feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
		
							
								
								
									
										18
									
								
								3rdparty/ncnn/tools/onnx/CMakeLists.txt
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								3rdparty/ncnn/tools/onnx/CMakeLists.txt
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,18 @@
 | 
			
		||||
 | 
			
		||||
find_package(Protobuf)
 | 
			
		||||
 | 
			
		||||
if(PROTOBUF_FOUND)
 | 
			
		||||
    protobuf_generate_cpp(ONNX_PROTO_SRCS ONNX_PROTO_HDRS onnx.proto)
 | 
			
		||||
    add_executable(onnx2ncnn onnx2ncnn.cpp ${ONNX_PROTO_SRCS} ${ONNX_PROTO_HDRS})
 | 
			
		||||
    target_include_directories(onnx2ncnn
 | 
			
		||||
        PRIVATE
 | 
			
		||||
            ${PROTOBUF_INCLUDE_DIR}
 | 
			
		||||
            ${CMAKE_CURRENT_BINARY_DIR})
 | 
			
		||||
    target_link_libraries(onnx2ncnn PRIVATE ${PROTOBUF_LIBRARIES})
 | 
			
		||||
 | 
			
		||||
    # add all onnx2ncnn tool to a virtual project group
 | 
			
		||||
    set_property(TARGET onnx2ncnn PROPERTY FOLDER "tools/converter")
 | 
			
		||||
    ncnn_install_tool(onnx2ncnn)
 | 
			
		||||
else()
 | 
			
		||||
    message(WARNING "Protobuf not found, onnx model convert tool won't be built")
 | 
			
		||||
endif()
 | 
			
		||||
							
								
								
									
										505
									
								
								3rdparty/ncnn/tools/onnx/onnx.proto
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										505
									
								
								3rdparty/ncnn/tools/onnx/onnx.proto
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,505 @@
 | 
			
		||||
//
 | 
			
		||||
// WARNING: This file is automatically generated!  Please edit onnx.in.proto.
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Copyright (c) ONNX Project Contributors.
 | 
			
		||||
// Licensed under the MIT license.
 | 
			
		||||
 | 
			
		||||
syntax = "proto2";
 | 
			
		||||
 | 
			
		||||
package onnx;
 | 
			
		||||
 | 
			
		||||
// Overview
 | 
			
		||||
//
 | 
			
		||||
// ONNX is an open specification that is comprised of the following components:
 | 
			
		||||
//
 | 
			
		||||
// 1)  A definition of an extensible computation graph model.
 | 
			
		||||
// 2)  Definitions of standard data types.
 | 
			
		||||
// 3)  Definitions of built-in operators.
 | 
			
		||||
//
 | 
			
		||||
// This document describes the syntax of models and their computation graphs,
 | 
			
		||||
// as well as the standard data types. Together, they are referred to as the ONNX
 | 
			
		||||
// Intermediate Representation, or 'IR' for short. 
 | 
			
		||||
//
 | 
			
		||||
// The normative semantic specification of the ONNX IR is found in docs/IR.md.
 | 
			
		||||
// Definitions of the built-in neural network operators may be found in docs/Operators.md.
 | 
			
		||||
 | 
			
		||||
// Notes
 | 
			
		||||
//
 | 
			
		||||
// Release
 | 
			
		||||
//
 | 
			
		||||
// We are still in the very early stage of defining ONNX. The current
 | 
			
		||||
// version of ONNX is a starting point. While we are actively working
 | 
			
		||||
// towards a complete spec, we would like to get the community involved
 | 
			
		||||
// by sharing our working version of ONNX.
 | 
			
		||||
//
 | 
			
		||||
// Protobuf compatibility
 | 
			
		||||
// 
 | 
			
		||||
// To simplify framework compatibility, ONNX is defined using the subset of protobuf 
 | 
			
		||||
// that is compatible with both protobuf v2 and v3. This means that we do not use any
 | 
			
		||||
// protobuf features that are only available in one of the two versions.
 | 
			
		||||
//
 | 
			
		||||
// Here are the most notable contortions we have to carry out to work around
 | 
			
		||||
// these limitations:
 | 
			
		||||
//
 | 
			
		||||
//   - No 'map' (added protobuf 3.0). We instead represent mappings as lists
 | 
			
		||||
//     of key-value pairs, where order does not matter and duplicates
 | 
			
		||||
//     are not allowed.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Versioning
 | 
			
		||||
//
 | 
			
		||||
// ONNX versioning is specified in docs/IR.md and elaborated on in docs/Versioning.md
 | 
			
		||||
//
 | 
			
		||||
// To be compatible with both proto2 and proto3, we will use a version number
 | 
			
		||||
// that is not defined by the default value but an explicit enum number.
 | 
			
		||||
enum Version {
 | 
			
		||||
  // proto3 requires the first enum value to be zero.
 | 
			
		||||
  // We add this just to appease the compiler.
 | 
			
		||||
  _START_VERSION = 0;
 | 
			
		||||
  // The version field is always serialized and we will use it to store the
 | 
			
		||||
  // version that the  graph is generated from. This helps us set up version
 | 
			
		||||
  // control. 
 | 
			
		||||
  // For the IR, we are using simple numbers starting with with 0x00000001, 
 | 
			
		||||
  // which was the version we published on Oct 10, 2017.
 | 
			
		||||
  IR_VERSION_2017_10_10 = 0x0000000000000001;
 | 
			
		||||
 | 
			
		||||
  // IR_VERSION 2 published on Oct 30, 2017
 | 
			
		||||
  // - Added type discriminator to AttributeProto to support proto3 users
 | 
			
		||||
  IR_VERSION_2017_10_30 = 0x0000000000000002;
 | 
			
		||||
 | 
			
		||||
  // IR VERSION 3 published on Nov 3, 2017
 | 
			
		||||
  // - For operator versioning:
 | 
			
		||||
  //    - Added new message OperatorSetIdProto
 | 
			
		||||
  //    - Added opset_import in ModelProto
 | 
			
		||||
  // - For vendor extensions, added domain in NodeProto
 | 
			
		||||
  IR_VERSION_2017_11_3 = 0x0000000000000003;
 | 
			
		||||
 | 
			
		||||
  // IR VERSION 4 published on Jan 22, 2019
 | 
			
		||||
  // - Relax constraint that initializers should be a subset of graph inputs
 | 
			
		||||
  // - Add type BFLOAT16
 | 
			
		||||
  IR_VERSION_2019_1_22 = 0x0000000000000004;
 | 
			
		||||
 | 
			
		||||
  // IR VERSION 5 published on March 18, 2019
 | 
			
		||||
  // - Add message TensorAnnotation.
 | 
			
		||||
  // - Add quantization annotation in GraphProto to map tensor with its scale and zero point quantization parameters.
 | 
			
		||||
  IR_VERSION = 0x0000000000000005;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Attributes
 | 
			
		||||
//
 | 
			
		||||
// A named attribute containing either singular float, integer, string, graph,
 | 
			
		||||
// and tensor values, or repeated float, integer, string, graph, and tensor values.
 | 
			
		||||
// An AttributeProto MUST contain the name field, and *only one* of the
 | 
			
		||||
// following content fields, effectively enforcing a C/C++ union equivalent.
 | 
			
		||||
message AttributeProto {
 | 
			
		||||
 | 
			
		||||
  // Note: this enum is structurally identical to the OpSchema::AttrType
 | 
			
		||||
  // enum defined in schema.h.  If you rev one, you likely need to rev the other.
 | 
			
		||||
  enum AttributeType {
 | 
			
		||||
    UNDEFINED = 0;
 | 
			
		||||
    FLOAT = 1;
 | 
			
		||||
    INT = 2;
 | 
			
		||||
    STRING = 3;
 | 
			
		||||
    TENSOR = 4;
 | 
			
		||||
    GRAPH = 5;
 | 
			
		||||
 | 
			
		||||
    FLOATS = 6;
 | 
			
		||||
    INTS = 7;
 | 
			
		||||
    STRINGS = 8;
 | 
			
		||||
    TENSORS = 9;
 | 
			
		||||
    GRAPHS = 10;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // The name field MUST be present for this version of the IR.
 | 
			
		||||
  optional string name = 1;           // namespace Attribute
 | 
			
		||||
 
 | 
			
		||||
  // if ref_attr_name is not empty, ref_attr_name is the attribute name in parent function.
 | 
			
		||||
  // In this case, this AttributeProto does not contain data, and it's a reference of attribute
 | 
			
		||||
  // in parent scope.
 | 
			
		||||
  // NOTE: This should ONLY be used in function (sub-graph). It's invalid to be used in main graph.
 | 
			
		||||
  optional string ref_attr_name = 21;
 | 
			
		||||
 | 
			
		||||
  // A human-readable documentation for this attribute. Markdown is allowed.
 | 
			
		||||
  optional string doc_string = 13;
 | 
			
		||||
 | 
			
		||||
  // The type field MUST be present for this version of the IR.
 | 
			
		||||
  // For 0.0.1 versions of the IR, this field was not defined, and
 | 
			
		||||
  // implementations needed to use has_field hueristics to determine
 | 
			
		||||
  // which value field was in use.  For IR_VERSION 0.0.2 or later, this
 | 
			
		||||
  // field MUST be set and match the f|i|s|t|... field in use.  This
 | 
			
		||||
  // change was made to accommodate proto3 implementations.
 | 
			
		||||
  optional AttributeType type = 20;   // discriminator that indicates which field below is in use
 | 
			
		||||
 | 
			
		||||
  // Exactly ONE of the following fields must be present for this version of the IR
 | 
			
		||||
  optional float f = 2;               // float
 | 
			
		||||
  optional int64 i = 3;               // int
 | 
			
		||||
  optional bytes s = 4;               // UTF-8 string
 | 
			
		||||
  optional TensorProto t = 5;         // tensor value
 | 
			
		||||
  optional GraphProto g = 6;          // graph
 | 
			
		||||
  // Do not use field below, it's deprecated.
 | 
			
		||||
  // optional ValueProto v = 12;         // value - subsumes everything but graph
 | 
			
		||||
 | 
			
		||||
  repeated float floats = 7;          // list of floats
 | 
			
		||||
  repeated int64 ints = 8;            // list of ints
 | 
			
		||||
  repeated bytes strings = 9;         // list of UTF-8 strings
 | 
			
		||||
  repeated TensorProto tensors = 10;  // list of tensors
 | 
			
		||||
  repeated GraphProto graphs = 11;    // list of graph
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Defines information on value, including the name, the type, and
 | 
			
		||||
// the shape of the value.
 | 
			
		||||
message ValueInfoProto {
 | 
			
		||||
  // This field MUST be present in this version of the IR.
 | 
			
		||||
  optional string name = 1;     // namespace Value
 | 
			
		||||
  // This field MUST be present in this version of the IR.
 | 
			
		||||
  optional TypeProto type = 2;
 | 
			
		||||
  // A human-readable documentation for this value. Markdown is allowed.
 | 
			
		||||
  optional string doc_string = 3;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Nodes
 | 
			
		||||
//
 | 
			
		||||
// Computation graphs are made up of a DAG of nodes, which represent what is
 | 
			
		||||
// commonly called a "layer" or "pipeline stage" in machine learning frameworks.
 | 
			
		||||
//
 | 
			
		||||
// For example, it can be a node of type "Conv" that takes in an image, a filter 
 | 
			
		||||
// tensor and a bias tensor, and produces the convolved output.
 | 
			
		||||
message NodeProto {
 | 
			
		||||
  repeated string input = 1;    // namespace Value
 | 
			
		||||
  repeated string output = 2;   // namespace Value
 | 
			
		||||
 | 
			
		||||
  // An optional identifier for this node in a graph.
 | 
			
		||||
  // This field MAY be absent in ths version of the IR.
 | 
			
		||||
  optional string name = 3;     // namespace Node
 | 
			
		||||
 | 
			
		||||
  // The symbolic identifier of the Operator to execute.
 | 
			
		||||
  optional string op_type = 4;  // namespace Operator
 | 
			
		||||
  // The domain of the OperatorSet that specifies the operator named by op_type.
 | 
			
		||||
  optional string domain = 7;   // namespace Domain
 | 
			
		||||
 | 
			
		||||
  // Additional named attributes.
 | 
			
		||||
  repeated AttributeProto attribute = 5;
 | 
			
		||||
 | 
			
		||||
  // A human-readable documentation for this node. Markdown is allowed.
 | 
			
		||||
  optional string doc_string = 6;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Models
 | 
			
		||||
//
 | 
			
		||||
// ModelProto is a top-level file/container format for bundling a ML model and
 | 
			
		||||
// associating its computation graph with metadata.
 | 
			
		||||
//
 | 
			
		||||
// The semantics of the model are described by the associated GraphProto.
 | 
			
		||||
message ModelProto {
 | 
			
		||||
  // The version of the IR this model targets. See Version enum above.
 | 
			
		||||
  // This field MUST be present.
 | 
			
		||||
  optional int64 ir_version = 1;
 | 
			
		||||
 | 
			
		||||
  // The OperatorSets this model relies on.
 | 
			
		||||
  // All ModelProtos MUST have at least one entry that
 | 
			
		||||
  // specifies which version of the ONNX OperatorSet is
 | 
			
		||||
  // being imported.
 | 
			
		||||
  //
 | 
			
		||||
  // All nodes in the ModelProto's graph will bind against the operator
 | 
			
		||||
  // with the same-domain/same-op_type operator with the HIGHEST version
 | 
			
		||||
  // in the referenced operator sets.
 | 
			
		||||
  repeated OperatorSetIdProto opset_import = 8;
 | 
			
		||||
 | 
			
		||||
  // The name of the framework or tool used to generate this model.
 | 
			
		||||
  // This field SHOULD be present to indicate which implementation/tool/framework
 | 
			
		||||
  // emitted the model.
 | 
			
		||||
  optional string producer_name = 2;
 | 
			
		||||
 | 
			
		||||
  // The version of the framework or tool used to generate this model.
 | 
			
		||||
  // This field SHOULD be present to indicate which implementation/tool/framework
 | 
			
		||||
  // emitted the model.
 | 
			
		||||
  optional string producer_version = 3;
 | 
			
		||||
 | 
			
		||||
  // Domain name of the model.
 | 
			
		||||
  // We use reverse domain names as name space indicators. For example:
 | 
			
		||||
  // `com.facebook.fair` or `com.microsoft.cognitiveservices`
 | 
			
		||||
  //
 | 
			
		||||
  // Together with `model_version` and GraphProto.name, this forms the unique identity of
 | 
			
		||||
  // the graph.
 | 
			
		||||
  optional string domain = 4;
 | 
			
		||||
 | 
			
		||||
  // The version of the graph encoded. See Version enum below.
 | 
			
		||||
  optional int64 model_version = 5;
 | 
			
		||||
 | 
			
		||||
  // A human-readable documentation for this model. Markdown is allowed.
 | 
			
		||||
  optional string doc_string = 6;
 | 
			
		||||
 | 
			
		||||
  // The parameterized graph that is evaluated to execute the model.
 | 
			
		||||
  optional GraphProto graph = 7;
 | 
			
		||||
 | 
			
		||||
  // Named metadata values; keys should be distinct.
 | 
			
		||||
  repeated StringStringEntryProto metadata_props = 14;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
// StringStringEntryProto follows the pattern for cross-proto-version maps.
 | 
			
		||||
// See https://developers.google.com/protocol-buffers/docs/proto3#maps
 | 
			
		||||
message StringStringEntryProto {
 | 
			
		||||
  optional string key = 1;
 | 
			
		||||
  optional string value= 2;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
message TensorAnnotation {
 | 
			
		||||
  optional string tensor_name = 1;
 | 
			
		||||
  // <key, value> pairs to annotate tensor specified by <tensor_name> above.
 | 
			
		||||
  // The keys used in the mapping below must be pre-defined in ONNX spec.
 | 
			
		||||
  // For example, for 8-bit linear quantization case, 'SCALE_TENSOR', 'ZERO_POINT_TENSOR' will be pre-defined as
 | 
			
		||||
  // quantization parameter keys.
 | 
			
		||||
  repeated StringStringEntryProto quant_parameter_tensor_names = 2;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
// Graphs
 | 
			
		||||
//
 | 
			
		||||
// A graph defines the computational logic of a model and is comprised of a parameterized 
 | 
			
		||||
// list of nodes that form a directed acyclic graph based on their inputs and outputs.
 | 
			
		||||
// This is the equivalent of the "network" or "graph" in many deep learning
 | 
			
		||||
// frameworks.
 | 
			
		||||
message GraphProto {
 | 
			
		||||
  // The nodes in the graph, sorted topologically.
 | 
			
		||||
  repeated NodeProto node = 1;
 | 
			
		||||
 | 
			
		||||
  // The name of the graph.
 | 
			
		||||
  optional string name = 2;   // namespace Graph
 | 
			
		||||
 | 
			
		||||
  // A list of named tensor values, used to specify constant inputs of the graph.
 | 
			
		||||
  // Each TensorProto entry must have a distinct name (within the list) that
 | 
			
		||||
  // MAY also appear in the input list.
 | 
			
		||||
  repeated TensorProto initializer = 5;
 | 
			
		||||
 | 
			
		||||
  // A human-readable documentation for this graph. Markdown is allowed.
 | 
			
		||||
  optional string doc_string = 10;
 | 
			
		||||
 | 
			
		||||
  // The inputs and outputs of the graph.
 | 
			
		||||
  repeated ValueInfoProto input = 11;
 | 
			
		||||
  repeated ValueInfoProto output = 12;
 | 
			
		||||
 | 
			
		||||
  // Information for the values in the graph. The ValueInfoProto.name's
 | 
			
		||||
  // must be distinct. It is optional for a value to appear in value_info list.
 | 
			
		||||
  repeated ValueInfoProto value_info = 13;
 | 
			
		||||
 | 
			
		||||
  // This field carries information to indicate the mapping among a tensor and its
 | 
			
		||||
  // quantization parameter tensors. For example:
 | 
			
		||||
  // For tensor 'a', it may have {'SCALE_TENSOR', 'a_scale'} and {'ZERO_POINT_TENSOR', 'a_zero_point'} annotated,
 | 
			
		||||
  // which means, tensor 'a_scale' and tensor 'a_zero_point' are scale and zero point of tensor 'a' in the model.
 | 
			
		||||
  repeated TensorAnnotation quantization_annotation = 14;
 | 
			
		||||
 | 
			
		||||
  // DO NOT USE the following fields, they were deprecated from earlier versions.
 | 
			
		||||
  // repeated string input = 3;
 | 
			
		||||
  // repeated string output = 4;
 | 
			
		||||
  // optional int64 ir_version = 6;
 | 
			
		||||
  // optional int64 producer_version = 7;
 | 
			
		||||
  // optional string producer_tag = 8;
 | 
			
		||||
  // optional string domain = 9;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Tensors
 | 
			
		||||
//
 | 
			
		||||
// A serialized tensor value.
 | 
			
		||||
message TensorProto {
 | 
			
		||||
  enum DataType {
 | 
			
		||||
    UNDEFINED = 0;
 | 
			
		||||
    // Basic types.
 | 
			
		||||
    FLOAT = 1;   // float
 | 
			
		||||
    UINT8 = 2;   // uint8_t
 | 
			
		||||
    INT8 = 3;    // int8_t
 | 
			
		||||
    UINT16 = 4;  // uint16_t
 | 
			
		||||
    INT16 = 5;   // int16_t
 | 
			
		||||
    INT32 = 6;   // int32_t
 | 
			
		||||
    INT64 = 7;   // int64_t
 | 
			
		||||
    STRING = 8;  // string
 | 
			
		||||
    BOOL = 9;    // bool
 | 
			
		||||
 | 
			
		||||
    // IEEE754 half-precision floating-point format (16 bits wide).
 | 
			
		||||
    // This format has 1 sign bit, 5 exponent bits, and 10 mantissa bits.
 | 
			
		||||
    FLOAT16 = 10;
 | 
			
		||||
 | 
			
		||||
    DOUBLE = 11;
 | 
			
		||||
    UINT32 = 12;
 | 
			
		||||
    UINT64 = 13;
 | 
			
		||||
    COMPLEX64 = 14;     // complex with float32 real and imaginary components
 | 
			
		||||
    COMPLEX128 = 15;    // complex with float64 real and imaginary components
 | 
			
		||||
 | 
			
		||||
    // Non-IEEE floating-point format based on IEEE754 single-precision
 | 
			
		||||
    // floating-point number truncated to 16 bits.
 | 
			
		||||
    // This format has 1 sign bit, 8 exponent bits, and 7 mantissa bits.
 | 
			
		||||
    BFLOAT16 = 16;
 | 
			
		||||
 | 
			
		||||
    // Future extensions go here.
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // The shape of the tensor.
 | 
			
		||||
  repeated int64 dims = 1;
 | 
			
		||||
 | 
			
		||||
  // The data type of the tensor.
 | 
			
		||||
  // This field MUST have a valid TensorProto.DataType value
 | 
			
		||||
  optional int32 data_type = 2;
 | 
			
		||||
 | 
			
		||||
  // For very large tensors, we may want to store them in chunks, in which
 | 
			
		||||
  // case the following fields will specify the segment that is stored in
 | 
			
		||||
  // the current TensorProto.
 | 
			
		||||
  message Segment {
 | 
			
		||||
    optional int64 begin = 1;
 | 
			
		||||
    optional int64 end = 2;
 | 
			
		||||
  }
 | 
			
		||||
  optional Segment segment = 3;
 | 
			
		||||
 | 
			
		||||
  // Tensor content must be organized in row-major order.
 | 
			
		||||
  //
 | 
			
		||||
  // Depending on the data_type field, exactly one of the fields below with
 | 
			
		||||
  // name ending in _data is used to store the elements of the tensor.
 | 
			
		||||
 | 
			
		||||
  // For float and complex64 values
 | 
			
		||||
  // Complex64 tensors are encoded as a single array of floats,
 | 
			
		||||
  // with the real components appearing in odd numbered positions,
 | 
			
		||||
  // and the corresponding imaginary component apparing in the
 | 
			
		||||
  // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
 | 
			
		||||
  // is encoded as [1.0, 2.0 ,3.0 ,4.0]
 | 
			
		||||
  // When this field is present, the data_type field MUST be FLOAT or COMPLEX64.
 | 
			
		||||
  repeated float float_data = 4 [packed = true];
 | 
			
		||||
 | 
			
		||||
  // For int32, uint8, int8, uint16, int16, bool, and float16 values
 | 
			
		||||
  // float16 values must be bit-wise converted to an uint16_t prior
 | 
			
		||||
  // to writing to the buffer.
 | 
			
		||||
  // When this field is present, the data_type field MUST be
 | 
			
		||||
  // INT32, INT16, INT8, UINT16, UINT8, BOOL, or FLOAT16
 | 
			
		||||
  repeated int32 int32_data = 5 [packed = true];
 | 
			
		||||
 | 
			
		||||
  // For strings.
 | 
			
		||||
  // Each element of string_data is a UTF-8 encoded Unicode
 | 
			
		||||
  // string. No trailing null, no leading BOM. The protobuf "string"
 | 
			
		||||
  // scalar type is not used to match ML community conventions.
 | 
			
		||||
  // When this field is present, the data_type field MUST be STRING
 | 
			
		||||
  repeated bytes string_data = 6;
 | 
			
		||||
 | 
			
		||||
  // For int64.
 | 
			
		||||
  // When this field is present, the data_type field MUST be INT64
 | 
			
		||||
  repeated int64 int64_data = 7 [packed = true];
 | 
			
		||||
 | 
			
		||||
  // Optionally, a name for the tensor.
 | 
			
		||||
  optional string name = 8; // namespace Value
 | 
			
		||||
 | 
			
		||||
  // A human-readable documentation for this tensor. Markdown is allowed.
 | 
			
		||||
  optional string doc_string = 12;
 | 
			
		||||
 | 
			
		||||
  // Serializations can either use one of the fields above, or use this
 | 
			
		||||
  // raw bytes field. The only exception is the string case, where one is
 | 
			
		||||
  // required to store the content in the repeated bytes string_data field.
 | 
			
		||||
  //
 | 
			
		||||
  // When this raw_data field is used to store tensor value, elements MUST
 | 
			
		||||
  // be stored in as fixed-width, little-endian order.
 | 
			
		||||
  // Floating-point data types MUST be stored in IEEE 754 format.
 | 
			
		||||
  // Complex64 elements must be written as two consecutive FLOAT values, real component first.
 | 
			
		||||
  // Complex128 elements must be written as two consecutive DOUBLE values, real component first.
 | 
			
		||||
  // Boolean type MUST be written one byte per tensor element (00000001 for true, 00000000 for false).
 | 
			
		||||
  //
 | 
			
		||||
  // Note: the advantage of specific field rather than the raw_data field is
 | 
			
		||||
  // that in some cases (e.g. int data), protobuf does a better packing via
 | 
			
		||||
  // variable length storage, and may lead to smaller binary footprint.
 | 
			
		||||
  // When this field is present, the data_type field MUST NOT be STRING or UNDEFINED
 | 
			
		||||
  optional bytes raw_data = 9;
 | 
			
		||||
 | 
			
		||||
  // Data can be stored inside the protobuf file using type-specific fields or raw_data.
 | 
			
		||||
  // Alternatively, raw bytes data can be stored in an external file, using the external_data field.
 | 
			
		||||
  // external_data stores key-value pairs describing data location. Recognized keys are:
 | 
			
		||||
  // - "location" (required) - POSIX filesystem path relative to the directory where the ONNX
 | 
			
		||||
  //                           protobuf model was stored
 | 
			
		||||
  // - "offset" (optional) - position of byte at which stored data begins. Integer stored as string.
 | 
			
		||||
  //                         Offset values SHOULD be multiples 4096 (page size) to enable mmap support.
 | 
			
		||||
  // - "length" (optional) - number of bytes containing data. Integer stored as string.
 | 
			
		||||
  // - "checksum" (optional) - SHA1 digest of file specified in under 'location' key.
 | 
			
		||||
  repeated StringStringEntryProto external_data = 13;
 | 
			
		||||
 | 
			
		||||
  // Location of the data for this tensor. MUST be one of:
 | 
			
		||||
  // - DEFAULT - data stored inside the protobuf message. Data is stored in raw_data (if set) otherwise in type-specified field.
 | 
			
		||||
  // - EXTERNAL - data stored in an external location as described by external_data field.
 | 
			
		||||
  enum DataLocation {
 | 
			
		||||
    DEFAULT = 0;
 | 
			
		||||
    EXTERNAL = 1;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // If value not set, data is stored in raw_data (if set) otherwise in type-specified field.
 | 
			
		||||
  optional DataLocation data_location = 14;
 | 
			
		||||
 | 
			
		||||
  // For double
 | 
			
		||||
  // Complex128 tensors are encoded as a single array of doubles,
 | 
			
		||||
  // with the real components appearing in odd numbered positions,
 | 
			
		||||
  // and the corresponding imaginary component apparing in the
 | 
			
		||||
  // subsequent even numbered position. (e.g., [1.0 + 2.0i, 3.0 + 4.0i]
 | 
			
		||||
  // is encoded as [1.0, 2.0 ,3.0 ,4.0]
 | 
			
		||||
  // When this field is present, the data_type field MUST be DOUBLE or COMPLEX128
 | 
			
		||||
  repeated double double_data = 10 [packed = true];
 | 
			
		||||
 | 
			
		||||
  // For uint64 and uint32 values
 | 
			
		||||
  // When this field is present, the data_type field MUST be
 | 
			
		||||
  // UINT32 or UINT64
 | 
			
		||||
  repeated uint64 uint64_data = 11 [packed = true];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Defines a tensor shape. A dimension can be either an integer value
 | 
			
		||||
// or a symbolic variable. A symbolic variable represents an unknown
 | 
			
		||||
// dimension.
 | 
			
		||||
message TensorShapeProto {
 | 
			
		||||
  message Dimension {
 | 
			
		||||
    oneof value {
 | 
			
		||||
      int64 dim_value = 1;
 | 
			
		||||
      string dim_param = 2;   // namespace Shape
 | 
			
		||||
    };
 | 
			
		||||
    // Standard denotation can optionally be used to denote tensor
 | 
			
		||||
    // dimensions with standard semantic descriptions to ensure
 | 
			
		||||
    // that operations are applied to the correct axis of a tensor.
 | 
			
		||||
    // Refer to https://github.com/onnx/onnx/blob/master/docs/DimensionDenotation.md#denotation-definition
 | 
			
		||||
    // for pre-defined dimension denotations.
 | 
			
		||||
    optional string denotation = 3;
 | 
			
		||||
  };
 | 
			
		||||
  repeated Dimension dim = 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Types
 | 
			
		||||
//
 | 
			
		||||
// The standard ONNX data types.
 | 
			
		||||
message TypeProto {
 | 
			
		||||
 | 
			
		||||
  message Tensor {
 | 
			
		||||
    // This field MUST NOT have the value of UNDEFINED
 | 
			
		||||
    // This field MUST have a valid TensorProto.DataType value
 | 
			
		||||
    // This field MUST be present for this version of the IR.
 | 
			
		||||
    optional int32 elem_type = 1;
 | 
			
		||||
    optional TensorShapeProto shape = 2;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  oneof value {
 | 
			
		||||
    // The type of a tensor.
 | 
			
		||||
    Tensor tensor_type = 1;
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // An optional denotation can be used to denote the whole 
 | 
			
		||||
  // type with a standard semantic description as to what is 
 | 
			
		||||
  // stored inside. Refer to https://github.com/onnx/onnx/blob/master/docs/TypeDenotation.md#type-denotation-definition
 | 
			
		||||
  // for pre-defined type denotations.
 | 
			
		||||
  optional string denotation = 6;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Operator Sets
 | 
			
		||||
//
 | 
			
		||||
// OperatorSets are uniquely identified by a (domain, opset_version) pair.
 | 
			
		||||
message OperatorSetIdProto {
 | 
			
		||||
  // The domain of the operator set being identified.
 | 
			
		||||
  // The empty string ("") or absence of this field implies the operator
 | 
			
		||||
  // set that is defined as part of the ONNX specification.
 | 
			
		||||
  // This field MUST be present in this version of the IR when referring to any other operator set.
 | 
			
		||||
  optional string domain = 1;
 | 
			
		||||
 | 
			
		||||
  // The version of the operator set being identified.
 | 
			
		||||
  // This field MUST be present in this version of the IR.
 | 
			
		||||
  optional int64 version = 2;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										5996
									
								
								3rdparty/ncnn/tools/onnx/onnx2ncnn.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										5996
									
								
								3rdparty/ncnn/tools/onnx/onnx2ncnn.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
		Reference in New Issue
	
	Block a user