deepin-ocr/3rdparty/ncnn/tools/modelwriter.h

2217 lines
78 KiB
C
Raw Normal View History

// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#ifdef _MSC_VER
#define _CRT_SECURE_NO_DEPRECATE
#endif
#include <stdint.h>
#include <algorithm>
#include <map>
#include <set>
#include <vector>
// ncnn public header
#include "datareader.h"
#include "layer.h"
#include "layer_type.h"
#include "net.h"
// ncnn private header
#include "layer/batchnorm.h"
#include "layer/bias.h"
#include "layer/binaryop.h"
#include "layer/clip.h"
#include "layer/concat.h"
#include "layer/convolution.h"
#include "layer/convolution1d.h"
#include "layer/convolution3d.h"
#include "layer/convolutiondepthwise.h"
#include "layer/convolutiondepthwise1d.h"
#include "layer/convolutiondepthwise3d.h"
#include "layer/crop.h"
#include "layer/deconvolution.h"
#include "layer/deconvolution1d.h"
#include "layer/deconvolution3d.h"
#include "layer/deconvolutiondepthwise.h"
#include "layer/deconvolutiondepthwise1d.h"
#include "layer/deconvolutiondepthwise3d.h"
#include "layer/detectionoutput.h"
#include "layer/dropout.h"
#include "layer/eltwise.h"
#include "layer/elu.h"
#include "layer/embed.h"
#include "layer/exp.h"
#include "layer/expanddims.h"
#include "layer/flatten.h"
#include "layer/gelu.h"
#include "layer/gemm.h"
#include "layer/groupnorm.h"
#include "layer/gru.h"
#include "layer/hardsigmoid.h"
#include "layer/hardswish.h"
#include "layer/innerproduct.h"
#include "layer/input.h"
#include "layer/instancenorm.h"
#include "layer/interp.h"
#include "layer/layernorm.h"
#include "layer/log.h"
#include "layer/lrn.h"
#include "layer/lstm.h"
#include "layer/matmul.h"
#include "layer/memorydata.h"
#include "layer/mvn.h"
#include "layer/multiheadattention.h"
#include "layer/normalize.h"
#include "layer/padding.h"
#include "layer/permute.h"
#include "layer/pixelshuffle.h"
#include "layer/pooling.h"
#include "layer/pooling1d.h"
#include "layer/pooling3d.h"
#include "layer/power.h"
#include "layer/prelu.h"
#include "layer/priorbox.h"
#include "layer/proposal.h"
#include "layer/psroipooling.h"
#include "layer/quantize.h"
#include "layer/reduction.h"
#include "layer/relu.h"
#include "layer/reorg.h"
#include "layer/requantize.h"
#include "layer/reshape.h"
#include "layer/rnn.h"
#include "layer/roialign.h"
#include "layer/roipooling.h"
#include "layer/scale.h"
#include "layer/shufflechannel.h"
#include "layer/slice.h"
#include "layer/softmax.h"
#include "layer/split.h"
#include "layer/squeeze.h"
#include "layer/threshold.h"
#include "layer/unaryop.h"
#include "layer/yolodetectionoutput.h"
#include "layer/yolov3detectionoutput.h"
// for gen_random_weight
#include "../tests/prng.h"
static struct prng_rand_t g_prng_rand_state;
#define SRAND(seed) prng_srand(seed, &g_prng_rand_state)
#define RAND() prng_rand(&g_prng_rand_state)
class MemoryFootprintAllocator : public ncnn::Allocator
{
public:
MemoryFootprintAllocator()
{
current_memory_usage = 0;
memory_footprint = 0;
}
virtual void* fastMalloc(size_t size)
{
ncnn::MutexLockGuard g(lock);
void* ptr = ncnn::fastMalloc(size);
bookkeeper[ptr] = size;
current_memory_usage += size;
memory_footprint = std::max(memory_footprint, current_memory_usage);
return ptr;
}
virtual void fastFree(void* ptr)
{
ncnn::MutexLockGuard g(lock);
size_t size = bookkeeper[ptr];
current_memory_usage -= size;
bookkeeper.erase(bookkeeper.find(ptr));
ncnn::fastFree(ptr);
}
public:
int current_memory_usage;
int memory_footprint;
ncnn::Mutex lock;
std::map<void*, size_t> bookkeeper;
};
class CustomLayer : public ncnn::Layer
{
public:
virtual int load_param(const ncnn::ParamDict& pd)
{
mpd = pd;
return 0;
}
void write_param(FILE* pp)
{
for (int i = 0; i < NCNN_MAX_PARAM_COUNT; i++)
{
int type = mpd.type(i);
if (type == 0)
continue;
if (type == 2)
{
fprintf(pp, " %d=%d", i, mpd.get(i, 0));
}
if (type == 3)
{
fprintf(pp, " %d=%e", i, mpd.get(i, 0.f));
}
if (type == 5)
{
ncnn::Mat v = mpd.get(i, ncnn::Mat());
int len = v.w;
fprintf(pp, " %d=%d", -i - 23300, len);
const int* p = v;
for (int j = 0; j < len; j++)
{
fprintf(pp, ",%d", p[j]);
}
}
if (type == 6)
{
ncnn::Mat v = mpd.get(i, ncnn::Mat());
int len = v.w;
fprintf(pp, " %d=%d", -i - 23300, len);
const float* p = v;
for (int j = 0; j < len; j++)
{
fprintf(pp, ",%e", p[j]);
}
}
}
}
public:
ncnn::ParamDict mpd;
};
DEFINE_LAYER_CREATOR(CustomLayer)
class ModelWriter : public ncnn::Net
{
public:
ModelWriter();
virtual ncnn::Layer* create_custom_layer(const char* type);
std::vector<ncnn::Blob>& blobs;
std::vector<ncnn::Layer*>& layers;
bool has_custom_layer;
public:
// 0=fp32 1=fp16
int storage_type;
int gen_random_weight;
// Cut param and bin -1=no cut
int cutstart;
int cutend;
public:
int set_cutparam(const char* cutstartname, const char* cutendname);
int shape_inference();
int estimate_memory_footprint();
public:
int fprintf_param_int_array(int id, const ncnn::Mat& m, FILE* pp);
int fprintf_param_float_array(int id, const ncnn::Mat& m, FILE* pp);
int fwrite_weight_tag_data(const ncnn::Mat& data, FILE* bp, float a = -1.2f, float b = 1.2f);
int fwrite_weight_data(const ncnn::Mat& data, FILE* bp, float a = -1.2f, float b = 1.2f);
int save(const char* parampath, const char* binpath);
};
ModelWriter::ModelWriter()
: blobs(mutable_blobs()), layers(mutable_layers())
{
has_custom_layer = false;
gen_random_weight = false;
cutstart = -1;
cutend = -1;
SRAND(7767517);
}
ncnn::Layer* ModelWriter::create_custom_layer(const char* type)
{
ncnn::Layer* layer = Net::create_custom_layer(type);
if (layer)
return layer;
fprintf(stderr, "create_custom_layer %s\n", type);
register_custom_layer(type, CustomLayer_layer_creator);
has_custom_layer = true;
return Net::create_custom_layer(type);
}
int ModelWriter::set_cutparam(const char* cutstartname, const char* cutendname)
{
if (cutstartname != nullptr)
{
int layindex = find_layer_index_by_name(cutstartname);
if (layindex >= 0)
{
cutstart = layindex;
fprintf(stderr, "cutstart layer %d:%s\n", layindex, cutstartname);
}
else
{
fprintf(stderr, "not find target cutstart layer %s\n", cutstartname);
return -1;
}
}
if (cutendname != nullptr)
{
int layindex = find_layer_index_by_name(cutendname);
if (layindex >= 0)
{
cutend = layindex;
fprintf(stderr, "cutend layer %d:%s\n", layindex, cutendname);
}
else
{
fprintf(stderr, "not find target cutend layer %s\n", cutendname);
return -1;
}
}
return 0;
}
int ModelWriter::shape_inference()
{
if (has_custom_layer)
{
fprintf(stderr, "model has custom layer, shape_inference skipped\n");
return -1;
}
const size_t layer_count = layers.size();
const size_t blob_count = blobs.size();
// recreate layer pipeline for param and weight changes
for (size_t i = 0; i < layer_count; i++)
{
ncnn::Layer* layer = layers[i];
layer->destroy_pipeline(opt);
int cret = layer->create_pipeline(opt);
if (cret != 0)
{
NCNN_LOGE("layer create_pipeline %d %s failed", (int)i, layer->name.c_str());
return -1;
}
}
ncnn::Extractor ex = create_extractor();
// prepare Input blobs
for (size_t i = 0; i < layer_count; i++)
{
const ncnn::Layer* layer = layers[i];
if (layer->type == "ncnnfused")
continue;
if (layer->type != "Input")
continue;
ncnn::Input* input = (ncnn::Input*)layer;
int w = input->w;
int h = input->h;
int c = input->c;
int dims = 0;
if (w == 0 && h == 0 && c == 0) dims = 0;
if (w != 0 && h == 0 && c == 0) dims = 1;
if (w != 0 && h != 0 && c == 0) dims = 2;
if (w != 0 && h != 0 && c != 0) dims = 3;
if (dims == 0)
{
fprintf(stderr, "Input layer %s without shape info, shape_inference skipped\n", layer->name.c_str());
return -1;
}
ncnn::Mat m;
if (dims == 1) m.create(w);
if (dims == 2) m.create(w, h);
if (dims == 3) m.create(w, h, c);
ex.input(layer->tops[0], m);
}
// prepare blobs with predefined shape
for (size_t i = 0; i < blob_count; i++)
{
const ncnn::Blob& blob = blobs[i];
int dims = blob.shape.dims;
int w = blob.shape.w;
int h = blob.shape.h;
int c = blob.shape.c;
if (dims == 0)
continue;
ncnn::Mat m;
if (dims == 1) m.create(w);
if (dims == 2) m.create(w, h);
if (dims == 3) m.create(w, h, c);
m.fill(0.f);
ex.input(int(i), m);
}
fprintf(stderr, "shape_inference\n");
// resolve all layer output blob shape
for (size_t i = 0; i < layer_count; i++)
{
const ncnn::Layer* layer = layers[i];
if (layer->type == "ncnnfused")
continue;
for (size_t j = 0; j < layer->tops.size(); j++)
{
int top_blob_index = layer->tops[j];
ncnn::Mat m;
ex.extract(top_blob_index, m);
blobs[top_blob_index].shape = m;
}
}
// assign all layer blob shape
for (size_t i = 0; i < layer_count; i++)
{
ncnn::Layer* layer = layers[i];
if (layer->type == "ncnnfused")
continue;
layer->bottom_shapes.resize(layer->bottoms.size());
for (size_t j = 0; j < layer->bottoms.size(); j++)
{
int bottom_blob_index = layer->bottoms[j];
layer->bottom_shapes[j] = blobs[bottom_blob_index].shape;
}
layer->top_shapes.resize(layer->tops.size());
for (size_t j = 0; j < layer->tops.size(); j++)
{
int top_blob_index = layer->tops[j];
layer->top_shapes[j] = blobs[top_blob_index].shape;
// fprintf(stderr, "%d %4d %4d %4d | %2d %s\n", blobs[top_blob_index].shape.dims, blobs[top_blob_index].shape.w, blobs[top_blob_index].shape.h, blobs[top_blob_index].shape.c, top_blob_index, blobs[top_blob_index].name.c_str());
}
}
return 0;
}
int ModelWriter::estimate_memory_footprint()
{
if (has_custom_layer)
{
fprintf(stderr, "model has custom layer, estimate_memory_footprint skipped\n");
return -1;
}
const size_t layer_count = layers.size();
const size_t blob_count = blobs.size();
MemoryFootprintAllocator allocator;
ncnn::Extractor ex = create_extractor();
ex.set_blob_allocator(&allocator);
ex.set_workspace_allocator(&allocator);
// prepare Input blobs
for (size_t i = 0; i < layer_count; i++)
{
const ncnn::Layer* layer = layers[i];
if (layer->type == "ncnnfused")
continue;
if (layer->type != "Input")
continue;
ncnn::Input* input = (ncnn::Input*)layer;
int w = input->w;
int h = input->h;
int c = input->c;
int dims = 0;
if (w == 0 && h == 0 && c == 0) dims = 0;
if (w != 0 && h == 0 && c == 0) dims = 1;
if (w != 0 && h != 0 && c == 0) dims = 2;
if (w != 0 && h != 0 && c != 0) dims = 3;
if (dims == 0)
{
fprintf(stderr, "Input layer %s without shape info, estimate_memory_footprint skipped\n", layer->name.c_str());
return -1;
}
ncnn::Mat m;
if (dims == 1) m.create(w, 4u, &allocator);
if (dims == 2) m.create(w, h, 4u, &allocator);
if (dims == 3) m.create(w, h, c, 4u, &allocator);
ex.input(layer->tops[0], m);
fprintf(stderr, "input = %s\n", blobs[layer->tops[0]].name.c_str());
}
// find output blobs and do inference
std::vector<ncnn::Mat> outputs;
for (size_t i = 0; i < blob_count; i++)
{
const ncnn::Blob& blob = blobs[i];
if (blob.producer == -1 || blob.consumer != -1)
continue;
if (layers[blob.producer]->type == "ncnnfused")
continue;
// treat blob without any consumers as output
ncnn::Mat m;
ex.extract(int(i), m);
outputs.push_back(m);
fprintf(stderr, "extract = %s\n", blob.name.c_str());
}
fprintf(stderr, "estimated memory footprint = %.2f KB = %.2f MB\n", allocator.memory_footprint / 1024.f, allocator.memory_footprint / 1024.f / 1024.f);
return 0;
}
int ModelWriter::fprintf_param_int_array(int id, const ncnn::Mat& m, FILE* pp)
{
const int count = m.w;
const int* ptr = m;
fprintf(pp, " -%d=%d", 23300 + id, count);
for (int i = 0; i < count; i++)
{
fprintf(pp, ",%d", ptr[i]);
}
return 0;
}
int ModelWriter::fprintf_param_float_array(int id, const ncnn::Mat& m, FILE* pp)
{
const int count = m.w;
const float* ptr = m;
fprintf(pp, " -%d=%d", 23300 + id, count);
for (int i = 0; i < count; i++)
{
fprintf(pp, ",%e", ptr[i]);
}
return 0;
}
static inline size_t alignSize(size_t sz, int n)
{
return (sz + n - 1) & -n;
}
static void replace_denormals_with_zero(float* data, size_t data_length)
{
const int total = static_cast<int>(data_length);
for (size_t i = 0; i < data_length; ++i)
{
float value = data[i];
if (fabsf(value) < 1e-30 && fabsf(value) != 0.f)
{
data[i] = 0.f;
}
}
}
static float RandomFloat(float a = -1.2f, float b = 1.2f)
{
float random = ((float)RAND()) / (float)uint64_t(-1); //RAND_MAX;
float diff = b - a;
float r = random * diff;
return a + r;
}
static void Randomize(ncnn::Mat& m, float a = -1.2f, float b = 1.2f)
{
if (m.elemsize == 4)
{
for (size_t i = 0; i < m.total(); i++)
{
m[i] = RandomFloat(a, b);
}
}
else if (m.elemsize == 2)
{
unsigned short* p = m;
for (size_t i = 0; i < m.total(); i++)
{
p[i] = ncnn::float32_to_float16(RandomFloat(a, b));
}
}
else if (m.elemsize == 1)
{
signed char* p = m;
for (size_t i = 0; i < m.total(); i++)
{
p[i] = (signed char)RandomFloat(-127, 127);
}
}
}
int ModelWriter::fwrite_weight_tag_data(const ncnn::Mat& data, FILE* bp, float a, float b)
{
int p0 = ftell(bp);
ncnn::Mat data_flattened = data.reshape(data.w * data.h * data.c);
if (gen_random_weight)
Randomize(data_flattened, a, b);
if (data_flattened.elemsize == 4)
{
if (storage_type == 1)
{
const int tag = 0x01306B47; // fp16 magic
fwrite(&tag, sizeof(int), 1, bp);
ncnn::Mat data_flattened_fp16;
ncnn::cast_float32_to_float16(data_flattened, data_flattened_fp16);
fwrite(data_flattened_fp16.data, data_flattened_fp16.elemsize, data_flattened_fp16.w, bp);
}
else
{
const int tag = 0; // fp32 magic
fwrite(&tag, sizeof(int), 1, bp);
replace_denormals_with_zero(data_flattened, data_flattened.w);
fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp);
}
}
else if (data_flattened.elemsize == 2)
{
const int tag = 0x01306B47; // fp16 magic
fwrite(&tag, sizeof(int), 1, bp);
fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp);
}
else if (data_flattened.elemsize == 1)
{
const int tag = 0x000D4B38; // int8 magic
fwrite(&tag, sizeof(int), 1, bp);
fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp);
}
else
{
fprintf(stderr, "unknown weight data type %d\n", (int)data_flattened.elemsize);
}
// padding to 32bit align
int nwrite = ftell(bp) - p0;
size_t nalign = alignSize(nwrite, 4);
unsigned char padding[4] = {0x00, 0x00, 0x00, 0x00};
fwrite(padding, sizeof(unsigned char), nalign - nwrite, bp);
return 0;
}
int ModelWriter::fwrite_weight_data(const ncnn::Mat& data, FILE* bp, float a, float b)
{
int p0 = ftell(bp);
ncnn::Mat data_flattened = data.reshape(data.w * data.h * data.c);
if (gen_random_weight)
Randomize(data_flattened, a, b);
if (data_flattened.elemsize == 4) // fp32
{
replace_denormals_with_zero(data_flattened, data_flattened.w);
}
fwrite(data_flattened.data, data_flattened.elemsize, data_flattened.w, bp);
// padding to 32bit align
int nwrite = ftell(bp) - p0;
size_t nalign = alignSize(nwrite, 4);
unsigned char padding[4] = {0x00, 0x00, 0x00, 0x00};
fwrite(padding, sizeof(unsigned char), nalign - nwrite, bp);
return 0;
}
int ModelWriter::save(const char* parampath, const char* binpath)
{
uint64_t mac = 0;
FILE* pp = fopen(parampath, "wb");
FILE* bp = fopen(binpath, "wb");
fprintf(pp, "7767517\n");
const size_t layer_count = layers.size();
int layer_count_fused = 0;
std::set<std::string> blob_names;
for (size_t i = 0; i < layer_count; i++)
{
const ncnn::Layer* layer = layers[i];
if (layer->type == "ncnnfused")
continue;
layer_count_fused++;
size_t bottom_count = layer->bottoms.size();
for (size_t j = 0; j < bottom_count; j++)
{
int bottom_blob_index = layer->bottoms[j];
blob_names.insert(blobs[bottom_blob_index].name);
}
size_t top_count = layer->tops.size();
for (size_t j = 0; j < top_count; j++)
{
int top_blob_index = layer->tops[j];
blob_names.insert(blobs[top_blob_index].name);
}
}
size_t blob_count_fused = blob_names.size();
fprintf(pp, "%d %zd\n", layer_count_fused, blob_count_fused);
for (size_t i = 0; i < layer_count; i++)
{
const ncnn::Layer* layer = layers[i];
if (layer->type == "ncnnfused")
continue;
if (cutstart > 0 && i < cutstart)
continue;
if (cutend > 0 && i > cutend)
continue;
size_t bottom_count = layer->bottoms.size();
size_t top_count = layer->tops.size();
fprintf(pp, "%-24s %-24s %zd %zd", layer->type.c_str(), layer->name.c_str(), bottom_count, top_count);
for (size_t j = 0; j < bottom_count; j++)
{
int bottom_blob_index = layer->bottoms[j];
fprintf(pp, " %s", blobs[bottom_blob_index].name.c_str());
}
for (size_t j = 0; j < top_count; j++)
{
int top_blob_index = layer->tops[j];
fprintf(pp, " %s", blobs[top_blob_index].name.c_str());
}
// write shape hints
bool shape_ready = true;
for (size_t j = 0; j < top_count; j++)
{
int top_blob_index = layer->tops[j];
int dims = blobs[top_blob_index].shape.dims;
if (dims == 0)
{
shape_ready = false;
break;
}
}
if (shape_ready)
{
fprintf(pp, " -23330=%zd", top_count * 4);
for (size_t j = 0; j < top_count; j++)
{
int top_blob_index = layer->tops[j];
int dims = blobs[top_blob_index].shape.dims;
int w = blobs[top_blob_index].shape.w;
int h = blobs[top_blob_index].shape.h;
int c = blobs[top_blob_index].shape.c;
fprintf(pp, ",%d,%d,%d,%d", dims, w, h, c);
}
}
// custom op
if (layer->typeindex & ncnn::LayerType::CustomBit)
{
((CustomLayer*)layer)->write_param(pp);
fprintf(pp, "\n");
continue;
}
ncnn::Layer* layer_default = ncnn::create_layer(layer->typeindex);
ncnn::ParamDict pd;
layer_default->load_param(pd);
#define fprintf_param_value(format, phase) \
{ \
if (op->phase != op_default->phase) fprintf(pp, format, op->phase); \
}
if (layer->type == "BatchNorm")
{
ncnn::BatchNorm* op = (ncnn::BatchNorm*)layer;
ncnn::BatchNorm* op_default = (ncnn::BatchNorm*)layer_default;
fprintf_param_value(" 0=%d", channels)
fprintf_param_value(" 1=%e", eps)
fwrite_weight_data(op->slope_data, bp);
fwrite_weight_data(op->mean_data, bp);
fwrite_weight_data(op->var_data, bp);
fwrite_weight_data(op->bias_data, bp);
}
else if (layer->type == "Bias")
{
ncnn::Bias* op = (ncnn::Bias*)layer;
ncnn::Bias* op_default = (ncnn::Bias*)layer_default;
fprintf_param_value(" 0=%d", bias_data_size)
fwrite_weight_data(op->bias_data, bp);
}
else if (layer->type == "BinaryOp")
{
ncnn::BinaryOp* op = (ncnn::BinaryOp*)layer;
ncnn::BinaryOp* op_default = (ncnn::BinaryOp*)layer_default;
fprintf_param_value(" 0=%d", op_type)
fprintf_param_value(" 1=%d", with_scalar)
fprintf_param_value(" 2=%e", b)
}
else if (layer->type == "Clip")
{
ncnn::Clip* op = (ncnn::Clip*)layer;
ncnn::Clip* op_default = (ncnn::Clip*)layer_default;
fprintf_param_value(" 0=%e", min)
fprintf_param_value(" 1=%e", max)
}
else if (layer->type == "Concat")
{
ncnn::Concat* op = (ncnn::Concat*)layer;
ncnn::Concat* op_default = (ncnn::Concat*)layer_default;
fprintf_param_value(" 0=%d", axis)
}
else if (layer->type == "Convolution")
{
ncnn::Convolution* op = (ncnn::Convolution*)layer;
ncnn::Convolution* op_default = (ncnn::Convolution*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
}
fprintf_param_value(" 2=%d", dilation_w)
{
if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h);
}
fprintf_param_value(" 3=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h);
}
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom);
}
fprintf_param_value(" 18=%e", pad_value)
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 8=%d", int8_scale_term)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
#if NCNN_INT8
// write int8_scale data
if (op->int8_scale_term)
{
fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100);
fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1);
fwrite_weight_data(op->top_blob_int8_scales, bp, 0.001, 1);
}
#endif // NCNN_INT8
if (shape_ready)
{
int inc = blobs[layer->bottoms[0]].shape.c;
int outw = blobs[layer->tops[0]].shape.w;
int outh = blobs[layer->tops[0]].shape.h;
int outc = blobs[layer->tops[0]].shape.c;
mac += (uint64_t)op->kernel_h * op->kernel_w * outw * outh * outc * inc;
}
}
else if (layer->type == "Convolution1D")
{
ncnn::Convolution1D* op = (ncnn::Convolution1D*)layer;
ncnn::Convolution1D* op_default = (ncnn::Convolution1D*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
fprintf_param_value(" 2=%d", dilation_w)
fprintf_param_value(" 3=%d", stride_w)
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
fprintf_param_value(" 18=%e", pad_value)
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inh = blobs[layer->bottoms[0]].shape.h;
int outw = blobs[layer->tops[0]].shape.w;
int outh = blobs[layer->tops[0]].shape.h;
mac += (uint64_t)op->kernel_w * outw * outh * inh;
}
}
else if (layer->type == "Convolution3D")
{
ncnn::Convolution3D* op = (ncnn::Convolution3D*)layer;
ncnn::Convolution3D* op_default = (ncnn::Convolution3D*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d);
}
fprintf_param_value(" 2=%d", dilation_w)
{
if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h);
if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d);
}
fprintf_param_value(" 3=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h);
if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d);
}
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top);
if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom);
}
{
if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind);
}
fprintf_param_value(" 18=%e", pad_value)
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inc = blobs[layer->bottoms[0]].shape.c;
int outw = blobs[layer->tops[0]].shape.w;
int outh = blobs[layer->tops[0]].shape.h;
int outd = blobs[layer->tops[0]].shape.d;
int outc = blobs[layer->tops[0]].shape.c;
mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * outw * outh * outd * outc * inc;
}
}
else if (layer->type == "ConvolutionDepthWise")
{
ncnn::ConvolutionDepthWise* op = (ncnn::ConvolutionDepthWise*)layer;
ncnn::ConvolutionDepthWise* op_default = (ncnn::ConvolutionDepthWise*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
}
fprintf_param_value(" 2=%d", dilation_w)
{
if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h);
}
fprintf_param_value(" 3=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h);
}
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom);
}
fprintf_param_value(" 18=%e", pad_value)
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 7=%d", group)
fprintf_param_value(" 8=%d", int8_scale_term)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
#if NCNN_INT8
// write int8_scale data
if (op->int8_scale_term == 1 || op->int8_scale_term == 101)
{
op->bottom_blob_int8_scales.w = 1;
}
if (op->int8_scale_term == 2 || op->int8_scale_term == 102)
{
op->weight_data_int8_scales.w = 1;
op->bottom_blob_int8_scales.w = 1;
}
if (op->int8_scale_term > 100)
{
op->top_blob_int8_scales.w = 1;
}
if (op->int8_scale_term)
{
fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100);
fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1);
fwrite_weight_data(op->top_blob_int8_scales, bp, 0.001, 1);
}
#endif // NCNN_INT8
if (shape_ready)
{
int inc = blobs[layer->bottoms[0]].shape.c;
int outw = blobs[layer->tops[0]].shape.w;
int outh = blobs[layer->tops[0]].shape.h;
int outc = blobs[layer->tops[0]].shape.c;
mac += (uint64_t)op->kernel_h * op->kernel_w * outw * outh * (outc / op->group) * (inc / op->group) * op->group;
}
}
else if (layer->type == "ConvolutionDepthWise1D")
{
ncnn::ConvolutionDepthWise1D* op = (ncnn::ConvolutionDepthWise1D*)layer;
ncnn::ConvolutionDepthWise1D* op_default = (ncnn::ConvolutionDepthWise1D*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
fprintf_param_value(" 2=%d", dilation_w)
fprintf_param_value(" 3=%d", stride_w)
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
fprintf_param_value(" 18=%e", pad_value)
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 7=%d", group)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inh = blobs[layer->bottoms[0]].shape.h;
int outw = blobs[layer->tops[0]].shape.w;
int outh = blobs[layer->tops[0]].shape.h;
mac += (uint64_t)op->kernel_w * outw * (outh / op->group) * (inh / op->group) * op->group;
}
}
else if (layer->type == "ConvolutionDepthWise3D")
{
ncnn::ConvolutionDepthWise3D* op = (ncnn::ConvolutionDepthWise3D*)layer;
ncnn::ConvolutionDepthWise3D* op_default = (ncnn::ConvolutionDepthWise3D*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d);
}
fprintf_param_value(" 2=%d", dilation_w)
{
if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h);
if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d);
}
fprintf_param_value(" 3=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h);
if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d);
}
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top);
if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom);
}
{
if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind);
}
fprintf_param_value(" 18=%e", pad_value)
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 7=%d", group)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inc = blobs[layer->bottoms[0]].shape.c;
int outw = blobs[layer->tops[0]].shape.w;
int outh = blobs[layer->tops[0]].shape.h;
int outd = blobs[layer->tops[0]].shape.d;
int outc = blobs[layer->tops[0]].shape.c;
mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * outw * outh * outd * (outc / op->group) * (inc / op->group) * op->group;
}
}
else if (layer->type == "Crop")
{
ncnn::Crop* op = (ncnn::Crop*)layer;
ncnn::Crop* op_default = (ncnn::Crop*)layer_default;
fprintf_param_value(" 0=%d", woffset)
fprintf_param_value(" 1=%d", hoffset)
fprintf_param_value(" 2=%d", coffset)
fprintf_param_value(" 3=%d", outw)
fprintf_param_value(" 4=%d", outh)
fprintf_param_value(" 5=%d", outc)
fprintf_param_value(" 6=%d", woffset2)
fprintf_param_value(" 7=%d", hoffset2)
fprintf_param_value(" 8=%d", coffset2)
{
if (!op->starts.empty()) fprintf_param_int_array(9, op->starts, pp);
}
{
if (!op->ends.empty()) fprintf_param_int_array(10, op->ends, pp);
}
{
if (!op->axes.empty()) fprintf_param_int_array(11, op->axes, pp);
}
}
else if (layer->type == "Deconvolution")
{
ncnn::Deconvolution* op = (ncnn::Deconvolution*)layer;
ncnn::Deconvolution* op_default = (ncnn::Deconvolution*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
}
fprintf_param_value(" 2=%d", dilation_w)
{
if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h);
}
fprintf_param_value(" 3=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h);
}
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom);
}
fprintf_param_value(" 18=%d", output_pad_right)
{
if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom);
}
fprintf_param_value(" 20=%d", output_w)
{
if (op->output_h != op->output_w) fprintf(pp, " 21=%d", op->output_h);
}
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inw = blobs[layer->bottoms[0]].shape.w;
int inh = blobs[layer->bottoms[0]].shape.h;
int inc = blobs[layer->bottoms[0]].shape.c;
int outc = blobs[layer->tops[0]].shape.c;
mac += (uint64_t)op->kernel_h * op->kernel_w * inw * inh * outc * inc;
}
}
else if (layer->type == "Deconvolution1D")
{
ncnn::Deconvolution1D* op = (ncnn::Deconvolution1D*)layer;
ncnn::Deconvolution1D* op_default = (ncnn::Deconvolution1D*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
fprintf_param_value(" 2=%d", dilation_w)
fprintf_param_value(" 3=%d", stride_w)
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
fprintf_param_value(" 18=%d", output_pad_right)
fprintf_param_value(" 20=%d", output_w)
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inw = blobs[layer->bottoms[0]].shape.w;
int inh = blobs[layer->bottoms[0]].shape.h;
int outh = blobs[layer->tops[0]].shape.h;
mac += (uint64_t)op->kernel_w * inw * outh * inh;
}
}
else if (layer->type == "Deconvolution3D")
{
ncnn::Deconvolution3D* op = (ncnn::Deconvolution3D*)layer;
ncnn::Deconvolution3D* op_default = (ncnn::Deconvolution3D*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d);
}
fprintf_param_value(" 2=%d", dilation_w)
{
if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h);
if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d);
}
fprintf_param_value(" 3=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h);
if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d);
}
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top);
if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom);
}
{
if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind);
}
fprintf_param_value(" 18=%d", output_pad_right)
{
if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom);
if (op->output_pad_behind != op->output_pad_right) fprintf(pp, " 20=%d", op->output_pad_behind);
}
fprintf_param_value(" 25=%d", output_w)
{
if (op->output_h != op->output_w) fprintf(pp, " 26=%d", op->output_h);
if (op->output_d != op->output_w) fprintf(pp, " 27=%d", op->output_d);
}
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inw = blobs[layer->bottoms[0]].shape.w;
int inh = blobs[layer->bottoms[0]].shape.h;
int ind = blobs[layer->bottoms[0]].shape.d;
int inc = blobs[layer->bottoms[0]].shape.c;
int outc = blobs[layer->tops[0]].shape.c;
mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * inw * inh * ind * outc * inc;
}
}
else if (layer->type == "DeconvolutionDepthWise")
{
ncnn::DeconvolutionDepthWise* op = (ncnn::DeconvolutionDepthWise*)layer;
ncnn::DeconvolutionDepthWise* op_default = (ncnn::DeconvolutionDepthWise*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
}
fprintf_param_value(" 2=%d", dilation_w)
{
if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h);
}
fprintf_param_value(" 3=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h);
}
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom);
}
fprintf_param_value(" 18=%d", output_pad_right)
{
if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom);
}
fprintf_param_value(" 20=%d", output_w)
{
if (op->output_h != op->output_w) fprintf(pp, " 21=%d", op->output_h);
}
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 7=%d", group)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inw = blobs[layer->bottoms[0]].shape.w;
int inh = blobs[layer->bottoms[0]].shape.h;
int inc = blobs[layer->bottoms[0]].shape.c;
int outc = blobs[layer->tops[0]].shape.c;
mac += (uint64_t)op->kernel_h * op->kernel_w * inw * inh * (outc / op->group) * (inc / op->group) * op->group;
}
}
else if (layer->type == "DeconvolutionDepthWise1D")
{
ncnn::DeconvolutionDepthWise1D* op = (ncnn::DeconvolutionDepthWise1D*)layer;
ncnn::DeconvolutionDepthWise1D* op_default = (ncnn::DeconvolutionDepthWise1D*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
fprintf_param_value(" 2=%d", dilation_w)
fprintf_param_value(" 3=%d", stride_w)
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
fprintf_param_value(" 18=%d", output_pad_right)
fprintf_param_value(" 20=%d", output_w)
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 7=%d", group)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inw = blobs[layer->bottoms[0]].shape.w;
int inh = blobs[layer->bottoms[0]].shape.h;
int outh = blobs[layer->tops[0]].shape.h;
mac += (uint64_t)op->kernel_w * inw * (outh / op->group) * (inh / op->group) * op->group;
}
}
else if (layer->type == "DeconvolutionDepthWise3D")
{
ncnn::DeconvolutionDepthWise3D* op = (ncnn::DeconvolutionDepthWise3D*)layer;
ncnn::DeconvolutionDepthWise3D* op_default = (ncnn::DeconvolutionDepthWise3D*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d);
}
fprintf_param_value(" 2=%d", dilation_w)
{
if (op->dilation_h != op->dilation_w) fprintf(pp, " 12=%d", op->dilation_h);
if (op->dilation_d != op->dilation_w) fprintf(pp, " 22=%d", op->dilation_d);
}
fprintf_param_value(" 3=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 13=%d", op->stride_h);
if (op->stride_d != op->stride_w) fprintf(pp, " 23=%d", op->stride_d);
}
fprintf_param_value(" 4=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 14=%d", op->pad_top);
if (op->pad_front != op->pad_left) fprintf(pp, " 24=%d", op->pad_front);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 15=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 16=%d", op->pad_bottom);
}
{
if (op->pad_behind != op->pad_front) fprintf(pp, " 17=%d", op->pad_behind);
}
fprintf_param_value(" 18=%d", output_pad_right)
{
if (op->output_pad_bottom != op->output_pad_right) fprintf(pp, " 19=%d", op->output_pad_bottom);
if (op->output_pad_behind != op->output_pad_right) fprintf(pp, " 20=%d", op->output_pad_behind);
}
fprintf_param_value(" 25=%d", output_w)
{
if (op->output_h != op->output_w) fprintf(pp, " 26=%d", op->output_h);
if (op->output_d != op->output_w) fprintf(pp, " 27=%d", op->output_d);
}
fprintf_param_value(" 5=%d", bias_term)
fprintf_param_value(" 6=%d", weight_data_size)
fprintf_param_value(" 7=%d", group)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
if (shape_ready)
{
int inw = blobs[layer->bottoms[0]].shape.w;
int inh = blobs[layer->bottoms[0]].shape.h;
int ind = blobs[layer->bottoms[0]].shape.d;
int inc = blobs[layer->bottoms[0]].shape.c;
int outc = blobs[layer->tops[0]].shape.c;
mac += (uint64_t)op->kernel_d * op->kernel_h * op->kernel_w * inw * inh * ind * (outc / op->group) * (inc / op->group) * op->group;
}
}
else if (layer->type == "DetectionOutput")
{
ncnn::DetectionOutput* op = (ncnn::DetectionOutput*)layer;
ncnn::DetectionOutput* op_default = (ncnn::DetectionOutput*)layer_default;
fprintf_param_value(" 0=%d", num_class)
fprintf_param_value(" 1=%e", nms_threshold)
fprintf_param_value(" 2=%d", nms_top_k)
fprintf_param_value(" 3=%d", keep_top_k)
fprintf_param_value(" 4=%e", confidence_threshold)
fprintf_param_value(" 5=%e", variances[0])
fprintf_param_value(" 6=%e", variances[1])
fprintf_param_value(" 7=%e", variances[2])
fprintf_param_value(" 8=%e", variances[3])
}
else if (layer->type == "Dropout")
{
ncnn::Dropout* op = (ncnn::Dropout*)layer;
ncnn::Dropout* op_default = (ncnn::Dropout*)layer_default;
fprintf_param_value(" 0=%e", scale)
}
else if (layer->type == "Eltwise")
{
ncnn::Eltwise* op = (ncnn::Eltwise*)layer;
ncnn::Eltwise* op_default = (ncnn::Eltwise*)layer_default;
fprintf_param_value(" 0=%d", op_type)
{
if (!op->coeffs.empty()) fprintf_param_float_array(1, op->coeffs, pp);
}
}
else if (layer->type == "ELU")
{
ncnn::ELU* op = (ncnn::ELU*)layer;
ncnn::ELU* op_default = (ncnn::ELU*)layer_default;
fprintf_param_value(" 0=%e", alpha)
}
else if (layer->type == "Embed")
{
ncnn::Embed* op = (ncnn::Embed*)layer;
ncnn::Embed* op_default = (ncnn::Embed*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", input_dim)
fprintf_param_value(" 2=%d", bias_term)
fprintf_param_value(" 3=%d", weight_data_size)
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
}
else if (layer->type == "Exp")
{
ncnn::Exp* op = (ncnn::Exp*)layer;
ncnn::Exp* op_default = (ncnn::Exp*)layer_default;
fprintf_param_value(" 0=%e", base)
fprintf_param_value(" 1=%e", scale)
fprintf_param_value(" 2=%e", shift)
}
else if (layer->type == "ExpandDims")
{
ncnn::ExpandDims* op = (ncnn::ExpandDims*)layer;
ncnn::ExpandDims* op_default = (ncnn::ExpandDims*)layer_default;
fprintf_param_value(" 0=%d", expand_w)
fprintf_param_value(" 1=%d", expand_h)
fprintf_param_value(" 2=%d", expand_c)
{
if (!op->axes.empty()) fprintf_param_int_array(0, op->axes, pp);
}
}
else if (layer->type == "GELU")
{
ncnn::GELU* op = (ncnn::GELU*)layer;
ncnn::GELU* op_default = (ncnn::GELU*)layer_default;
fprintf_param_value(" 0=%d", fast_gelu)
}
else if (layer->type == "Gemm")
{
ncnn::Gemm* op = (ncnn::Gemm*)layer;
ncnn::Gemm* op_default = (ncnn::Gemm*)layer_default;
fprintf_param_value(" 0=%e", alpha)
fprintf_param_value(" 1=%e", beta)
fprintf_param_value(" 2=%d", transA)
fprintf_param_value(" 3=%d", transB)
}
else if (layer->type == "GroupNorm")
{
ncnn::GroupNorm* op = (ncnn::GroupNorm*)layer;
ncnn::GroupNorm* op_default = (ncnn::GroupNorm*)layer_default;
fprintf_param_value(" 0=%d", group)
fprintf_param_value(" 1=%d", channels)
fprintf_param_value(" 2=%e", eps)
fprintf_param_value(" 3=%d", affine)
fwrite_weight_data(op->gamma_data, bp);
fwrite_weight_data(op->beta_data, bp);
}
else if (layer->type == "GRU")
{
ncnn::GRU* op = (ncnn::GRU*)layer;
ncnn::GRU* op_default = (ncnn::GRU*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", weight_data_size)
fprintf_param_value(" 2=%d", direction)
fwrite_weight_tag_data(op->weight_xc_data, bp);
fwrite_weight_tag_data(op->bias_c_data, bp);
fwrite_weight_tag_data(op->weight_hc_data, bp);
}
else if (layer->type == "HardSigmoid")
{
ncnn::HardSigmoid* op = (ncnn::HardSigmoid*)layer;
ncnn::HardSigmoid* op_default = (ncnn::HardSigmoid*)layer_default;
fprintf_param_value(" 0=%e", alpha)
fprintf_param_value(" 1=%e", beta)
}
else if (layer->type == "HardSwish")
{
ncnn::HardSwish* op = (ncnn::HardSwish*)layer;
ncnn::HardSwish* op_default = (ncnn::HardSwish*)layer_default;
fprintf_param_value(" 0=%e", alpha)
fprintf_param_value(" 1=%e", beta)
}
else if (layer->type == "InnerProduct")
{
ncnn::InnerProduct* op = (ncnn::InnerProduct*)layer;
ncnn::InnerProduct* op_default = (ncnn::InnerProduct*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", bias_term)
fprintf_param_value(" 2=%d", weight_data_size)
fprintf_param_value(" 8=%d", int8_scale_term)
fprintf_param_value(" 9=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(10, op->activation_params, pp);
}
fwrite_weight_tag_data(op->weight_data, bp);
fwrite_weight_data(op->bias_data, bp);
#if NCNN_INT8
// write int8_scale data
if (op->int8_scale_term)
{
fwrite_weight_data(op->weight_data_int8_scales, bp, 90, 100);
fwrite_weight_data(op->bottom_blob_int8_scales, bp, 0.001, 1);
}
#endif // NCNN_INT8
if (shape_ready)
{
int inw = blobs[layer->bottoms[0]].shape.w;
int inh = blobs[layer->bottoms[0]].shape.h;
int inc = blobs[layer->bottoms[0]].shape.c;
int outw = blobs[layer->tops[0]].shape.w;
mac += (uint64_t)inw * inh * inc * outw;
}
}
else if (layer->type == "Input")
{
ncnn::Input* op = (ncnn::Input*)layer;
ncnn::Input* op_default = (ncnn::Input*)layer_default;
fprintf_param_value(" 0=%d", w)
fprintf_param_value(" 1=%d", h)
fprintf_param_value(" 2=%d", c)
}
else if (layer->type == "InstanceNorm")
{
ncnn::InstanceNorm* op = (ncnn::InstanceNorm*)layer;
ncnn::InstanceNorm* op_default = (ncnn::InstanceNorm*)layer_default;
fprintf_param_value(" 0=%d", channels)
fprintf_param_value(" 1=%e", eps)
fprintf_param_value(" 2=%d", affine)
fwrite_weight_data(op->gamma_data, bp);
fwrite_weight_data(op->beta_data, bp);
}
else if (layer->type == "Interp")
{
ncnn::Interp* op = (ncnn::Interp*)layer;
ncnn::Interp* op_default = (ncnn::Interp*)layer_default;
fprintf_param_value(" 0=%d", resize_type)
fprintf_param_value(" 1=%e", height_scale)
fprintf_param_value(" 2=%e", width_scale)
fprintf_param_value(" 3=%d", output_height)
fprintf_param_value(" 4=%d", output_width)
fprintf_param_value(" 5=%d", dynamic_target_size)
fprintf_param_value(" 6=%d", align_corner)
}
else if (layer->type == "LayerNorm")
{
ncnn::LayerNorm* op = (ncnn::LayerNorm*)layer;
ncnn::LayerNorm* op_default = (ncnn::LayerNorm*)layer_default;
fprintf_param_value(" 0=%d", affine_size)
fprintf_param_value(" 1=%e", eps)
fprintf_param_value(" 2=%d", affine)
fwrite_weight_data(op->gamma_data, bp);
fwrite_weight_data(op->beta_data, bp);
}
else if (layer->type == "Log")
{
ncnn::Log* op = (ncnn::Log*)layer;
ncnn::Log* op_default = (ncnn::Log*)layer_default;
fprintf_param_value(" 0=%e", base)
fprintf_param_value(" 1=%e", scale)
fprintf_param_value(" 2=%e", shift)
}
else if (layer->type == "LRN")
{
ncnn::LRN* op = (ncnn::LRN*)layer;
ncnn::LRN* op_default = (ncnn::LRN*)layer_default;
fprintf_param_value(" 0=%d", region_type)
fprintf_param_value(" 1=%d", local_size)
fprintf_param_value(" 2=%e", alpha)
fprintf_param_value(" 3=%e", beta)
fprintf_param_value(" 4=%e", bias)
}
else if (layer->type == "LSTM")
{
ncnn::LSTM* op = (ncnn::LSTM*)layer;
ncnn::LSTM* op_default = (ncnn::LSTM*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", weight_data_size)
fprintf_param_value(" 2=%d", direction)
fwrite_weight_tag_data(op->weight_xc_data, bp);
fwrite_weight_tag_data(op->bias_c_data, bp);
fwrite_weight_tag_data(op->weight_hc_data, bp);
}
else if (layer->type == "MatMul")
{
ncnn::MatMul* op = (ncnn::MatMul*)layer;
ncnn::MatMul* op_default = (ncnn::MatMul*)layer_default;
fprintf_param_value(" 0=%d", transB)
}
else if (layer->type == "MemoryData")
{
ncnn::MemoryData* op = (ncnn::MemoryData*)layer;
ncnn::MemoryData* op_default = (ncnn::MemoryData*)layer_default;
fprintf_param_value(" 0=%d", w)
fprintf_param_value(" 1=%d", h)
fprintf_param_value(" 2=%d", c)
fwrite_weight_data(op->data, bp);
}
else if (layer->type == "MultiHeadAttention")
{
ncnn::MultiHeadAttention* op = (ncnn::MultiHeadAttention*)layer;
ncnn::MultiHeadAttention* op_default = (ncnn::MultiHeadAttention*)layer_default;
fprintf_param_value(" 0=%d", embed_dim)
fprintf_param_value(" 1=%d", num_head)
fprintf_param_value(" 2=%d", weight_data_size)
fwrite_weight_tag_data(op->q_weight_data, bp);
fwrite_weight_data(op->q_bias_data, bp);
fwrite_weight_tag_data(op->k_weight_data, bp);
fwrite_weight_data(op->k_bias_data, bp);
fwrite_weight_tag_data(op->v_weight_data, bp);
fwrite_weight_data(op->v_bias_data, bp);
fwrite_weight_tag_data(op->out_weight_data, bp);
fwrite_weight_data(op->out_bias_data, bp);
}
else if (layer->type == "MVN")
{
ncnn::MVN* op = (ncnn::MVN*)layer;
ncnn::MVN* op_default = (ncnn::MVN*)layer_default;
fprintf_param_value(" 0=%d", normalize_variance)
fprintf_param_value(" 1=%d", across_channels)
fprintf_param_value(" 2=%e", eps)
}
else if (layer->type == "Normalize")
{
ncnn::Normalize* op = (ncnn::Normalize*)layer;
ncnn::Normalize* op_default = (ncnn::Normalize*)layer_default;
fprintf_param_value(" 0=%d", across_spatial)
fprintf_param_value(" 1=%d", channel_shared)
fprintf_param_value(" 2=%e", eps)
fprintf_param_value(" 3=%d", scale_data_size)
fprintf_param_value(" 4=%d", across_channel)
fprintf_param_value(" 9=%d", eps_mode)
fwrite_weight_data(op->scale_data, bp);
}
else if (layer->type == "Padding")
{
ncnn::Padding* op = (ncnn::Padding*)layer;
ncnn::Padding* op_default = (ncnn::Padding*)layer_default;
fprintf_param_value(" 0=%d", top)
fprintf_param_value(" 1=%d", bottom)
fprintf_param_value(" 2=%d", left)
fprintf_param_value(" 3=%d", right)
fprintf_param_value(" 4=%d", type)
fprintf_param_value(" 5=%e", value)
fprintf_param_value(" 6=%d", per_channel_pad_data_size)
fprintf_param_value(" 7=%d", front)
fprintf_param_value(" 8=%d", behind)
fwrite_weight_data(op->per_channel_pad_data, bp);
}
else if (layer->type == "Permute")
{
ncnn::Permute* op = (ncnn::Permute*)layer;
ncnn::Permute* op_default = (ncnn::Permute*)layer_default;
fprintf_param_value(" 0=%d", order_type)
}
else if (layer->type == "PixelShuffle")
{
ncnn::PixelShuffle* op = (ncnn::PixelShuffle*)layer;
ncnn::PixelShuffle* op_default = (ncnn::PixelShuffle*)layer_default;
fprintf_param_value(" 0=%d", upscale_factor)
fprintf_param_value(" 1=%d", mode)
}
else if (layer->type == "Pooling")
{
ncnn::Pooling* op = (ncnn::Pooling*)layer;
ncnn::Pooling* op_default = (ncnn::Pooling*)layer_default;
fprintf_param_value(" 0=%d", pooling_type)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
}
fprintf_param_value(" 2=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 12=%d", op->stride_h);
}
fprintf_param_value(" 3=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 13=%d", op->pad_top);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 15=%d", op->pad_bottom);
}
fprintf_param_value(" 4=%d", global_pooling)
fprintf_param_value(" 5=%d", pad_mode)
fprintf_param_value(" 6=%d", avgpool_count_include_pad)
fprintf_param_value(" 7=%d", adaptive_pooling)
fprintf_param_value(" 8=%d", out_w)
{
if (op->out_h != op->out_w) fprintf(pp, " 18=%d", op->out_h);
}
}
else if (layer->type == "Pooling1D")
{
ncnn::Pooling1D* op = (ncnn::Pooling1D*)layer;
ncnn::Pooling1D* op_default = (ncnn::Pooling1D*)layer_default;
fprintf_param_value(" 0=%d", pooling_type)
fprintf_param_value(" 1=%d", kernel_w)
fprintf_param_value(" 2=%d", stride_w)
fprintf_param_value(" 3=%d", pad_left)
{
if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right);
}
fprintf_param_value(" 4=%d", global_pooling)
fprintf_param_value(" 5=%d", pad_mode)
fprintf_param_value(" 6=%d", avgpool_count_include_pad)
fprintf_param_value(" 7=%d", adaptive_pooling)
fprintf_param_value(" 8=%d", out_w)
}
else if (layer->type == "Pooling3D")
{
ncnn::Pooling3D* op = (ncnn::Pooling3D*)layer;
ncnn::Pooling3D* op_default = (ncnn::Pooling3D*)layer_default;
fprintf_param_value(" 0=%d", pooling_type)
fprintf_param_value(" 1=%d", kernel_w)
{
if (op->kernel_h != op->kernel_w) fprintf(pp, " 11=%d", op->kernel_h);
if (op->kernel_d != op->kernel_w) fprintf(pp, " 21=%d", op->kernel_d);
}
fprintf_param_value(" 2=%d", stride_w)
{
if (op->stride_h != op->stride_w) fprintf(pp, " 12=%d", op->stride_h);
if (op->stride_d != op->stride_w) fprintf(pp, " 22=%d", op->stride_d);
}
fprintf_param_value(" 3=%d", pad_left)
{
if (op->pad_top != op->pad_left) fprintf(pp, " 13=%d", op->pad_top);
if (op->pad_front != op->pad_left) fprintf(pp, " 23=%d", op->pad_front);
}
{
if (op->pad_right != op->pad_left) fprintf(pp, " 14=%d", op->pad_right);
}
{
if (op->pad_bottom != op->pad_top) fprintf(pp, " 15=%d", op->pad_bottom);
}
{
if (op->pad_behind != op->pad_front) fprintf(pp, " 16=%d", op->pad_behind);
}
fprintf_param_value(" 4=%d", global_pooling)
fprintf_param_value(" 5=%d", pad_mode)
fprintf_param_value(" 6=%d", avgpool_count_include_pad)
fprintf_param_value(" 7=%d", adaptive_pooling)
fprintf_param_value(" 8=%d", out_w)
{
if (op->out_h != op->out_w) fprintf(pp, " 18=%d", op->out_h);
if (op->out_d != op->out_w) fprintf(pp, " 28=%d", op->out_d);
}
}
else if (layer->type == "Power")
{
ncnn::Power* op = (ncnn::Power*)layer;
ncnn::Power* op_default = (ncnn::Power*)layer_default;
fprintf_param_value(" 0=%e", power)
fprintf_param_value(" 1=%e", scale)
fprintf_param_value(" 2=%e", shift)
}
else if (layer->type == "PReLU")
{
ncnn::PReLU* op = (ncnn::PReLU*)layer;
ncnn::PReLU* op_default = (ncnn::PReLU*)layer_default;
fprintf_param_value(" 0=%d", num_slope)
fwrite_weight_data(op->slope_data, bp);
}
else if (layer->type == "PriorBox")
{
ncnn::PriorBox* op = (ncnn::PriorBox*)layer;
ncnn::PriorBox* op_default = (ncnn::PriorBox*)layer_default;
{
if (!op->min_sizes.empty()) fprintf_param_float_array(0, op->min_sizes, pp);
}
{
if (!op->max_sizes.empty()) fprintf_param_float_array(1, op->max_sizes, pp);
}
{
if (!op->aspect_ratios.empty()) fprintf_param_float_array(2, op->aspect_ratios, pp);
}
fprintf_param_value(" 3=%e", variances[0])
fprintf_param_value(" 4=%e", variances[1])
fprintf_param_value(" 5=%e", variances[2])
fprintf_param_value(" 6=%e", variances[3])
fprintf_param_value(" 7=%d", flip)
fprintf_param_value(" 8=%d", clip)
fprintf_param_value(" 9=%d", image_width)
fprintf_param_value(" 10=%d", image_height)
fprintf_param_value(" 11=%e", step_width)
fprintf_param_value(" 12=%e", step_height)
fprintf_param_value(" 13=%e", offset)
}
else if (layer->type == "Proposal")
{
ncnn::Proposal* op = (ncnn::Proposal*)layer;
ncnn::Proposal* op_default = (ncnn::Proposal*)layer_default;
fprintf_param_value(" 0=%d", feat_stride)
fprintf_param_value(" 1=%d", base_size)
fprintf_param_value(" 2=%d", pre_nms_topN)
fprintf_param_value(" 3=%d", after_nms_topN)
fprintf_param_value(" 4=%e", nms_thresh)
fprintf_param_value(" 5=%d", min_size)
}
else if (layer->type == "PSROIPooling")
{
ncnn::PSROIPooling* op = (ncnn::PSROIPooling*)layer;
ncnn::PSROIPooling* op_default = (ncnn::PSROIPooling*)layer_default;
fprintf_param_value(" 0=%d", pooled_width)
fprintf_param_value(" 1=%d", pooled_height)
fprintf_param_value(" 2=%e", spatial_scale)
fprintf_param_value(" 3=%d", output_dim)
}
else if (layer->type == "Quantize")
{
ncnn::Quantize* op = (ncnn::Quantize*)layer;
ncnn::Quantize* op_default = (ncnn::Quantize*)layer_default;
fprintf_param_value(" 0=%d", scale_data_size)
fwrite_weight_data(op->scale_data, bp);
}
else if (layer->type == "Reduction")
{
ncnn::Reduction* op = (ncnn::Reduction*)layer;
ncnn::Reduction* op_default = (ncnn::Reduction*)layer_default;
fprintf_param_value(" 0=%d", operation)
fprintf_param_value(" 1=%d", reduce_all)
fprintf_param_value(" 2=%e", coeff)
{
if (!op->axes.empty()) fprintf_param_int_array(3, op->axes, pp);
}
fprintf_param_value(" 4=%d", keepdims)
// HACK
if (!op->axes.empty())
{
int fixbug0 = 1;
fprintf(pp, " 5=%d", fixbug0);
}
}
else if (layer->type == "ReLU")
{
ncnn::ReLU* op = (ncnn::ReLU*)layer;
ncnn::ReLU* op_default = (ncnn::ReLU*)layer_default;
fprintf_param_value(" 0=%e", slope)
}
else if (layer->type == "Reorg")
{
ncnn::Reorg* op = (ncnn::Reorg*)layer;
ncnn::Reorg* op_default = (ncnn::Reorg*)layer_default;
fprintf_param_value(" 0=%d", stride)
fprintf_param_value(" 1=%d", mode)
}
else if (layer->type == "Requantize")
{
ncnn::Requantize* op = (ncnn::Requantize*)layer;
ncnn::Requantize* op_default = (ncnn::Requantize*)layer_default;
fprintf_param_value(" 0=%d", scale_in_data_size)
fprintf_param_value(" 1=%d", scale_out_data_size)
fprintf_param_value(" 2=%d", bias_data_size)
fprintf_param_value(" 3=%d", activation_type)
{
if (!op->activation_params.empty()) fprintf_param_float_array(4, op->activation_params, pp);
}
fwrite_weight_data(op->scale_in_data, bp);
fwrite_weight_data(op->scale_out_data, bp);
fwrite_weight_data(op->bias_data, bp);
}
else if (layer->type == "Reshape")
{
ncnn::Reshape* op = (ncnn::Reshape*)layer;
ncnn::Reshape* op_default = (ncnn::Reshape*)layer_default;
fprintf_param_value(" 0=%d", w)
fprintf_param_value(" 1=%d", h)
fprintf_param_value(" 2=%d", c)
fprintf_param_value(" 3=%d", permute)
}
else if (layer->type == "RNN")
{
ncnn::RNN* op = (ncnn::RNN*)layer;
ncnn::RNN* op_default = (ncnn::RNN*)layer_default;
fprintf_param_value(" 0=%d", num_output)
fprintf_param_value(" 1=%d", weight_data_size)
fprintf_param_value(" 2=%d", direction)
fwrite_weight_tag_data(op->weight_xc_data, bp);
fwrite_weight_tag_data(op->bias_c_data, bp);
fwrite_weight_tag_data(op->weight_hc_data, bp);
}
else if (layer->type == "ROIAlign")
{
ncnn::ROIAlign* op = (ncnn::ROIAlign*)layer;
ncnn::ROIAlign* op_default = (ncnn::ROIAlign*)layer_default;
fprintf_param_value(" 0=%d", pooled_width)
fprintf_param_value(" 1=%d", pooled_height)
fprintf_param_value(" 2=%e", spatial_scale)
fprintf_param_value(" 3=%d", sampling_ratio)
fprintf_param_value(" 4=%d", aligned)
fprintf_param_value(" 5=%d", version)
}
else if (layer->type == "ROIPooling")
{
ncnn::ROIPooling* op = (ncnn::ROIPooling*)layer;
ncnn::ROIPooling* op_default = (ncnn::ROIPooling*)layer_default;
fprintf_param_value(" 0=%d", pooled_width)
fprintf_param_value(" 1=%d", pooled_height)
fprintf_param_value(" 2=%e", spatial_scale)
}
else if (layer->type == "Scale")
{
ncnn::Scale* op = (ncnn::Scale*)layer;
ncnn::Scale* op_default = (ncnn::Scale*)layer_default;
fprintf_param_value(" 0=%d", scale_data_size)
fprintf_param_value(" 1=%d", bias_term)
fwrite_weight_data(op->scale_data, bp);
fwrite_weight_data(op->bias_data, bp);
}
else if (layer->type == "ShuffleChannel")
{
ncnn::ShuffleChannel* op = (ncnn::ShuffleChannel*)layer;
ncnn::ShuffleChannel* op_default = (ncnn::ShuffleChannel*)layer_default;
fprintf_param_value(" 0=%d", group)
fprintf_param_value(" 1=%d", reverse)
}
else if (layer->type == "Slice")
{
ncnn::Slice* op = (ncnn::Slice*)layer;
ncnn::Slice* op_default = (ncnn::Slice*)layer_default;
{
if (!op->slices.empty()) fprintf_param_int_array(0, op->slices, pp);
}
fprintf_param_value(" 1=%d", axis)
}
else if (layer->type == "Softmax")
{
ncnn::Softmax* op = (ncnn::Softmax*)layer;
ncnn::Softmax* op_default = (ncnn::Softmax*)layer_default;
fprintf_param_value(" 0=%d", axis)
// HACK
if (op->axis != 0)
{
int fixbug0 = 1;
fprintf(pp, " 1=%d", fixbug0);
}
}
else if (layer->type == "Squeeze")
{
ncnn::Squeeze* op = (ncnn::Squeeze*)layer;
ncnn::Squeeze* op_default = (ncnn::Squeeze*)layer_default;
fprintf_param_value(" 0=%d", squeeze_w)
fprintf_param_value(" 1=%d", squeeze_h)
fprintf_param_value(" 2=%d", squeeze_c)
{
if (!op->axes.empty()) fprintf_param_int_array(0, op->axes, pp);
}
}
else if (layer->type == "Threshold")
{
ncnn::Threshold* op = (ncnn::Threshold*)layer;
ncnn::Threshold* op_default = (ncnn::Threshold*)layer_default;
fprintf_param_value(" 0=%e", threshold)
}
else if (layer->type == "UnaryOp")
{
ncnn::UnaryOp* op = (ncnn::UnaryOp*)layer;
ncnn::UnaryOp* op_default = (ncnn::UnaryOp*)layer_default;
fprintf_param_value(" 0=%d", op_type)
}
else if (layer->type == "YoloDetectionOutput")
{
ncnn::YoloDetectionOutput* op = (ncnn::YoloDetectionOutput*)layer;
ncnn::YoloDetectionOutput* op_default = (ncnn::YoloDetectionOutput*)layer_default;
fprintf_param_value(" 0=%d", num_class)
fprintf_param_value(" 1=%d", num_box)
fprintf_param_value(" 2=%e", confidence_threshold)
fprintf_param_value(" 3=%e", nms_threshold)
{
if (!op->biases.empty()) fprintf_param_float_array(4, op->biases, pp);
}
}
else if (layer->type == "Yolov3DetectionOutput")
{
ncnn::Yolov3DetectionOutput* op = (ncnn::Yolov3DetectionOutput*)layer;
ncnn::Yolov3DetectionOutput* op_default = (ncnn::Yolov3DetectionOutput*)layer_default;
fprintf_param_value(" 0=%d", num_class)
fprintf_param_value(" 1=%d", num_box)
fprintf_param_value(" 2=%e", confidence_threshold)
fprintf_param_value(" 3=%e", nms_threshold)
{
if (!op->biases.empty()) fprintf_param_float_array(4, op->biases, pp);
}
{
if (!op->mask.empty()) fprintf_param_int_array(5, op->mask, pp);
}
{
if (!op->anchors_scale.empty()) fprintf_param_float_array(6, op->anchors_scale, pp);
}
}
#undef fprintf_param_value
fprintf(pp, "\n");
delete layer_default;
}
fclose(pp);
fclose(bp);
if (mac)
{
fprintf(stderr, "mac = %llu = %.2f M\n", mac, mac / 1000000.0);
}
return 0;
}