142 lines
4.9 KiB
C++
142 lines
4.9 KiB
C++
|
// Tencent is pleased to support the open source community by making ncnn available.
|
||
|
//
|
||
|
// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved.
|
||
|
//
|
||
|
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||
|
// in compliance with the License. You may obtain a copy of the License at
|
||
|
//
|
||
|
// https://opensource.org/licenses/BSD-3-Clause
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software distributed
|
||
|
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||
|
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||
|
// specific language governing permissions and limitations under the License.
|
||
|
|
||
|
#include "layer/yolov3detectionoutput.h"
|
||
|
#include "testutil.h"
|
||
|
|
||
|
static int test_yolov3detectionoutput(const std::vector<ncnn::Mat>& a, int num_class,
|
||
|
int num_box, float confidence_threshold, float nms_threshold,
|
||
|
ncnn::Mat& biases, ncnn::Mat& mask, ncnn::Mat& anchors_scale)
|
||
|
{
|
||
|
ncnn::ParamDict pd;
|
||
|
pd.set(0, num_class);
|
||
|
pd.set(1, num_box);
|
||
|
pd.set(2, confidence_threshold);
|
||
|
pd.set(3, nms_threshold);
|
||
|
pd.set(4, biases);
|
||
|
pd.set(5, mask);
|
||
|
pd.set(6, anchors_scale);
|
||
|
|
||
|
std::vector<ncnn::Mat> weights(0);
|
||
|
|
||
|
int ret = test_layer<ncnn::Yolov3DetectionOutput>("Yolov3DetectionOutput", pd, weights, a);
|
||
|
if (ret != 0)
|
||
|
{
|
||
|
fprintf(stderr, "test_yolov3detectionoutput failed a.dims=%d a=(%d %d %d) ", a[0].dims, a[0].w, a[0].h, a[0].c);
|
||
|
fprintf(stderr, " num_class=%d num_box=%d", num_class, num_box);
|
||
|
fprintf(stderr, " confidence_threshold=%f nms_threshold=%f\n", confidence_threshold, nms_threshold);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static ncnn::Mat create_mat_from(const float* src, int length)
|
||
|
{
|
||
|
ncnn::Mat ret(length);
|
||
|
memcpy(ret.data, src, length * sizeof(float));
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static ncnn::Mat MyRandomMat(int w, int h, int c)
|
||
|
{
|
||
|
ncnn::Mat m(w, h, c);
|
||
|
Randomize(m, -15.f, 1.5f);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
static int test_yolov3detectionoutput_v4()
|
||
|
{
|
||
|
const float b[] = {12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401};
|
||
|
const float m[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
|
||
|
const float s[] = {9.6, 17.6, 33.6};
|
||
|
|
||
|
ncnn::Mat biases = create_mat_from(b, sizeof(b) / sizeof(b[0]));
|
||
|
ncnn::Mat mask = create_mat_from(m, sizeof(m) / sizeof(m[0]));
|
||
|
ncnn::Mat anchors_scale = create_mat_from(s, sizeof(s) / sizeof(s[0]));
|
||
|
|
||
|
std::vector<ncnn::Mat> a(3);
|
||
|
a[0] = MyRandomMat(76, 76, 255);
|
||
|
a[1] = MyRandomMat(38, 38, 255);
|
||
|
a[2] = MyRandomMat(19, 19, 255);
|
||
|
|
||
|
return 0
|
||
|
|| test_yolov3detectionoutput(a, 80, 3, 0.55f, 0.45f, biases, mask, anchors_scale);
|
||
|
}
|
||
|
|
||
|
static int test_yolov3detectionoutput_v4tiny()
|
||
|
{
|
||
|
const float b[] = {10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319};
|
||
|
const float m[] = {3, 4, 5, 1, 2, 3};
|
||
|
const float s[] = {33.6, 16.8};
|
||
|
|
||
|
ncnn::Mat biases = create_mat_from(b, sizeof(b) / sizeof(b[0]));
|
||
|
ncnn::Mat mask = create_mat_from(m, sizeof(m) / sizeof(m[0]));
|
||
|
ncnn::Mat anchors_scale = create_mat_from(s, sizeof(s) / sizeof(s[0]));
|
||
|
|
||
|
std::vector<ncnn::Mat> a(2);
|
||
|
a[0] = MyRandomMat(13, 13, 255);
|
||
|
a[1] = MyRandomMat(26, 26, 255);
|
||
|
|
||
|
return 0
|
||
|
|| test_yolov3detectionoutput(a, 80, 3, 0.4f, 0.45f, biases, mask, anchors_scale);
|
||
|
}
|
||
|
|
||
|
static int test_yolov3detectionoutput_v3()
|
||
|
{
|
||
|
const float b[] = {10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326};
|
||
|
const float m[] = {6, 7, 8, 3, 4, 5, 0, 1, 2};
|
||
|
const float s[] = {32, 16, 8};
|
||
|
|
||
|
ncnn::Mat biases = create_mat_from(b, sizeof(b) / sizeof(b[0]));
|
||
|
ncnn::Mat mask = create_mat_from(m, sizeof(m) / sizeof(m[0]));
|
||
|
ncnn::Mat anchors_scale = create_mat_from(s, sizeof(s) / sizeof(s[0]));
|
||
|
|
||
|
std::vector<ncnn::Mat> a(3);
|
||
|
a[0] = MyRandomMat(19, 19, 255);
|
||
|
a[1] = MyRandomMat(38, 38, 255);
|
||
|
a[2] = MyRandomMat(76, 76, 255);
|
||
|
|
||
|
return 0
|
||
|
|| test_yolov3detectionoutput(a, 80, 3, 0.6f, 0.45f, biases, mask, anchors_scale);
|
||
|
}
|
||
|
|
||
|
static int test_yolov3detectionoutput_v3tiny()
|
||
|
{
|
||
|
const float b[] = {10, 14, 23, 27, 37, 58, 81, 82, 135, 169, 344, 319};
|
||
|
const float m[] = {3, 4, 5, 1, 2, 3};
|
||
|
const float s[] = {32, 16};
|
||
|
|
||
|
ncnn::Mat biases = create_mat_from(b, sizeof(b) / sizeof(b[0]));
|
||
|
ncnn::Mat mask = create_mat_from(m, sizeof(m) / sizeof(m[0]));
|
||
|
ncnn::Mat anchors_scale = create_mat_from(s, sizeof(s) / sizeof(s[0]));
|
||
|
|
||
|
std::vector<ncnn::Mat> a(2);
|
||
|
a[0] = MyRandomMat(13, 13, 255);
|
||
|
a[1] = MyRandomMat(26, 26, 255);
|
||
|
|
||
|
return 0
|
||
|
|| test_yolov3detectionoutput(a, 80, 3, 0.3f, 0.45f, biases, mask, anchors_scale);
|
||
|
}
|
||
|
|
||
|
int main()
|
||
|
{
|
||
|
SRAND(7767517);
|
||
|
|
||
|
return 0
|
||
|
|| test_yolov3detectionoutput_v3tiny()
|
||
|
|| test_yolov3detectionoutput_v3()
|
||
|
|| test_yolov3detectionoutput_v4tiny()
|
||
|
|| test_yolov3detectionoutput_v4();
|
||
|
}
|