feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,121 @@
// Tencent is pleased to support the open source community by making ncnn available.
//
// Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
//
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
// in compliance with the License. You may obtain a copy of the License at
//
// https://opensource.org/licenses/BSD-3-Clause
//
// Unless required by applicable law or agreed to in writing, software distributed
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
#include "pass_level1.h"
// #include "../pass_level3/fuse_expression.h"
#include "../utils.h"
namespace pnnx {
class Conv1d : public FuseModulePass
{
public:
const char* match_type_str() const
{
return "__torch__.torch.nn.modules.conv.Conv1d";
}
const char* type_str() const
{
return "nn.Conv1d";
}
void write(Operator* op, const std::shared_ptr<torch::jit::Graph>& graph, const torch::jit::Module& mod) const
{
// {
// pnnx::Graph pnnx_graph;
//
// pnnx_graph.load(mod, graph);
//
// pnnx::fuse_expression(pnnx_graph);
//
// pnnx_graph.save("tmp.param", "tmp.bin");
// }
const torch::jit::Node* convolution = find_node_by_kind(graph, "aten::_convolution");
const torch::jit::Node* convolution_mode = find_node_by_kind(graph, "aten::_convolution_mode");
const torch::jit::Node* reflection_pad1d = find_node_by_kind(graph, "aten::reflection_pad1d");
const torch::jit::Node* replication_pad1d = find_node_by_kind(graph, "aten::replication_pad1d");
if (convolution_mode)
{
convolution = convolution_mode;
}
const auto& weight = mod.attr("weight").toTensor();
op->params["groups"] = convolution->namedInput("groups");
op->params["in_channels"] = weight.size(1) * op->params["groups"].i;
op->params["out_channels"] = weight.size(0);
op->params["kernel_size"] = Parameter{weight.size(2)};
op->params["stride"] = convolution->namedInput("stride");
if (reflection_pad1d)
{
op->params["padding_mode"] = "reflect";
op->params["padding"] = reflection_pad1d->namedInput("padding");
std::vector<int>& padding = op->params["padding"].ai;
if (padding.size() == 2)
{
// Conv1d only accepts tuple of one integer
if (padding[0] == padding[1])
{
padding.resize(1);
}
else if (padding[0] != padding[1])
{
padding.resize(0);
op->params["padding"].s = "same";
}
}
}
else if (replication_pad1d)
{
op->params["padding_mode"] = "replicate";
op->params["padding"] = replication_pad1d->namedInput("padding");
std::vector<int>& padding = op->params["padding"].ai;
if (padding.size() == 2)
{
// Conv1d only accepts tuple of one integer
if (padding[0] == padding[1])
{
padding.resize(1);
}
else if (padding[0] != padding[1])
{
padding.resize(0);
op->params["padding"].s = "same";
}
}
}
else
{
op->params["padding_mode"] = "zeros";
op->params["padding"] = convolution->namedInput("padding");
}
op->params["dilation"] = convolution->namedInput("dilation");
op->params["bias"] = mod.hasattr("bias");
op->attrs["weight"] = weight;
if (mod.hasattr("bias"))
{
op->attrs["bias"] = mod.attr("bias").toTensor();
}
}
};
REGISTER_GLOBAL_PNNX_FUSE_MODULE_PASS(Conv1d)
} // namespace pnnx