feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,30 @@
{
"class_ignore_list": [
"CirclesGridFinderParameters"
],
"namespaces_dict": {
"cv.fisheye": "fisheye"
},
"func_arg_fix" : {
"findFundamentalMat" : { "points1" : {"ctype" : "vector_Point2f"},
"points2" : {"ctype" : "vector_Point2f"} },
"cornerSubPix" : { "corners" : {"ctype" : "vector_Point2f"} },
"findHomography" : { "srcPoints" : {"ctype" : "vector_Point2f"},
"dstPoints" : {"ctype" : "vector_Point2f"} },
"solvePnP" : { "objectPoints" : {"ctype" : "vector_Point3f"},
"imagePoints" : {"ctype" : "vector_Point2f"},
"distCoeffs" : {"ctype" : "vector_double" } },
"solvePnPRansac" : { "objectPoints" : {"ctype" : "vector_Point3f"},
"imagePoints" : {"ctype" : "vector_Point2f"},
"distCoeffs" : {"ctype" : "vector_double" } },
"undistortPoints" : { "src" : {"ctype" : "vector_Point2f"},
"dst" : {"ctype" : "vector_Point2f"} },
"projectPoints" : { "objectPoints" : {"ctype" : "vector_Point3f"},
"imagePoints" : {"ctype" : "vector_Point2f"},
"distCoeffs" : {"ctype" : "vector_double" } },
"initCameraMatrix2D" : { "objectPoints" : {"ctype" : "vector_vector_Point3f"},
"imagePoints" : {"ctype" : "vector_vector_Point2f"} },
"findChessboardCorners" : { "corners" : {"ctype" : "vector_Point2f"} },
"drawChessboardCorners" : { "corners" : {"ctype" : "vector_Point2f"} }
}
}

View File

@ -0,0 +1,849 @@
package org.opencv.test.calib3d;
import java.util.ArrayList;
import org.opencv.calib3d.Calib3d;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDouble;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.MatOfPoint3f;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.test.OpenCVTestCase;
import org.opencv.imgproc.Imgproc;
public class Calib3dTest extends OpenCVTestCase {
Size size;
@Override
protected void setUp() throws Exception {
super.setUp();
size = new Size(3, 3);
}
public void testCalibrateCameraListOfMatListOfMatSizeMatMatListOfMatListOfMat() {
fail("Not yet implemented");
}
public void testCalibrateCameraListOfMatListOfMatSizeMatMatListOfMatListOfMatInt() {
fail("Not yet implemented");
}
public void testCalibrationMatrixValues() {
fail("Not yet implemented");
}
public void testComposeRTMatMatMatMatMatMat() {
Mat rvec1 = new Mat(3, 1, CvType.CV_32F);
rvec1.put(0, 0, 0.5302828, 0.19925919, 0.40105945);
Mat tvec1 = new Mat(3, 1, CvType.CV_32F);
tvec1.put(0, 0, 0.81438506, 0.43713298, 0.2487897);
Mat rvec2 = new Mat(3, 1, CvType.CV_32F);
rvec2.put(0, 0, 0.77310503, 0.76209372, 0.30779448);
Mat tvec2 = new Mat(3, 1, CvType.CV_32F);
tvec2.put(0, 0, 0.70243168, 0.4784472, 0.79219002);
Mat rvec3 = new Mat();
Mat tvec3 = new Mat();
Mat outRvec = new Mat(3, 1, CvType.CV_32F);
outRvec.put(0, 0, 1.418641, 0.88665926, 0.56020796);
Mat outTvec = new Mat(3, 1, CvType.CV_32F);
outTvec.put(0, 0, 1.4560841, 1.0680628, 0.81598103);
Calib3d.composeRT(rvec1, tvec1, rvec2, tvec2, rvec3, tvec3);
assertMatEqual(outRvec, rvec3, EPS);
assertMatEqual(outTvec, tvec3, EPS);
}
public void testComposeRTMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testComposeRTMatMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testComposeRTMatMatMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testComposeRTMatMatMatMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testComposeRTMatMatMatMatMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testComposeRTMatMatMatMatMatMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testComposeRTMatMatMatMatMatMatMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testComposeRTMatMatMatMatMatMatMatMatMatMatMatMatMatMat() {
fail("Not yet implemented");
// Mat dr3dr1;
// Mat dr3dt1;
// Mat dr3dr2;
// Mat dr3dt2;
// Mat dt3dr1;
// Mat dt3dt1;
// Mat dt3dr2;
// Mat dt3dt2;
// , dr3dr1, dr3dt1, dr3dr2, dr3dt2, dt3dr1, dt3dt1, dt3dr2, dt3dt2);
// [0.97031879, -0.091774099, 0.38594806;
// 0.15181915, 0.98091727, -0.44186208;
// -0.39509675, 0.43839464, 0.93872648]
// [0, 0, 0;
// 0, 0, 0;
// 0, 0, 0]
// [1.0117353, 0.16348237, -0.083180845;
// -0.1980398, 1.006078, 0.30299222;
// 0.075766489, -0.32784501, 1.0163091]
// [0, 0, 0;
// 0, 0, 0;
// 0, 0, 0]
// [0, 0, 0;
// 0, 0, 0;
// 0, 0, 0]
// [0.69658804, 0.018115902, 0.7172426;
// 0.51114357, 0.68899536, -0.51382649;
// -0.50348526, 0.72453934, 0.47068608]
// [0.18536358, -0.20515044, -0.48834875;
// -0.25120571, 0.29043972, 0.60573936;
// 0.35370794, -0.69923931, 0.45781645]
// [1, 0, 0;
// 0, 1, 0;
// 0, 0, 1]
}
public void testConvertPointsFromHomogeneous() {
fail("Not yet implemented");
}
public void testConvertPointsToHomogeneous() {
fail("Not yet implemented");
}
public void testDecomposeProjectionMatrixMatMatMatMat() {
fail("Not yet implemented");
}
public void testDecomposeProjectionMatrixMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testDecomposeProjectionMatrixMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testDecomposeProjectionMatrixMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testDecomposeProjectionMatrixMatMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testDrawChessboardCorners() {
fail("Not yet implemented");
}
public void testEstimateAffine3DMatMatMatMat() {
fail("Not yet implemented");
}
public void testEstimateAffine3DMatMatMatMatDouble() {
fail("Not yet implemented");
}
public void testEstimateAffine3DMatMatMatMatDoubleDouble() {
fail("Not yet implemented");
}
public void testFilterSpecklesMatDoubleIntDouble() {
gray_16s_1024.copyTo(dst);
Point center = new Point(gray_16s_1024.rows() / 2., gray_16s_1024.cols() / 2.);
Imgproc.circle(dst, center, 1, Scalar.all(4096));
assertMatNotEqual(gray_16s_1024, dst);
Calib3d.filterSpeckles(dst, 1024.0, 100, 0.);
assertMatEqual(gray_16s_1024, dst);
}
public void testFilterSpecklesMatDoubleIntDoubleMat() {
fail("Not yet implemented");
}
public void testFindChessboardCornersMatSizeMat() {
Size patternSize = new Size(9, 6);
MatOfPoint2f corners = new MatOfPoint2f();
Calib3d.findChessboardCorners(grayChess, patternSize, corners);
assertFalse(corners.empty());
}
public void testFindChessboardCornersMatSizeMatInt() {
Size patternSize = new Size(9, 6);
MatOfPoint2f corners = new MatOfPoint2f();
Calib3d.findChessboardCorners(grayChess, patternSize, corners, Calib3d.CALIB_CB_ADAPTIVE_THRESH + Calib3d.CALIB_CB_NORMALIZE_IMAGE
+ Calib3d.CALIB_CB_FAST_CHECK);
assertFalse(corners.empty());
}
public void testFind4QuadCornerSubpix() {
Size patternSize = new Size(9, 6);
MatOfPoint2f corners = new MatOfPoint2f();
Size region_size = new Size(5, 5);
Calib3d.findChessboardCorners(grayChess, patternSize, corners);
Calib3d.find4QuadCornerSubpix(grayChess, corners, region_size);
assertFalse(corners.empty());
}
public void testFindCirclesGridMatSizeMat() {
int size = 300;
Mat img = new Mat(size, size, CvType.CV_8U);
img.setTo(new Scalar(255));
Mat centers = new Mat();
assertFalse(Calib3d.findCirclesGrid(img, new Size(5, 5), centers));
for (int i = 0; i < 5; i++)
for (int j = 0; j < 5; j++) {
Point pt = new Point(size * (2 * i + 1) / 10, size * (2 * j + 1) / 10);
Imgproc.circle(img, pt, 10, new Scalar(0), -1);
}
assertTrue(Calib3d.findCirclesGrid(img, new Size(5, 5), centers));
assertEquals(25, centers.rows());
assertEquals(1, centers.cols());
assertEquals(CvType.CV_32FC2, centers.type());
}
public void testFindCirclesGridMatSizeMatInt() {
int size = 300;
Mat img = new Mat(size, size, CvType.CV_8U);
img.setTo(new Scalar(255));
Mat centers = new Mat();
assertFalse(Calib3d.findCirclesGrid(img, new Size(3, 5), centers, Calib3d.CALIB_CB_CLUSTERING
| Calib3d.CALIB_CB_ASYMMETRIC_GRID));
int step = size * 2 / 15;
int offsetx = size / 6;
int offsety = (size - 4 * step) / 2;
for (int i = 0; i < 3; i++)
for (int j = 0; j < 5; j++) {
Point pt = new Point(offsetx + (2 * i + j % 2) * step, offsety + step * j);
Imgproc.circle(img, pt, 10, new Scalar(0), -1);
}
assertTrue(Calib3d.findCirclesGrid(img, new Size(3, 5), centers, Calib3d.CALIB_CB_CLUSTERING
| Calib3d.CALIB_CB_ASYMMETRIC_GRID));
assertEquals(15, centers.rows());
assertEquals(1, centers.cols());
assertEquals(CvType.CV_32FC2, centers.type());
}
public void testFindFundamentalMatListOfPointListOfPoint() {
fail("Not yet implemented");
/*
int minFundamentalMatPoints = 8;
MatOfPoint2f pts = new MatOfPoint2f();
pts.alloc(minFundamentalMatPoints);
for (int i = 0; i < minFundamentalMatPoints; i++) {
double x = Math.random() * 100 - 50;
double y = Math.random() * 100 - 50;
pts.put(i, 0, x, y); //add(new Point(x, y));
}
Mat fm = Calib3d.findFundamentalMat(pts, pts);
truth = new Mat(3, 3, CvType.CV_64F);
truth.put(0, 0, 0, -0.577, 0.288, 0.577, 0, 0.288, -0.288, -0.288, 0);
assertMatEqual(truth, fm, EPS);
*/
}
public void testFindFundamentalMatListOfPointListOfPointInt() {
fail("Not yet implemented");
}
public void testFindFundamentalMatListOfPointListOfPointIntDouble() {
fail("Not yet implemented");
}
public void testFindFundamentalMatListOfPointListOfPointIntDoubleDouble() {
fail("Not yet implemented");
}
public void testFindFundamentalMatListOfPointListOfPointIntDoubleDoubleMat() {
fail("Not yet implemented");
}
public void testFindHomographyListOfPointListOfPoint() {
final int NUM = 20;
MatOfPoint2f originalPoints = new MatOfPoint2f();
originalPoints.alloc(NUM);
MatOfPoint2f transformedPoints = new MatOfPoint2f();
transformedPoints.alloc(NUM);
for (int i = 0; i < NUM; i++) {
double x = Math.random() * 100 - 50;
double y = Math.random() * 100 - 50;
originalPoints.put(i, 0, x, y);
transformedPoints.put(i, 0, y, x);
}
Mat hmg = Calib3d.findHomography(originalPoints, transformedPoints);
truth = new Mat(3, 3, CvType.CV_64F);
truth.put(0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1);
assertMatEqual(truth, hmg, EPS);
}
public void testFindHomographyListOfPointListOfPointInt() {
fail("Not yet implemented");
}
public void testFindHomographyListOfPointListOfPointIntDouble() {
fail("Not yet implemented");
}
public void testFindHomographyListOfPointListOfPointIntDoubleMat() {
fail("Not yet implemented");
}
public void testGetOptimalNewCameraMatrixMatMatSizeDouble() {
fail("Not yet implemented");
}
public void testGetOptimalNewCameraMatrixMatMatSizeDoubleSize() {
fail("Not yet implemented");
}
public void testGetOptimalNewCameraMatrixMatMatSizeDoubleSizeRect() {
fail("Not yet implemented");
}
public void testGetOptimalNewCameraMatrixMatMatSizeDoubleSizeRectBoolean() {
fail("Not yet implemented");
}
public void testGetValidDisparityROI() {
fail("Not yet implemented");
}
public void testInitCameraMatrix2DListOfMatListOfMatSize() {
fail("Not yet implemented");
}
public void testInitCameraMatrix2DListOfMatListOfMatSizeDouble() {
fail("Not yet implemented");
}
public void testMatMulDeriv() {
fail("Not yet implemented");
}
public void testProjectPointsMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testProjectPointsMatMatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testProjectPointsMatMatMatMatMatMatMatDouble() {
fail("Not yet implemented");
}
public void testRectify3Collinear() {
fail("Not yet implemented");
}
public void testReprojectImageTo3DMatMatMat() {
Mat transformMatrix = new Mat(4, 4, CvType.CV_64F);
transformMatrix.put(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
Mat disparity = new Mat(matSize, matSize, CvType.CV_32F);
float[] disp = new float[matSize * matSize];
for (int i = 0; i < matSize; i++)
for (int j = 0; j < matSize; j++)
disp[i * matSize + j] = i - j;
disparity.put(0, 0, disp);
Mat _3dPoints = new Mat();
Calib3d.reprojectImageTo3D(disparity, _3dPoints, transformMatrix);
assertEquals(CvType.CV_32FC3, _3dPoints.type());
assertEquals(matSize, _3dPoints.rows());
assertEquals(matSize, _3dPoints.cols());
truth = new Mat(matSize, matSize, CvType.CV_32FC3);
float[] _truth = new float[matSize * matSize * 3];
for (int i = 0; i < matSize; i++)
for (int j = 0; j < matSize; j++) {
_truth[(i * matSize + j) * 3 + 0] = i;
_truth[(i * matSize + j) * 3 + 1] = j;
_truth[(i * matSize + j) * 3 + 2] = i - j;
}
truth.put(0, 0, _truth);
assertMatEqual(truth, _3dPoints, EPS);
}
public void testReprojectImageTo3DMatMatMatBoolean() {
Mat transformMatrix = new Mat(4, 4, CvType.CV_64F);
transformMatrix.put(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
Mat disparity = new Mat(matSize, matSize, CvType.CV_32F);
float[] disp = new float[matSize * matSize];
for (int i = 0; i < matSize; i++)
for (int j = 0; j < matSize; j++)
disp[i * matSize + j] = i - j;
disp[0] = -Float.MAX_VALUE;
disparity.put(0, 0, disp);
Mat _3dPoints = new Mat();
Calib3d.reprojectImageTo3D(disparity, _3dPoints, transformMatrix, true);
assertEquals(CvType.CV_32FC3, _3dPoints.type());
assertEquals(matSize, _3dPoints.rows());
assertEquals(matSize, _3dPoints.cols());
truth = new Mat(matSize, matSize, CvType.CV_32FC3);
float[] _truth = new float[matSize * matSize * 3];
for (int i = 0; i < matSize; i++)
for (int j = 0; j < matSize; j++) {
_truth[(i * matSize + j) * 3 + 0] = i;
_truth[(i * matSize + j) * 3 + 1] = j;
_truth[(i * matSize + j) * 3 + 2] = i - j;
}
_truth[2] = 10000;
truth.put(0, 0, _truth);
assertMatEqual(truth, _3dPoints, EPS);
}
public void testReprojectImageTo3DMatMatMatBooleanInt() {
Mat transformMatrix = new Mat(4, 4, CvType.CV_64F);
transformMatrix.put(0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
Mat disparity = new Mat(matSize, matSize, CvType.CV_32F);
float[] disp = new float[matSize * matSize];
for (int i = 0; i < matSize; i++)
for (int j = 0; j < matSize; j++)
disp[i * matSize + j] = i - j;
disparity.put(0, 0, disp);
Mat _3dPoints = new Mat();
Calib3d.reprojectImageTo3D(disparity, _3dPoints, transformMatrix, false, CvType.CV_16S);
assertEquals(CvType.CV_16SC3, _3dPoints.type());
assertEquals(matSize, _3dPoints.rows());
assertEquals(matSize, _3dPoints.cols());
truth = new Mat(matSize, matSize, CvType.CV_16SC3);
short[] _truth = new short[matSize * matSize * 3];
for (short i = 0; i < matSize; i++)
for (short j = 0; j < matSize; j++) {
_truth[(i * matSize + j) * 3 + 0] = i;
_truth[(i * matSize + j) * 3 + 1] = j;
_truth[(i * matSize + j) * 3 + 2] = (short) (i - j);
}
truth.put(0, 0, _truth);
assertMatEqual(truth, _3dPoints, EPS);
}
public void testRodriguesMatMat() {
Mat r = new Mat(3, 1, CvType.CV_32F);
Mat R = new Mat(3, 3, CvType.CV_32F);
r.put(0, 0, Math.PI, 0, 0);
Calib3d.Rodrigues(r, R);
truth = new Mat(3, 3, CvType.CV_32F);
truth.put(0, 0, 1, 0, 0, 0, -1, 0, 0, 0, -1);
assertMatEqual(truth, R, EPS);
Mat r2 = new Mat();
Calib3d.Rodrigues(R, r2);
assertMatEqual(r, r2, EPS);
}
public void testRodriguesMatMatMat() {
fail("Not yet implemented");
}
public void testRQDecomp3x3MatMatMat() {
fail("Not yet implemented");
}
public void testRQDecomp3x3MatMatMatMat() {
fail("Not yet implemented");
}
public void testRQDecomp3x3MatMatMatMatMat() {
fail("Not yet implemented");
}
public void testRQDecomp3x3MatMatMatMatMatMat() {
fail("Not yet implemented");
}
public void testSolvePnPListOfPoint3ListOfPointMatMatMatMat() {
Mat intrinsics = Mat.eye(3, 3, CvType.CV_64F);
intrinsics.put(0, 0, 400);
intrinsics.put(1, 1, 400);
intrinsics.put(0, 2, 640 / 2);
intrinsics.put(1, 2, 480 / 2);
final int minPnpPointsNum = 4;
MatOfPoint3f points3d = new MatOfPoint3f();
points3d.alloc(minPnpPointsNum);
MatOfPoint2f points2d = new MatOfPoint2f();
points2d.alloc(minPnpPointsNum);
for (int i = 0; i < minPnpPointsNum; i++) {
double x = Math.random() * 100 - 50;
double y = Math.random() * 100 - 50;
points2d.put(i, 0, x, y); //add(new Point(x, y));
points3d.put(i, 0, 0, y, x); // add(new Point3(0, y, x));
}
Mat rvec = new Mat();
Mat tvec = new Mat();
Calib3d.solvePnP(points3d, points2d, intrinsics, new MatOfDouble(), rvec, tvec);
Mat truth_rvec = new Mat(3, 1, CvType.CV_64F);
truth_rvec.put(0, 0, 0, Math.PI / 2, 0);
Mat truth_tvec = new Mat(3, 1, CvType.CV_64F);
truth_tvec.put(0, 0, -320, -240, 400);
assertMatEqual(truth_rvec, rvec, EPS);
assertMatEqual(truth_tvec, tvec, EPS);
}
public void testSolvePnPListOfPoint3ListOfPointMatMatMatMatBoolean() {
fail("Not yet implemented");
}
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMat() {
fail("Not yet implemented");
}
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBoolean() {
fail("Not yet implemented");
}
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBooleanInt() {
fail("Not yet implemented");
}
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBooleanIntFloat() {
fail("Not yet implemented");
}
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBooleanIntFloatInt() {
fail("Not yet implemented");
}
public void testSolvePnPRansacListOfPoint3ListOfPointMatMatMatMatBooleanIntFloatIntMat() {
fail("Not yet implemented");
}
public void testStereoCalibrateListOfMatListOfMatListOfMatMatMatMatMatSizeMatMatMatMat() {
fail("Not yet implemented");
}
public void testStereoCalibrateListOfMatListOfMatListOfMatMatMatMatMatSizeMatMatMatMatTermCriteria() {
fail("Not yet implemented");
}
public void testStereoCalibrateListOfMatListOfMatListOfMatMatMatMatMatSizeMatMatMatMatTermCriteriaInt() {
fail("Not yet implemented");
}
public void testStereoRectifyUncalibratedMatMatMatSizeMatMat() {
fail("Not yet implemented");
}
public void testStereoRectifyUncalibratedMatMatMatSizeMatMatDouble() {
fail("Not yet implemented");
}
public void testValidateDisparityMatMatIntInt() {
fail("Not yet implemented");
}
public void testValidateDisparityMatMatIntIntInt() {
fail("Not yet implemented");
}
public void testComputeCorrespondEpilines()
{
Mat fundamental = new Mat(3, 3, CvType.CV_64F);
fundamental.put(0, 0, 0, -0.577, 0.288, 0.577, 0, 0.288, -0.288, -0.288, 0);
MatOfPoint2f left = new MatOfPoint2f();
left.alloc(1);
left.put(0, 0, 2, 3); //add(new Point(x, y));
Mat lines = new Mat();
Mat truth = new Mat(1, 1, CvType.CV_32FC3);
truth.put(0, 0, -0.70735186, 0.70686162, -0.70588124);
Calib3d.computeCorrespondEpilines(left, 1, fundamental, lines);
assertMatEqual(truth, lines, EPS);
}
public void testConstants()
{
// calib3d.hpp: some constants have conflict with constants from 'fisheye' namespace
assertEquals(1, Calib3d.CALIB_USE_INTRINSIC_GUESS);
assertEquals(2, Calib3d.CALIB_FIX_ASPECT_RATIO);
assertEquals(4, Calib3d.CALIB_FIX_PRINCIPAL_POINT);
assertEquals(8, Calib3d.CALIB_ZERO_TANGENT_DIST);
assertEquals(16, Calib3d.CALIB_FIX_FOCAL_LENGTH);
assertEquals(32, Calib3d.CALIB_FIX_K1);
assertEquals(64, Calib3d.CALIB_FIX_K2);
assertEquals(128, Calib3d.CALIB_FIX_K3);
assertEquals(0x0800, Calib3d.CALIB_FIX_K4);
assertEquals(0x1000, Calib3d.CALIB_FIX_K5);
assertEquals(0x2000, Calib3d.CALIB_FIX_K6);
assertEquals(0x4000, Calib3d.CALIB_RATIONAL_MODEL);
assertEquals(0x8000, Calib3d.CALIB_THIN_PRISM_MODEL);
assertEquals(0x10000, Calib3d.CALIB_FIX_S1_S2_S3_S4);
assertEquals(0x40000, Calib3d.CALIB_TILTED_MODEL);
assertEquals(0x80000, Calib3d.CALIB_FIX_TAUX_TAUY);
assertEquals(0x100000, Calib3d.CALIB_USE_QR);
assertEquals(0x200000, Calib3d.CALIB_FIX_TANGENT_DIST);
assertEquals(0x100, Calib3d.CALIB_FIX_INTRINSIC);
assertEquals(0x200, Calib3d.CALIB_SAME_FOCAL_LENGTH);
assertEquals(0x400, Calib3d.CALIB_ZERO_DISPARITY);
assertEquals((1 << 17), Calib3d.CALIB_USE_LU);
assertEquals((1 << 22), Calib3d.CALIB_USE_EXTRINSIC_GUESS);
}
public void testSolvePnPGeneric_regression_16040() {
Mat intrinsics = Mat.eye(3, 3, CvType.CV_64F);
intrinsics.put(0, 0, 400);
intrinsics.put(1, 1, 400);
intrinsics.put(0, 2, 640 / 2);
intrinsics.put(1, 2, 480 / 2);
final int minPnpPointsNum = 4;
MatOfPoint3f points3d = new MatOfPoint3f();
points3d.alloc(minPnpPointsNum);
MatOfPoint2f points2d = new MatOfPoint2f();
points2d.alloc(minPnpPointsNum);
for (int i = 0; i < minPnpPointsNum; i++) {
double x = Math.random() * 100 - 50;
double y = Math.random() * 100 - 50;
points2d.put(i, 0, x, y); //add(new Point(x, y));
points3d.put(i, 0, 0, y, x); // add(new Point3(0, y, x));
}
ArrayList<Mat> rvecs = new ArrayList<Mat>();
ArrayList<Mat> tvecs = new ArrayList<Mat>();
Mat rvec = new Mat();
Mat tvec = new Mat();
Mat reprojectionError = new Mat(2, 1, CvType.CV_64FC1);
Calib3d.solvePnPGeneric(points3d, points2d, intrinsics, new MatOfDouble(), rvecs, tvecs, false, Calib3d.SOLVEPNP_IPPE, rvec, tvec, reprojectionError);
Mat truth_rvec = new Mat(3, 1, CvType.CV_64F);
truth_rvec.put(0, 0, 0, Math.PI / 2, 0);
Mat truth_tvec = new Mat(3, 1, CvType.CV_64F);
truth_tvec.put(0, 0, -320, -240, 400);
assertMatEqual(truth_rvec, rvecs.get(0), 10 * EPS);
assertMatEqual(truth_tvec, tvecs.get(0), 1000 * EPS);
}
public void testGetDefaultNewCameraMatrixMat() {
Mat mtx = Calib3d.getDefaultNewCameraMatrix(gray0);
assertFalse(mtx.empty());
assertEquals(0, Core.countNonZero(mtx));
}
public void testGetDefaultNewCameraMatrixMatSizeBoolean() {
Mat mtx = Calib3d.getDefaultNewCameraMatrix(gray0, size, true);
assertFalse(mtx.empty());
assertFalse(0 == Core.countNonZero(mtx));
// TODO_: write better test
}
public void testInitUndistortRectifyMap() {
fail("Not yet implemented");
Mat cameraMatrix = new Mat(3, 3, CvType.CV_32F);
cameraMatrix.put(0, 0, 1, 0, 1);
cameraMatrix.put(1, 0, 0, 1, 1);
cameraMatrix.put(2, 0, 0, 0, 1);
Mat R = new Mat(3, 3, CvType.CV_32F, new Scalar(2));
Mat newCameraMatrix = new Mat(3, 3, CvType.CV_32F, new Scalar(3));
Mat distCoeffs = new Mat();
Mat map1 = new Mat();
Mat map2 = new Mat();
// TODO: complete this test
Calib3d.initUndistortRectifyMap(cameraMatrix, distCoeffs, R, newCameraMatrix, size, CvType.CV_32F, map1, map2);
}
public void testInitWideAngleProjMapMatMatSizeIntIntMatMat() {
fail("Not yet implemented");
Mat cameraMatrix = new Mat(3, 3, CvType.CV_32F);
Mat distCoeffs = new Mat(1, 4, CvType.CV_32F);
// Size imageSize = new Size(2, 2);
cameraMatrix.put(0, 0, 1, 0, 1);
cameraMatrix.put(1, 0, 0, 1, 2);
cameraMatrix.put(2, 0, 0, 0, 1);
distCoeffs.put(0, 0, 1, 3, 2, 4);
truth = new Mat(3, 3, CvType.CV_32F);
truth.put(0, 0, 0, 0, 0);
truth.put(1, 0, 0, 0, 0);
truth.put(2, 0, 0, 3, 0);
// TODO: No documentation for this function
// Calib3d.initWideAngleProjMap(cameraMatrix, distCoeffs, imageSize,
// 5, m1type, truthput1, truthput2);
}
public void testInitWideAngleProjMapMatMatSizeIntIntMatMatInt() {
fail("Not yet implemented");
}
public void testInitWideAngleProjMapMatMatSizeIntIntMatMatIntDouble() {
fail("Not yet implemented");
}
public void testUndistortMatMatMatMat() {
Mat src = new Mat(3, 3, CvType.CV_32F, new Scalar(3));
Mat cameraMatrix = new Mat(3, 3, CvType.CV_32F) {
{
put(0, 0, 1, 0, 1);
put(1, 0, 0, 1, 2);
put(2, 0, 0, 0, 1);
}
};
Mat distCoeffs = new Mat(1, 4, CvType.CV_32F) {
{
put(0, 0, 1, 3, 2, 4);
}
};
Calib3d.undistort(src, dst, cameraMatrix, distCoeffs);
truth = new Mat(3, 3, CvType.CV_32F) {
{
put(0, 0, 0, 0, 0);
put(1, 0, 0, 0, 0);
put(2, 0, 0, 3, 0);
}
};
assertMatEqual(truth, dst, EPS);
}
public void testUndistortMatMatMatMatMat() {
Mat src = new Mat(3, 3, CvType.CV_32F, new Scalar(3));
Mat cameraMatrix = new Mat(3, 3, CvType.CV_32F) {
{
put(0, 0, 1, 0, 1);
put(1, 0, 0, 1, 2);
put(2, 0, 0, 0, 1);
}
};
Mat distCoeffs = new Mat(1, 4, CvType.CV_32F) {
{
put(0, 0, 2, 1, 4, 5);
}
};
Mat newCameraMatrix = new Mat(3, 3, CvType.CV_32F, new Scalar(1));
Calib3d.undistort(src, dst, cameraMatrix, distCoeffs, newCameraMatrix);
truth = new Mat(3, 3, CvType.CV_32F, new Scalar(3));
assertMatEqual(truth, dst, EPS);
}
//undistortPoints(List<Point> src, List<Point> dst, Mat cameraMatrix, Mat distCoeffs)
public void testUndistortPointsListOfPointListOfPointMatMat() {
MatOfPoint2f src = new MatOfPoint2f(new Point(1, 2), new Point(3, 4), new Point(-1, -1));
MatOfPoint2f dst = new MatOfPoint2f();
Mat cameraMatrix = Mat.eye(3, 3, CvType.CV_64FC1);
Mat distCoeffs = new Mat(8, 1, CvType.CV_64FC1, new Scalar(0));
Calib3d.undistortPoints(src, dst, cameraMatrix, distCoeffs);
assertEquals(src.size(), dst.size());
for(int i=0; i<src.toList().size(); i++) {
//Log.d("UndistortPoints", "s="+src.get(i)+", d="+dst.get(i));
assertTrue(src.toList().get(i).equals(dst.toList().get(i)));
}
}
public void testEstimateNewCameraMatrixForUndistortRectify() {
Mat K = new Mat().eye(3, 3, CvType.CV_64FC1);
Mat K_new = new Mat().eye(3, 3, CvType.CV_64FC1);
Mat K_new_truth = new Mat().eye(3, 3, CvType.CV_64FC1);
Mat D = new Mat().zeros(4, 1, CvType.CV_64FC1);
K.put(0,0,600.4447738238429);
K.put(1,1,578.9929805505851);
K.put(0,2,992.0642578801213);
K.put(1,2,549.2682624212172);
D.put(0,0,-0.05090103223466704);
D.put(1,0,0.030944413642173308);
D.put(2,0,-0.021509225493198905);
D.put(3,0,0.0043378096628297145);
K_new_truth.put(0,0, 387.4809086880343);
K_new_truth.put(0,2, 1036.669802754649);
K_new_truth.put(1,1, 373.6375700303157);
K_new_truth.put(1,2, 538.8373261247601);
Calib3d.fisheye_estimateNewCameraMatrixForUndistortRectify(K,D,new Size(1920,1080),
new Mat().eye(3, 3, CvType.CV_64F), K_new, 0.0, new Size(1920,1080));
assertMatEqual(K_new, K_new_truth, EPS);
}
}

View File

@ -0,0 +1,31 @@
package org.opencv.test.calib3d;
import org.opencv.test.OpenCVTestCase;
public class StereoBMTest extends OpenCVTestCase {
public void testComputeMatMatMat() {
fail("Not yet implemented");
}
public void testComputeMatMatMatInt() {
fail("Not yet implemented");
}
public void testStereoBM() {
fail("Not yet implemented");
}
public void testStereoBMInt() {
fail("Not yet implemented");
}
public void testStereoBMIntInt() {
fail("Not yet implemented");
}
public void testStereoBMIntIntInt() {
fail("Not yet implemented");
}
}

View File

@ -0,0 +1,139 @@
package org.opencv.test.calib3d;
import org.opencv.test.OpenCVTestCase;
public class StereoSGBMTest extends OpenCVTestCase {
public void testCompute() {
fail("Not yet implemented");
}
public void testGet_disp12MaxDiff() {
fail("Not yet implemented");
}
public void testGet_fullDP() {
fail("Not yet implemented");
}
public void testGet_minDisparity() {
fail("Not yet implemented");
}
public void testGet_numberOfDisparities() {
fail("Not yet implemented");
}
public void testGet_P1() {
fail("Not yet implemented");
}
public void testGet_P2() {
fail("Not yet implemented");
}
public void testGet_preFilterCap() {
fail("Not yet implemented");
}
public void testGet_SADWindowSize() {
fail("Not yet implemented");
}
public void testGet_speckleRange() {
fail("Not yet implemented");
}
public void testGet_speckleWindowSize() {
fail("Not yet implemented");
}
public void testGet_uniquenessRatio() {
fail("Not yet implemented");
}
public void testSet_disp12MaxDiff() {
fail("Not yet implemented");
}
public void testSet_fullDP() {
fail("Not yet implemented");
}
public void testSet_minDisparity() {
fail("Not yet implemented");
}
public void testSet_numberOfDisparities() {
fail("Not yet implemented");
}
public void testSet_P1() {
fail("Not yet implemented");
}
public void testSet_P2() {
fail("Not yet implemented");
}
public void testSet_preFilterCap() {
fail("Not yet implemented");
}
public void testSet_SADWindowSize() {
fail("Not yet implemented");
}
public void testSet_speckleRange() {
fail("Not yet implemented");
}
public void testSet_speckleWindowSize() {
fail("Not yet implemented");
}
public void testSet_uniquenessRatio() {
fail("Not yet implemented");
}
public void testStereoSGBM() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntInt() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntIntInt() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntIntIntInt() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntIntIntIntInt() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntIntIntIntIntInt() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntIntIntIntIntIntInt() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntIntIntIntIntIntIntInt() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntIntIntIntIntIntIntIntInt() {
fail("Not yet implemented");
}
public void testStereoSGBMIntIntIntIntIntIntIntIntIntIntBoolean() {
fail("Not yet implemented");
}
}

View File

@ -0,0 +1,7 @@
{
"func_arg_fix" : {
"Calib3d" : {
"findCirclesGrid" : { "blobDetector" : {"defval" : "cv::SimpleBlobDetector::create()"} }
}
}
}

View File

@ -0,0 +1,465 @@
//
// Calib3dTest.swift
//
// Created by Giles Payne on 2020/05/26.
//
import XCTest
import OpenCV
class Calib3dTest: OpenCVTestCase {
var size = Size()
override func setUp() {
super.setUp()
size = Size(width: 3, height: 3)
}
override func tearDown() {
super.tearDown()
}
func testComposeRTMatMatMatMatMatMat() throws {
let rvec1 = Mat(rows: 3, cols: 1, type: CvType.CV_32F)
try rvec1.put(row: 0, col: 0, data: [0.5302828, 0.19925919, 0.40105945] as [Float])
let tvec1 = Mat(rows: 3, cols: 1, type: CvType.CV_32F)
try tvec1.put(row: 0, col: 0, data: [0.81438506, 0.43713298, 0.2487897] as [Float])
let rvec2 = Mat(rows: 3, cols: 1, type: CvType.CV_32F)
try rvec2.put(row: 0, col: 0, data: [0.77310503, 0.76209372, 0.30779448] as [Float])
let tvec2 = Mat(rows: 3, cols: 1, type: CvType.CV_32F)
try tvec2.put(row: 0, col: 0, data: [0.70243168, 0.4784472, 0.79219002] as [Float])
let rvec3 = Mat()
let tvec3 = Mat()
let outRvec = Mat(rows: 3, cols: 1, type: CvType.CV_32F)
try outRvec.put(row: 0, col: 0, data: [1.418641, 0.88665926, 0.56020796])
let outTvec = Mat(rows: 3, cols: 1, type: CvType.CV_32F)
try outTvec.put(row: 0, col: 0, data: [1.4560841, 1.0680628, 0.81598103])
Calib3d.composeRT(rvec1: rvec1, tvec1: tvec1, rvec2: rvec2, tvec2: tvec2, rvec3: rvec3, tvec3: tvec3)
try assertMatEqual(outRvec, rvec3, OpenCVTestCase.EPS)
try assertMatEqual(outTvec, tvec3, OpenCVTestCase.EPS)
}
func testFilterSpecklesMatDoubleIntDouble() throws {
gray_16s_1024.copy(to: dst)
let center = Point(x: gray_16s_1024.rows() / 2, y: gray_16s_1024.cols() / 2)
Imgproc.circle(img: dst, center: center, radius: 1, color: Scalar.all(4096))
try assertMatNotEqual(gray_16s_1024, dst)
Calib3d.filterSpeckles(img: dst, newVal: 1024.0, maxSpeckleSize: 100, maxDiff: 0.0)
try assertMatEqual(gray_16s_1024, dst)
}
func testFindChessboardCornersMatSizeMat() {
let patternSize = Size(width: 9, height: 6)
let corners = MatOfPoint2f()
Calib3d.findChessboardCorners(image: grayChess, patternSize: patternSize, corners: corners)
XCTAssertFalse(corners.empty())
}
func testFindChessboardCornersMatSizeMatInt() {
let patternSize = Size(width: 9, height: 6)
let corners = MatOfPoint2f()
Calib3d.findChessboardCorners(image: grayChess, patternSize: patternSize, corners: corners, flags: Calib3d.CALIB_CB_ADAPTIVE_THRESH + Calib3d.CALIB_CB_NORMALIZE_IMAGE + Calib3d.CALIB_CB_FAST_CHECK)
XCTAssertFalse(corners.empty())
}
func testFind4QuadCornerSubpix() {
let patternSize = Size(width: 9, height: 6)
let corners = MatOfPoint2f()
let region_size = Size(width: 5, height: 5)
Calib3d.findChessboardCorners(image: grayChess, patternSize: patternSize, corners: corners)
Calib3d.find4QuadCornerSubpix(img: grayChess, corners: corners, region_size: region_size)
XCTAssertFalse(corners.empty())
}
func testFindCirclesGridMatSizeMat() {
let size = 300
let img = Mat(rows:Int32(size), cols:Int32(size), type:CvType.CV_8U)
img.setTo(scalar: Scalar(255))
let centers = Mat()
XCTAssertFalse(Calib3d.findCirclesGrid(image: img, patternSize: Size(width: 5, height: 5), centers: centers))
for i in 0..<5 {
for j in 0..<5 {
let x = Int32(size * (2 * i + 1) / 10)
let y = Int32(size * (2 * j + 1) / 10)
let pt = Point(x: x, y: y)
Imgproc.circle(img: img, center: pt, radius: 10, color: Scalar(0), thickness: -1)
}
}
XCTAssert(Calib3d.findCirclesGrid(image: img, patternSize:Size(width:5, height:5), centers:centers))
XCTAssertEqual(25, centers.rows())
XCTAssertEqual(1, centers.cols())
XCTAssertEqual(CvType.CV_32FC2, centers.type())
}
func testFindCirclesGridMatSizeMatInt() {
let size:Int32 = 300
let img = Mat(rows:size, cols: size, type: CvType.CV_8U)
img.setTo(scalar: Scalar(255))
let centers = Mat()
XCTAssertFalse(Calib3d.findCirclesGrid(image: img, patternSize: Size(width: 3, height: 5), centers: centers, flags: Calib3d.CALIB_CB_CLUSTERING | Calib3d.CALIB_CB_ASYMMETRIC_GRID))
let step = size * 2 / 15
let offsetx = size / 6
let offsety = (size - 4 * step) / 2
for i:Int32 in 0...2 {
for j:Int32 in 0...4 {
let pt = Point(x: offsetx + (2 * i + j % 2) * step, y: offsety + step * j)
Imgproc.circle(img: img, center: pt, radius: 10, color: Scalar(0), thickness: -1)
}
}
XCTAssert(Calib3d.findCirclesGrid(image: img, patternSize: Size(width: 3, height: 5), centers: centers, flags: Calib3d.CALIB_CB_CLUSTERING | Calib3d.CALIB_CB_ASYMMETRIC_GRID))
XCTAssertEqual(15, centers.rows())
XCTAssertEqual(1, centers.cols())
XCTAssertEqual(CvType.CV_32FC2, centers.type())
}
func testFindHomographyListOfPointListOfPoint() throws {
let NUM:Int32 = 20
let originalPoints = MatOfPoint2f()
originalPoints.alloc(NUM)
let transformedPoints = MatOfPoint2f()
transformedPoints.alloc(NUM)
for i:Int32 in 0..<NUM {
let x:Float = Float.random(in: -50...50)
let y:Float = Float.random(in: -50...50)
try originalPoints.put(row:i, col:0, data:[x, y])
try transformedPoints.put(row:i, col:0, data:[y, x])
}
let hmg = Calib3d.findHomography(srcPoints: originalPoints, dstPoints: transformedPoints)
truth = Mat(rows: 3, cols: 3, type: CvType.CV_64F)
try truth!.put(row:0, col:0, data:[0, 1, 0, 1, 0, 0, 0, 0, 1] as [Double])
try assertMatEqual(truth!, hmg, OpenCVTestCase.EPS)
}
func testReprojectImageTo3DMatMatMat() throws {
let transformMatrix = Mat(rows: 4, cols: 4, type: CvType.CV_64F)
try transformMatrix.put(row:0, col:0, data:[0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] as [Double])
let disparity = Mat(rows: OpenCVTestCase.matSize, cols: OpenCVTestCase.matSize, type: CvType.CV_32F)
var disp = [Float].init(repeating: 0.0, count: Int(OpenCVTestCase.matSize * OpenCVTestCase.matSize))
for i in 0..<Int(OpenCVTestCase.matSize) {
for j in 0..<Int(OpenCVTestCase.matSize) {
disp[i * Int(OpenCVTestCase.matSize) + j] = Float(i - j)
}
}
try disparity.put(row:0, col:0, data:disp)
let _3dPoints = Mat()
Calib3d.reprojectImageTo3D(disparity: disparity, _3dImage: _3dPoints, Q: transformMatrix)
XCTAssertEqual(CvType.CV_32FC3, _3dPoints.type())
XCTAssertEqual(OpenCVTestCase.matSize, _3dPoints.rows())
XCTAssertEqual(OpenCVTestCase.matSize, _3dPoints.cols())
truth = Mat(rows: OpenCVTestCase.matSize, cols: OpenCVTestCase.matSize, type: CvType.CV_32FC3)
var _truth = [Float](repeating: 0.0, count: Int(OpenCVTestCase.matSize * OpenCVTestCase.matSize * 3))
for i:Int in 0..<Int(OpenCVTestCase.matSize) {
for j:Int in 0..<Int(OpenCVTestCase.matSize) {
let start:Int = (i * Int(OpenCVTestCase.matSize) + j) * 3
_truth[start + 0] = Float(i)
_truth[start + 1] = Float(j)
_truth[start + 2] = Float(i - j)
}
}
try truth!.put(row: 0, col: 0, data: _truth)
try assertMatEqual(truth!, _3dPoints, OpenCVTestCase.EPS)
}
func testReprojectImageTo3DMatMatMatBoolean() throws {
let transformMatrix = Mat(rows: 4, cols: 4, type: CvType.CV_64F)
try transformMatrix.put(row: 0, col: 0, data: [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] as [Double])
let disparity = Mat(rows: OpenCVTestCase.matSize, cols: OpenCVTestCase.matSize, type: CvType.CV_32F)
var disp = [Float](repeating: 0.0, count: Int(OpenCVTestCase.matSize * OpenCVTestCase.matSize))
for i in 0..<Int(OpenCVTestCase.matSize) {
for j in 0..<Int(OpenCVTestCase.matSize) {
disp[i * Int(OpenCVTestCase.matSize) + j] = Float(i - j)
}
}
disp[0] = -.greatestFiniteMagnitude
try disparity.put(row: 0, col: 0, data: disp)
let _3dPoints = Mat()
Calib3d.reprojectImageTo3D(disparity: disparity, _3dImage: _3dPoints, Q: transformMatrix, handleMissingValues: true)
XCTAssertEqual(CvType.CV_32FC3, _3dPoints.type())
XCTAssertEqual(OpenCVTestCase.matSize, _3dPoints.rows())
XCTAssertEqual(OpenCVTestCase.matSize, _3dPoints.cols())
truth = Mat(rows: OpenCVTestCase.matSize, cols: OpenCVTestCase.matSize, type: CvType.CV_32FC3)
var _truth = [Float](repeating: 0.0, count:Int(OpenCVTestCase.matSize * OpenCVTestCase.matSize * 3))
for i in 0..<Int(OpenCVTestCase.matSize) {
for j in 0..<Int(OpenCVTestCase.matSize) {
_truth[(i * Int(OpenCVTestCase.matSize) + j) * 3 + 0] = Float(i)
_truth[(i * Int(OpenCVTestCase.matSize) + j) * 3 + 1] = Float(j)
_truth[(i * Int(OpenCVTestCase.matSize) + j) * 3 + 2] = Float(i - j)
}
}
_truth[2] = 10000
try truth!.put(row: 0, col: 0, data: _truth)
try assertMatEqual(truth!, _3dPoints, OpenCVTestCase.EPS)
}
func testReprojectImageTo3DMatMatMatBooleanInt() throws {
let transformMatrix = Mat(rows: 4, cols: 4, type: CvType.CV_64F)
try transformMatrix.put(row: 0, col: 0, data: [0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1] as [Double])
let disparity = Mat(rows: OpenCVTestCase.matSize, cols: OpenCVTestCase.matSize, type: CvType.CV_32F)
var disp = [Float](repeating: 0.0, count: Int(OpenCVTestCase.matSize * OpenCVTestCase.matSize))
for i in 0..<Int(OpenCVTestCase.matSize) {
for j in 0..<Int(OpenCVTestCase.matSize) {
disp[i * Int(OpenCVTestCase.matSize) + j] = Float(i - j)
}
}
try disparity.put(row:0, col:0, data:disp)
let _3dPoints = Mat()
Calib3d.reprojectImageTo3D(disparity: disparity, _3dImage: _3dPoints, Q: transformMatrix, handleMissingValues: false, ddepth: CvType.CV_16S)
XCTAssertEqual(CvType.CV_16SC3, _3dPoints.type())
XCTAssertEqual(OpenCVTestCase.matSize, _3dPoints.rows())
XCTAssertEqual(OpenCVTestCase.matSize, _3dPoints.cols())
truth = Mat(rows: OpenCVTestCase.matSize, cols: OpenCVTestCase.matSize, type: CvType.CV_16SC3)
var _truth = [Int16](repeating: 0, count: Int(OpenCVTestCase.matSize * OpenCVTestCase.matSize * 3))
for i in 0..<Int(OpenCVTestCase.matSize) {
for j in 0..<Int(OpenCVTestCase.matSize) {
let start = (i * Int(OpenCVTestCase.matSize) + j) * 3
_truth[start + 0] = Int16(i)
_truth[start + 1] = Int16(j)
_truth[start + 2] = Int16(i - j)
}
}
try truth!.put(row: 0, col: 0, data: _truth)
try assertMatEqual(truth!, _3dPoints, OpenCVTestCase.EPS)
}
func testRodriguesMatMat() throws {
let r = Mat(rows: 3, cols: 1, type: CvType.CV_32F)
let R = Mat(rows: 3, cols: 3, type: CvType.CV_32F)
try r.put(row:0, col:0, data:[.pi, 0, 0] as [Float])
Calib3d.Rodrigues(src: r, dst: R)
truth = Mat(rows: 3, cols: 3, type: CvType.CV_32F)
try truth!.put(row:0, col:0, data:[1, 0, 0, 0, -1, 0, 0, 0, -1] as [Float])
try assertMatEqual(truth!, R, OpenCVTestCase.EPS)
let r2 = Mat()
Calib3d.Rodrigues(src: R, dst: r2)
try assertMatEqual(r, r2, OpenCVTestCase.EPS)
}
func testSolvePnPListOfPoint3ListOfPointMatMatMatMat() throws {
let intrinsics = Mat.eye(rows: 3, cols: 3, type: CvType.CV_64F)
try intrinsics.put(row: 0, col: 0, data: [400] as [Double])
try intrinsics.put(row: 1, col: 1, data: [400] as [Double])
try intrinsics.put(row: 0, col: 2, data: [640 / 2] as [Double])
try intrinsics.put(row: 1, col: 2, data: [480 / 2] as [Double])
let minPnpPointsNum: Int32 = 4
let points3d = MatOfPoint3f()
points3d.alloc(minPnpPointsNum)
let points2d = MatOfPoint2f()
points2d.alloc(minPnpPointsNum)
for i in 0..<minPnpPointsNum {
let x = Float.random(in: -50...50)
let y = Float.random(in: -50...50)
try points2d.put(row: i, col: 0, data: [x, y]) //add(Point(x, y))
try points3d.put(row: i, col: 0, data: [0, y, x]) // add(Point3(0, y, x))
}
let rvec = Mat()
let tvec = Mat()
Calib3d.solvePnP(objectPoints: points3d, imagePoints: points2d, cameraMatrix: intrinsics, distCoeffs: MatOfDouble(), rvec: rvec, tvec: tvec)
let truth_rvec = Mat(rows: 3, cols: 1, type: CvType.CV_64F)
try truth_rvec.put(row: 0, col: 0, data: [0, .pi / 2, 0] as [Double])
let truth_tvec = Mat(rows: 3, cols: 1, type: CvType.CV_64F)
try truth_tvec.put(row: 0, col: 0, data: [-320, -240, 400] as [Double])
try assertMatEqual(truth_rvec, rvec, OpenCVTestCase.EPS)
try assertMatEqual(truth_tvec, tvec, OpenCVTestCase.EPS)
}
func testComputeCorrespondEpilines() throws {
let fundamental = Mat(rows: 3, cols: 3, type: CvType.CV_64F)
try fundamental.put(row: 0, col: 0, data: [0, -0.577, 0.288, 0.577, 0, 0.288, -0.288, -0.288, 0])
let left = MatOfPoint2f()
left.alloc(1)
try left.put(row: 0, col: 0, data: [2, 3] as [Float]) //add(Point(x, y))
let lines = Mat()
let truth = Mat(rows: 1, cols: 1, type: CvType.CV_32FC3)
try truth.put(row: 0, col: 0, data: [-0.70735186, 0.70686162, -0.70588124])
Calib3d.computeCorrespondEpilines(points: left, whichImage: 1, F: fundamental, lines: lines)
try assertMatEqual(truth, lines, OpenCVTestCase.EPS)
}
func testConstants()
{
// calib3d.hpp: some constants have conflict with constants from 'fisheye' namespace
XCTAssertEqual(1, Calib3d.CALIB_USE_INTRINSIC_GUESS)
XCTAssertEqual(2, Calib3d.CALIB_FIX_ASPECT_RATIO)
XCTAssertEqual(4, Calib3d.CALIB_FIX_PRINCIPAL_POINT)
XCTAssertEqual(8, Calib3d.CALIB_ZERO_TANGENT_DIST)
XCTAssertEqual(16, Calib3d.CALIB_FIX_FOCAL_LENGTH)
XCTAssertEqual(32, Calib3d.CALIB_FIX_K1)
XCTAssertEqual(64, Calib3d.CALIB_FIX_K2)
XCTAssertEqual(128, Calib3d.CALIB_FIX_K3)
XCTAssertEqual(0x0800, Calib3d.CALIB_FIX_K4)
XCTAssertEqual(0x1000, Calib3d.CALIB_FIX_K5)
XCTAssertEqual(0x2000, Calib3d.CALIB_FIX_K6)
XCTAssertEqual(0x4000, Calib3d.CALIB_RATIONAL_MODEL)
XCTAssertEqual(0x8000, Calib3d.CALIB_THIN_PRISM_MODEL)
XCTAssertEqual(0x10000, Calib3d.CALIB_FIX_S1_S2_S3_S4)
XCTAssertEqual(0x40000, Calib3d.CALIB_TILTED_MODEL)
XCTAssertEqual(0x80000, Calib3d.CALIB_FIX_TAUX_TAUY)
XCTAssertEqual(0x100000, Calib3d.CALIB_USE_QR)
XCTAssertEqual(0x200000, Calib3d.CALIB_FIX_TANGENT_DIST)
XCTAssertEqual(0x100, Calib3d.CALIB_FIX_INTRINSIC)
XCTAssertEqual(0x200, Calib3d.CALIB_SAME_FOCAL_LENGTH)
XCTAssertEqual(0x400, Calib3d.CALIB_ZERO_DISPARITY)
XCTAssertEqual((1 << 17), Calib3d.CALIB_USE_LU)
XCTAssertEqual((1 << 22), Calib3d.CALIB_USE_EXTRINSIC_GUESS)
}
func testSolvePnPGeneric_regression_16040() throws {
let intrinsics = Mat.eye(rows: 3, cols: 3, type: CvType.CV_64F)
try intrinsics.put(row: 0, col: 0, data: [400] as [Double])
try intrinsics.put(row: 1, col: 1, data: [400] as [Double])
try intrinsics.put(row: 0, col: 2, data: [640 / 2] as [Double])
try intrinsics.put(row: 1, col: 2, data: [480 / 2] as [Double])
let minPnpPointsNum: Int32 = 4
let points3d = MatOfPoint3f()
points3d.alloc(minPnpPointsNum)
let points2d = MatOfPoint2f()
points2d.alloc(minPnpPointsNum)
for i in 0..<minPnpPointsNum {
let x = Float.random(in: -50...50)
let y = Float.random(in: -50...50)
try points2d.put(row: i, col: 0, data: [x, y]) //add(Point(x, y))
try points3d.put(row: i, col: 0, data: [0, y, x]) // add(Point3(0, y, x))
}
var rvecs = [Mat]()
var tvecs = [Mat]()
let rvec = Mat()
let tvec = Mat()
let reprojectionError = Mat(rows: 2, cols: 1, type: CvType.CV_64FC1)
Calib3d.solvePnPGeneric(objectPoints: points3d, imagePoints: points2d, cameraMatrix: intrinsics, distCoeffs: MatOfDouble(), rvecs: &rvecs, tvecs: &tvecs, useExtrinsicGuess: false, flags: .SOLVEPNP_IPPE, rvec: rvec, tvec: tvec, reprojectionError: reprojectionError)
let truth_rvec = Mat(rows: 3, cols: 1, type: CvType.CV_64F)
try truth_rvec.put(row: 0, col: 0, data: [0, .pi / 2, 0] as [Double])
let truth_tvec = Mat(rows: 3, cols: 1, type: CvType.CV_64F)
try truth_tvec.put(row: 0, col: 0, data: [-320, -240, 400] as [Double])
try assertMatEqual(truth_rvec, rvecs[0], 10 * OpenCVTestCase.EPS)
try assertMatEqual(truth_tvec, tvecs[0], 1000 * OpenCVTestCase.EPS)
}
func testGetDefaultNewCameraMatrixMat() {
let mtx = Calib3d.getDefaultNewCameraMatrix(cameraMatrix: gray0)
XCTAssertFalse(mtx.empty())
XCTAssertEqual(0, Core.countNonZero(src: mtx))
}
func testGetDefaultNewCameraMatrixMatSizeBoolean() {
let mtx = Calib3d.getDefaultNewCameraMatrix(cameraMatrix: gray0, imgsize: size, centerPrincipalPoint: true)
XCTAssertFalse(mtx.empty())
XCTAssertFalse(0 == Core.countNonZero(src: mtx))
// TODO_: write better test
}
func testUndistortMatMatMatMat() throws {
let src = Mat(rows: 3, cols: 3, type: CvType.CV_32F, scalar: Scalar(3))
let cameraMatrix = Mat(rows: 3, cols: 3, type: CvType.CV_32F)
try cameraMatrix.put(row: 0, col: 0, data: [1, 0, 1] as [Float])
try cameraMatrix.put(row: 1, col: 0, data: [0, 1, 2] as [Float])
try cameraMatrix.put(row: 2, col: 0, data: [0, 0, 1] as [Float])
let distCoeffs = Mat(rows: 1, cols: 4, type: CvType.CV_32F)
try distCoeffs.put(row: 0, col: 0, data: [1, 3, 2, 4] as [Float])
Calib3d.undistort(src: src, dst: dst, cameraMatrix: cameraMatrix, distCoeffs: distCoeffs)
truth = Mat(rows: 3, cols: 3, type: CvType.CV_32F)
try truth!.put(row: 0, col: 0, data: [0, 0, 0] as [Float])
try truth!.put(row: 1, col: 0, data: [0, 0, 0] as [Float])
try truth!.put(row: 2, col: 0, data: [0, 3, 0] as [Float])
try assertMatEqual(truth!, dst, OpenCVTestCase.EPS)
}
func testUndistortMatMatMatMatMat() throws {
let src = Mat(rows: 3, cols: 3, type: CvType.CV_32F, scalar: Scalar(3))
let cameraMatrix = Mat(rows: 3, cols: 3, type: CvType.CV_32F)
try cameraMatrix.put(row: 0, col: 0, data: [1, 0, 1] as [Float])
try cameraMatrix.put(row: 1, col: 0, data: [0, 1, 2] as [Float])
try cameraMatrix.put(row: 2, col: 0, data: [0, 0, 1] as [Float])
let distCoeffs = Mat(rows: 1, cols: 4, type: CvType.CV_32F)
try distCoeffs.put(row: 0, col: 0, data: [2, 1, 4, 5] as [Float])
let newCameraMatrix = Mat(rows: 3, cols: 3, type: CvType.CV_32F, scalar: Scalar(1))
Calib3d.undistort(src: src, dst: dst, cameraMatrix: cameraMatrix, distCoeffs: distCoeffs, newCameraMatrix: newCameraMatrix)
truth = Mat(rows: 3, cols: 3, type: CvType.CV_32F, scalar: Scalar(3))
try assertMatEqual(truth!, dst, OpenCVTestCase.EPS)
}
//undistortPoints(List<Point> src, List<Point> dst, Mat cameraMatrix, Mat distCoeffs)
func testUndistortPointsListOfPointListOfPointMatMat() {
let src = MatOfPoint2f(array: [Point2f(x: 1, y: 2), Point2f(x: 3, y: 4), Point2f(x: -1, y: -1)])
let dst = MatOfPoint2f()
let cameraMatrix = Mat.eye(rows: 3, cols: 3, type: CvType.CV_64FC1)
let distCoeffs = Mat(rows: 8, cols: 1, type: CvType.CV_64FC1, scalar: Scalar(0))
Calib3d.undistortPoints(src: src, dst: dst, cameraMatrix: cameraMatrix, distCoeffs: distCoeffs)
XCTAssertEqual(src.toArray(), dst.toArray())
}
}

View File

@ -0,0 +1,73 @@
#!/usr/bin/env python
'''
camera calibration for distorted images with chess board samples
reads distorted images, calculates the calibration and write undistorted images
'''
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
class calibration_test(NewOpenCVTests):
def test_calibration(self):
img_names = []
for i in range(1, 15):
if i < 10:
img_names.append('samples/data/left0{}.jpg'.format(str(i)))
elif i != 10:
img_names.append('samples/data/left{}.jpg'.format(str(i)))
square_size = 1.0
pattern_size = (9, 6)
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
pattern_points *= square_size
obj_points = []
img_points = []
h, w = 0, 0
for fn in img_names:
img = self.get_sample(fn, 0)
if img is None:
continue
h, w = img.shape[:2]
found, corners = cv.findChessboardCorners(img, pattern_size)
if found:
term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1)
cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
if not found:
continue
img_points.append(corners.reshape(-1, 2))
obj_points.append(pattern_points)
# calculate camera distortion
rms, camera_matrix, dist_coefs, _rvecs, _tvecs = cv.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0)
eps = 0.01
normCamEps = 10.0
normDistEps = 0.05
cameraMatrixTest = [[ 532.80992189, 0., 342.4952186 ],
[ 0., 532.93346422, 233.8879292 ],
[ 0., 0., 1. ]]
distCoeffsTest = [ -2.81325576e-01, 2.91130406e-02,
1.21234330e-03, -1.40825372e-04, 1.54865844e-01]
self.assertLess(abs(rms - 0.196334638034), eps)
self.assertLess(cv.norm(camera_matrix - cameraMatrixTest, cv.NORM_L1), normCamEps)
self.assertLess(cv.norm(dist_coefs - distCoeffsTest, cv.NORM_L1), normDistEps)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@ -0,0 +1,64 @@
#!/usr/bin/env python
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
class solvepnp_test(NewOpenCVTests):
def test_regression_16040(self):
obj_points = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
img_points = np.array(
[[700, 400], [700, 600], [900, 600], [900, 400]], dtype=np.float32
)
cameraMatrix = np.array(
[[712.0634, 0, 800], [0, 712.540, 500], [0, 0, 1]], dtype=np.float32
)
distCoeffs = np.array([[0, 0, 0, 0]], dtype=np.float32)
r = np.array([], dtype=np.float32)
x, r, t, e = cv.solvePnPGeneric(
obj_points, img_points, cameraMatrix, distCoeffs, reprojectionError=r
)
def test_regression_16040_2(self):
obj_points = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
img_points = np.array(
[[[700, 400], [700, 600], [900, 600], [900, 400]]], dtype=np.float32
)
cameraMatrix = np.array(
[[712.0634, 0, 800], [0, 712.540, 500], [0, 0, 1]], dtype=np.float32
)
distCoeffs = np.array([[0, 0, 0, 0]], dtype=np.float32)
r = np.array([], dtype=np.float32)
x, r, t, e = cv.solvePnPGeneric(
obj_points, img_points, cameraMatrix, distCoeffs, reprojectionError=r
)
def test_regression_16049(self):
obj_points = np.array([[0, 0, 0], [0, 1, 0], [1, 1, 0], [1, 0, 0]], dtype=np.float32)
img_points = np.array(
[[[700, 400], [700, 600], [900, 600], [900, 400]]], dtype=np.float32
)
cameraMatrix = np.array(
[[712.0634, 0, 800], [0, 712.540, 500], [0, 0, 1]], dtype=np.float32
)
distCoeffs = np.array([[0, 0, 0, 0]], dtype=np.float32)
x, r, t, e = cv.solvePnPGeneric(
obj_points, img_points, cameraMatrix, distCoeffs
)
if e is None:
# noArray() is supported, see https://github.com/opencv/opencv/issues/16049
pass
else:
eDump = cv.utils.dumpInputArray(e)
self.assertEqual(eDump, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=1 dims(-1)=2 size(-1)=1x1 type(-1)=CV_32FC1")
if __name__ == '__main__':
NewOpenCVTests.bootstrap()