1.f)
|
||
|
|| test_lrn(a, 0, 5, 2.f, 0.12f, 1.33f)
|
||
|
|| test_lrn(a, 1, 1, 0.6f, 0.4f, 2.4f)
|
||
|
|| test_lrn(a, 1, 3, 1.f, 0.75f, 0.5f);
|
||
|
}
|
||
|
|
||
|
static int test_lrn_2()
|
||
|
{
|
||
|
ncnn::Mat a = RandomMat(12, 10, 9);
|
||
|
|
||
|
return 0
|
||
|
|| test_lrn(a, 0, 1, 1.f, 0.75f, 1.f)
|
||
|
|| test_lrn(a, 0, 5, 2.f, 0.12f, 1.33f)
|
||
|
|| test_lrn(a, 1, 1, 0.6f, 0.4f, 2.4f)
|
||
|
|| test_lrn(a, 1, 3, 1.f, 0.75f, 0.5f);
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
SRAND(7767517);
|
||
|
|
||
|
return 0
|
||
|
|| test_lrn_0()
|
||
|
|| test_lrn_1()
|
||
|
|| test_lrn_2();
|
||
|
}
|