feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
66
3rdparty/ncnn/tools/pnnx/tests/test_F_conv_transpose3d.py
vendored
Normal file
66
3rdparty/ncnn/tools/pnnx/tests/test_F_conv_transpose3d.py
vendored
Normal file
@ -0,0 +1,66 @@
|
||||
# Tencent is pleased to support the open source community by making ncnn available.
|
||||
#
|
||||
# Copyright (C) 2021 THL A29 Limited, a Tencent company. All rights reserved.
|
||||
#
|
||||
# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except
|
||||
# in compliance with the License. You may obtain a copy of the License at
|
||||
#
|
||||
# https://opensource.org/licenses/BSD-3-Clause
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software distributed
|
||||
# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
|
||||
# CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
# specific language governing permissions and limitations under the License.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
class Model(nn.Module):
|
||||
def __init__(self):
|
||||
super(Model, self).__init__()
|
||||
|
||||
self.w2 = nn.Parameter(torch.rand(6, 12, 4, 4, 4))
|
||||
self.b2 = nn.Parameter(torch.rand(12))
|
||||
self.w3 = nn.Parameter(torch.rand(12, 2, 3, 3, 3))
|
||||
|
||||
def forward(self, x, w0, w1, b1, y):
|
||||
x = F.conv_transpose3d(x, w0, None, stride=(2,2,2), padding=(1,0,1), output_padding=(1,1,0))
|
||||
x = F.conv_transpose3d(x, w1, b1, stride=(1,1,2), padding=(2,2,1), dilation=(2,2,1), groups=2)
|
||||
|
||||
y = F.conv_transpose3d(y, self.w2, self.b2, stride=(2,2,2), padding=(1,0,1), output_padding=(1,1,0))
|
||||
y = F.conv_transpose3d(y, self.w3, None, stride=(1,1,2), padding=(2,2,1), dilation=(2,2,1), groups=3)
|
||||
return x, y
|
||||
|
||||
def test():
|
||||
net = Model()
|
||||
net.eval()
|
||||
|
||||
torch.manual_seed(0)
|
||||
x = torch.rand(1, 12, 10, 12, 14)
|
||||
w0 = torch.rand(12, 16, 3, 2, 3)
|
||||
w1 = torch.rand(16, 8, 5, 4, 5)
|
||||
b1 = torch.rand(16)
|
||||
y = torch.rand(1, 6, 4, 5, 6)
|
||||
|
||||
a0, a1 = net(x, w0, w1, b1, y)
|
||||
|
||||
# export torchscript
|
||||
mod = torch.jit.trace(net, (x, w0, w1, b1, y))
|
||||
mod.save("test_F_conv_transpose3d.pt")
|
||||
|
||||
# torchscript to pnnx
|
||||
import os
|
||||
os.system("../src/pnnx test_F_conv_transpose3d.pt inputshape=[1,12,10,12,14],[12,16,3,2,3],[16,8,5,4,5],[16],[1,6,4,5,6]")
|
||||
|
||||
# pnnx inference
|
||||
import test_F_conv_transpose3d_pnnx
|
||||
b0, b1 = test_F_conv_transpose3d_pnnx.test_inference()
|
||||
|
||||
return torch.equal(a0, b0) and torch.equal(a1, b1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
if test():
|
||||
exit(0)
|
||||
else:
|
||||
exit(1)
|
Reference in New Issue
Block a user