feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,78 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_HPP
#define OPENCV_DNN_HPP
// This is an umbrella header to include into you project.
// We are free to change headers layout in dnn subfolder, so please include
// this header for future compatibility
/** @defgroup dnn Deep Neural Network module
@{
This module contains:
- API for new layers creation, layers are building bricks of neural networks;
- set of built-in most-useful Layers;
- API to construct and modify comprehensive neural networks from layers;
- functionality for loading serialized networks models from different frameworks.
Functionality of this module is designed only for forward pass computations (i.e. network testing).
A network training is in principle not supported.
@}
*/
/** @example samples/dnn/classification.cpp
Check @ref tutorial_dnn_googlenet "the corresponding tutorial" for more details
*/
/** @example samples/dnn/colorization.cpp
*/
/** @example samples/dnn/object_detection.cpp
Check @ref tutorial_dnn_yolo "the corresponding tutorial" for more details
*/
/** @example samples/dnn/openpose.cpp
*/
/** @example samples/dnn/segmentation.cpp
*/
/** @example samples/dnn/text_detection.cpp
*/
#include <opencv2/dnn/dnn.hpp>
#endif /* OPENCV_DNN_HPP */

View File

@ -0,0 +1,832 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_ALL_LAYERS_HPP
#define OPENCV_DNN_DNN_ALL_LAYERS_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//! @addtogroup dnn
//! @{
/** @defgroup dnnLayerList Partial List of Implemented Layers
@{
This subsection of dnn module contains information about built-in layers and their descriptions.
Classes listed here, in fact, provides C++ API for creating instances of built-in layers.
In addition to this way of layers instantiation, there is a more common factory API (see @ref dnnLayerFactory), it allows to create layers dynamically (by name) and register new ones.
You can use both API, but factory API is less convenient for native C++ programming and basically designed for use inside importers (see @ref readNetFromCaffe(), @ref readNetFromTorch(), @ref readNetFromTensorflow()).
Built-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers.
In particular, the following layers and Caffe importer were tested to reproduce <a href="http://caffe.berkeleyvision.org/tutorial/layers.html">Caffe</a> functionality:
- Convolution
- Deconvolution
- Pooling
- InnerProduct
- TanH, ReLU, Sigmoid, BNLL, Power, AbsVal
- Softmax
- Reshape, Flatten, Slice, Split
- LRN
- MVN
- Dropout (since it does nothing on forward pass -))
*/
class CV_EXPORTS BlankLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams &params);
};
/**
* Constant layer produces the same data blob at an every forward pass.
*/
class CV_EXPORTS ConstLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams &params);
};
//! LSTM recurrent layer
class CV_EXPORTS LSTMLayer : public Layer
{
public:
/** Creates instance of LSTM layer */
static Ptr<LSTMLayer> create(const LayerParams& params);
/** @deprecated Use LayerParams::blobs instead.
@brief Set trained weights for LSTM layer.
LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights.
Let @f$x_t@f$ be current input, @f$h_t@f$ be current output, @f$c_t@f$ be current state.
Than current output and current cell state is computed as follows:
@f{eqnarray*}{
h_t &= o_t \odot tanh(c_t), \\
c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\
@f}
where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned weights.
Gates are computed as follows:
@f{eqnarray*}{
i_t &= sigmoid&(W_{xi} x_t + W_{hi} h_{t-1} + b_i), \\
f_t &= sigmoid&(W_{xf} x_t + W_{hf} h_{t-1} + b_f), \\
o_t &= sigmoid&(W_{xo} x_t + W_{ho} h_{t-1} + b_o), \\
g_t &= tanh &(W_{xg} x_t + W_{hg} h_{t-1} + b_g), \\
@f}
where @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices:
@f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$.
For simplicity and performance purposes we use @f$ W_x = [W_{xi}; W_{xf}; W_{xo}, W_{xg}] @f$
(i.e. @f$W_x@f$ is vertical concatenation of @f$ W_{x?} @f$), @f$ W_x \in R^{4N_h \times N_x} @f$.
The same for @f$ W_h = [W_{hi}; W_{hf}; W_{ho}, W_{hg}], W_h \in R^{4N_h \times N_h} @f$
and for @f$ b = [b_i; b_f, b_o, b_g]@f$, @f$b \in R^{4N_h} @f$.
@param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to above mentioned notation is @f$ W_h @f$)
@param Wx is matrix defining how current input is transformed to internal gates (i.e. according to above mentioned notation is @f$ W_x @f$)
@param b is bias vector (i.e. according to above mentioned notation is @f$ b @f$)
*/
CV_DEPRECATED virtual void setWeights(const Mat &Wh, const Mat &Wx, const Mat &b) = 0;
/** @brief Specifies shape of output blob which will be [[`T`], `N`] + @p outTailShape.
* @details If this parameter is empty or unset then @p outTailShape = [`Wh`.size(0)] will be used,
* where `Wh` is parameter from setWeights().
*/
virtual void setOutShape(const MatShape &outTailShape = MatShape()) = 0;
/** @deprecated Use flag `produce_cell_output` in LayerParams.
* @brief Specifies either interpret first dimension of input blob as timestamp dimension either as sample.
*
* If flag is set to true then shape of input blob will be interpreted as [`T`, `N`, `[data dims]`] where `T` specifies number of timestamps, `N` is number of independent streams.
* In this case each forward() call will iterate through `T` timestamps and update layer's state `T` times.
*
* If flag is set to false then shape of input blob will be interpreted as [`N`, `[data dims]`].
* In this case each forward() call will make one iteration and produce one timestamp with shape [`N`, `[out dims]`].
*/
CV_DEPRECATED virtual void setUseTimstampsDim(bool use = true) = 0;
/** @deprecated Use flag `use_timestamp_dim` in LayerParams.
* @brief If this flag is set to true then layer will produce @f$ c_t @f$ as second output.
* @details Shape of the second output is the same as first output.
*/
CV_DEPRECATED virtual void setProduceCellOutput(bool produce = false) = 0;
/* In common case it use single input with @f$x_t@f$ values to compute output(s) @f$h_t@f$ (and @f$c_t@f$).
* @param input should contain packed values @f$x_t@f$
* @param output contains computed outputs: @f$h_t@f$ (and @f$c_t@f$ if setProduceCellOutput() flag was set to true).
*
* If setUseTimstampsDim() is set to true then @p input[0] should has at least two dimensions with the following shape: [`T`, `N`, `[data dims]`],
* where `T` specifies number of timestamps, `N` is number of independent streams (i.e. @f$ x_{t_0 + t}^{stream} @f$ is stored inside @p input[0][t, stream, ...]).
*
* If setUseTimstampsDim() is set to false then @p input[0] should contain single timestamp, its shape should has form [`N`, `[data dims]`] with at least one dimension.
* (i.e. @f$ x_{t}^{stream} @f$ is stored inside @p input[0][stream, ...]).
*/
int inputNameToIndex(String inputName) CV_OVERRIDE;
int outputNameToIndex(const String& outputName) CV_OVERRIDE;
};
/** @brief GRU recurrent one-layer
*
* Accepts input sequence and computes the final hidden state for each element in the batch.
*
* - input[0] containing the features of the input sequence.
* input[0] should have shape [`T`, `N`, `data_dims`] where `T` is sequence length, `N` is batch size, `data_dims` is input size
* - output would have shape [`T`, `N`, `D` * `hidden_size`] where `D = 2` if layer is bidirectional otherwise `D = 1`
*
* Depends on the following attributes:
* - hidden_size - Number of neurons in the hidden layer
* - direction - RNN could be bidirectional or forward
*
* The final hidden state @f$ h_t @f$ computes by the following formulas:
*
@f{eqnarray*}{
r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\
z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\
n_t = \tanh(W_{in} x_t + b_{in} + r_t \odot (W_{hn} h_{(t-1)}+ b_{hn})) \\
h_t = (1 - z_t) \odot n_t + z_t \odot h_{(t-1)} \\
@f}
* Where @f$x_t@f$ is current input, @f$h_{(t-1)}@f$ is previous or initial hidden state.
*
* @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices:
* @f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$.
*
* @f$\odot@f$ is per-element multiply operation.
*/
class CV_EXPORTS GRULayer : public Layer
{
public:
/** Creates instance of GRU layer */
static Ptr<GRULayer> create(const LayerParams& params);
};
/** @brief Classical recurrent layer
Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$.
- input: should contain packed input @f$x_t@f$.
- output: should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true).
input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively.
output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix.
If setProduceHiddenOutput() is set to true then @p output[1] will contain a Mat with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix.
*/
class CV_EXPORTS RNNLayer : public Layer
{
public:
/** Creates instance of RNNLayer */
static Ptr<RNNLayer> create(const LayerParams& params);
/** Setups learned weights.
Recurrent-layer behavior on each step is defined by current input @f$ x_t @f$, previous state @f$ h_t @f$ and learned weights as follows:
@f{eqnarray*}{
h_t &= tanh&(W_{hh} h_{t-1} + W_{xh} x_t + b_h), \\
o_t &= tanh&(W_{ho} h_t + b_o),
@f}
@param Wxh is @f$ W_{xh} @f$ matrix
@param bh is @f$ b_{h} @f$ vector
@param Whh is @f$ W_{hh} @f$ matrix
@param Who is @f$ W_{xo} @f$ matrix
@param bo is @f$ b_{o} @f$ vector
*/
virtual void setWeights(const Mat &Wxh, const Mat &bh, const Mat &Whh, const Mat &Who, const Mat &bo) = 0;
/** @brief If this flag is set to true then layer will produce @f$ h_t @f$ as second output.
* @details Shape of the second output is the same as first output.
*/
virtual void setProduceHiddenOutput(bool produce = false) = 0;
};
class CV_EXPORTS BaseConvolutionLayer : public Layer
{
public:
CV_DEPRECATED_EXTERNAL Size kernel, stride, pad, dilation, adjustPad;
std::vector<size_t> adjust_pads;
std::vector<size_t> kernel_size, strides, dilations;
std::vector<size_t> pads_begin, pads_end;
String padMode;
int numOutput;
};
class CV_EXPORTS ConvolutionLayer : public BaseConvolutionLayer
{
public:
static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
};
class CV_EXPORTS ConvolutionLayerInt8 : public BaseConvolutionLayer
{
public:
int input_zp, output_zp;
float output_sc;
static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
};
class CV_EXPORTS DeconvolutionLayer : public BaseConvolutionLayer
{
public:
static Ptr<BaseConvolutionLayer> create(const LayerParams& params);
};
class CV_EXPORTS LRNLayer : public Layer
{
public:
int type;
int size;
float alpha, beta, bias;
bool normBySize;
static Ptr<LRNLayer> create(const LayerParams& params);
};
class CV_EXPORTS PoolingLayer : public Layer
{
public:
int type;
std::vector<size_t> kernel_size, strides;
std::vector<size_t> pads_begin, pads_end;
bool globalPooling; //!< Flag is true if at least one of the axes is global pooled.
std::vector<bool> isGlobalPooling;
bool computeMaxIdx;
String padMode;
bool ceilMode;
// If true for average pooling with padding, divide an every output region
// by a whole kernel area. Otherwise exclude zero padded values and divide
// by number of real values.
bool avePoolPaddedArea;
// ROIPooling parameters.
Size pooledSize;
float spatialScale;
// PSROIPooling parameters.
int psRoiOutChannels;
static Ptr<PoolingLayer> create(const LayerParams& params);
};
class CV_EXPORTS PoolingLayerInt8 : public PoolingLayer
{
public:
int input_zp, output_zp;
static Ptr<PoolingLayerInt8> create(const LayerParams& params);
};
class CV_EXPORTS SoftmaxLayer : public Layer
{
public:
bool logSoftMax;
static Ptr<SoftmaxLayer> create(const LayerParams& params);
};
class CV_EXPORTS SoftmaxLayerInt8 : public SoftmaxLayer
{
public:
float output_sc;
int output_zp;
static Ptr<SoftmaxLayerInt8> create(const LayerParams& params);
};
class CV_EXPORTS InnerProductLayer : public Layer
{
public:
int axis;
static Ptr<InnerProductLayer> create(const LayerParams& params);
};
class CV_EXPORTS InnerProductLayerInt8 : public InnerProductLayer
{
public:
int output_zp;
static Ptr<InnerProductLayerInt8> create(const LayerParams& params);
};
class CV_EXPORTS MVNLayer : public Layer
{
public:
float eps;
bool normVariance, acrossChannels;
static Ptr<MVNLayer> create(const LayerParams& params);
};
/* Reshaping */
class CV_EXPORTS ReshapeLayer : public Layer
{
public:
MatShape newShapeDesc;
Range newShapeRange;
static Ptr<ReshapeLayer> create(const LayerParams& params);
};
class CV_EXPORTS FlattenLayer : public Layer
{
public:
static Ptr<FlattenLayer> create(const LayerParams &params);
};
class CV_EXPORTS QuantizeLayer : public Layer
{
public:
float scale;
int zeropoint;
static Ptr<QuantizeLayer> create(const LayerParams &params);
};
class CV_EXPORTS DequantizeLayer : public Layer
{
public:
float scale;
int zeropoint;
static Ptr<DequantizeLayer> create(const LayerParams &params);
};
class CV_EXPORTS RequantizeLayer : public Layer
{
public:
float scale, shift;
static Ptr<RequantizeLayer> create(const LayerParams &params);
};
class CV_EXPORTS ConcatLayer : public Layer
{
public:
int axis;
/**
* @brief Add zero padding in case of concatenation of blobs with different
* spatial sizes.
*
* Details: https://github.com/torch/nn/blob/master/doc/containers.md#depthconcat
*/
bool padding;
int paddingValue;
static Ptr<ConcatLayer> create(const LayerParams &params);
};
class CV_EXPORTS SplitLayer : public Layer
{
public:
int outputsCount; //!< Number of copies that will be produced (is ignored when negative).
static Ptr<SplitLayer> create(const LayerParams &params);
};
/**
* Slice layer has several modes:
* 1. Caffe mode
* @param[in] axis Axis of split operation
* @param[in] slice_point Array of split points
*
* Number of output blobs equals to number of split points plus one. The
* first blob is a slice on input from 0 to @p slice_point[0] - 1 by @p axis,
* the second output blob is a slice of input from @p slice_point[0] to
* @p slice_point[1] - 1 by @p axis and the last output blob is a slice of
* input from @p slice_point[-1] up to the end of @p axis size.
*
* 2. TensorFlow mode
* @param begin Vector of start indices
* @param size Vector of sizes
*
* More convenient numpy-like slice. One and only output blob
* is a slice `input[begin[0]:begin[0]+size[0], begin[1]:begin[1]+size[1], ...]`
*
* 3. Torch mode
* @param axis Axis of split operation
*
* Split input blob on the equal parts by @p axis.
*/
class CV_EXPORTS SliceLayer : public Layer
{
public:
/**
* @brief Vector of slice ranges.
*
* The first dimension equals number of output blobs.
* Inner vector has slice ranges for the first number of input dimensions.
*/
std::vector<std::vector<Range> > sliceRanges;
std::vector<std::vector<int> > sliceSteps;
int axis;
int num_split;
static Ptr<SliceLayer> create(const LayerParams &params);
};
class CV_EXPORTS PermuteLayer : public Layer
{
public:
static Ptr<PermuteLayer> create(const LayerParams& params);
};
/**
* Permute channels of 4-dimensional input blob.
* @param group Number of groups to split input channels and pick in turns
* into output blob.
*
* \f[ groupSize = \frac{number\ of\ channels}{group} \f]
* \f[ output(n, c, h, w) = input(n, groupSize \times (c \% group) + \lfloor \frac{c}{group} \rfloor, h, w) \f]
* Read more at https://arxiv.org/pdf/1707.01083.pdf
*/
class CV_EXPORTS ShuffleChannelLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
int group;
};
/**
* @brief Adds extra values for specific axes.
* @param paddings Vector of paddings in format
* @code
* [ pad_before, pad_after, // [0]th dimension
* pad_before, pad_after, // [1]st dimension
* ...
* pad_before, pad_after ] // [n]th dimension
* @endcode
* that represents number of padded values at every dimension
* starting from the first one. The rest of dimensions won't
* be padded.
* @param value Value to be padded. Defaults to zero.
* @param type Padding type: 'constant', 'reflect'
* @param input_dims Torch's parameter. If @p input_dims is not equal to the
* actual input dimensionality then the `[0]th` dimension
* is considered as a batch dimension and @p paddings are shifted
* to a one dimension. Defaults to `-1` that means padding
* corresponding to @p paddings.
*/
class CV_EXPORTS PaddingLayer : public Layer
{
public:
static Ptr<PaddingLayer> create(const LayerParams& params);
};
/* Activations */
class CV_EXPORTS ActivationLayer : public Layer
{
public:
virtual void forwardSlice(const float* src, float* dst, int len,
size_t outPlaneSize, int cn0, int cn1) const {};
virtual void forwardSlice(const int* src, const int* lut, int* dst, int len,
size_t outPlaneSize, int cn0, int cn1) const {};
virtual void forwardSlice(const int8_t* src, const int8_t* lut, int8_t* dst, int len,
size_t outPlaneSize, int cn0, int cn1) const {};
};
class CV_EXPORTS ReLULayer : public ActivationLayer
{
public:
float negativeSlope;
static Ptr<ReLULayer> create(const LayerParams &params);
};
class CV_EXPORTS ReLU6Layer : public ActivationLayer
{
public:
float minValue, maxValue;
static Ptr<ReLU6Layer> create(const LayerParams &params);
};
class CV_EXPORTS ChannelsPReLULayer : public ActivationLayer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS ELULayer : public ActivationLayer
{
public:
static Ptr<ELULayer> create(const LayerParams &params);
};
class CV_EXPORTS TanHLayer : public ActivationLayer
{
public:
static Ptr<TanHLayer> create(const LayerParams &params);
};
class CV_EXPORTS SwishLayer : public ActivationLayer
{
public:
static Ptr<SwishLayer> create(const LayerParams &params);
};
class CV_EXPORTS MishLayer : public ActivationLayer
{
public:
static Ptr<MishLayer> create(const LayerParams &params);
};
class CV_EXPORTS SigmoidLayer : public ActivationLayer
{
public:
static Ptr<SigmoidLayer> create(const LayerParams &params);
};
class CV_EXPORTS BNLLLayer : public ActivationLayer
{
public:
static Ptr<BNLLLayer> create(const LayerParams &params);
};
class CV_EXPORTS AbsLayer : public ActivationLayer
{
public:
static Ptr<AbsLayer> create(const LayerParams &params);
};
class CV_EXPORTS PowerLayer : public ActivationLayer
{
public:
float power, scale, shift;
static Ptr<PowerLayer> create(const LayerParams &params);
};
class CV_EXPORTS ExpLayer : public ActivationLayer
{
public:
float base, scale, shift;
static Ptr<ExpLayer> create(const LayerParams &params);
};
class CV_EXPORTS ActivationLayerInt8 : public ActivationLayer
{
public:
static Ptr<ActivationLayerInt8> create(const LayerParams &params);
};
/* Layers used in semantic segmentation */
class CV_EXPORTS CropLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams &params);
};
/** @brief Element wise operation on inputs
Extra optional parameters:
- "operation" as string. Values are "sum" (default), "prod", "max", "div", "min"
- "coeff" as float array. Specify weights of inputs for SUM operation
- "output_channels_mode" as string. Values are "same" (default, all input must have the same layout), "input_0", "input_0_truncate", "max_input_channels"
*/
class CV_EXPORTS EltwiseLayer : public Layer
{
public:
static Ptr<EltwiseLayer> create(const LayerParams &params);
};
class CV_EXPORTS EltwiseLayerInt8 : public Layer
{
public:
static Ptr<EltwiseLayerInt8> create(const LayerParams &params);
};
class CV_EXPORTS BatchNormLayer : public ActivationLayer
{
public:
bool hasWeights, hasBias;
float epsilon;
static Ptr<BatchNormLayer> create(const LayerParams &params);
};
class CV_EXPORTS BatchNormLayerInt8 : public BatchNormLayer
{
public:
float input_sc, output_sc;
int input_zp, output_zp;
static Ptr<BatchNormLayerInt8> create(const LayerParams &params);
};
class CV_EXPORTS MaxUnpoolLayer : public Layer
{
public:
Size poolKernel;
Size poolPad;
Size poolStride;
static Ptr<MaxUnpoolLayer> create(const LayerParams &params);
};
class CV_EXPORTS ScaleLayer : public Layer
{
public:
bool hasBias;
int axis;
static Ptr<ScaleLayer> create(const LayerParams& params);
};
class CV_EXPORTS ScaleLayerInt8 : public ScaleLayer
{
public:
float output_sc;
int output_zp;
static Ptr<ScaleLayerInt8> create(const LayerParams &params);
};
class CV_EXPORTS ShiftLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS ShiftLayerInt8 : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS DataAugmentationLayer : public Layer
{
public:
static Ptr<DataAugmentationLayer> create(const LayerParams& params);
};
class CV_EXPORTS CorrelationLayer : public Layer
{
public:
static Ptr<CorrelationLayer> create(const LayerParams& params);
};
class CV_EXPORTS AccumLayer : public Layer
{
public:
static Ptr<AccumLayer> create(const LayerParams& params);
};
class CV_EXPORTS FlowWarpLayer : public Layer
{
public:
static Ptr<FlowWarpLayer> create(const LayerParams& params);
};
class CV_EXPORTS PriorBoxLayer : public Layer
{
public:
static Ptr<PriorBoxLayer> create(const LayerParams& params);
};
class CV_EXPORTS ReorgLayer : public Layer
{
public:
static Ptr<ReorgLayer> create(const LayerParams& params);
};
class CV_EXPORTS RegionLayer : public Layer
{
public:
float nmsThreshold;
static Ptr<RegionLayer> create(const LayerParams& params);
};
/**
* @brief Detection output layer.
*
* The layer size is: @f$ (1 \times 1 \times N \times 7) @f$
* where N is [keep_top_k] parameter multiplied by batch size. Each row is:
* [image_id, label, confidence, xmin, ymin, xmax, ymax]
* where image_id is the index of image input in the batch.
*/
class CV_EXPORTS DetectionOutputLayer : public Layer
{
public:
static Ptr<DetectionOutputLayer> create(const LayerParams& params);
};
/**
* @brief \f$ L_p \f$ - normalization layer.
* @param p Normalization factor. The most common `p = 1` for \f$ L_1 \f$ -
* normalization or `p = 2` for \f$ L_2 \f$ - normalization or a custom one.
* @param eps Parameter \f$ \epsilon \f$ to prevent a division by zero.
* @param across_spatial If true, normalize an input across all non-batch dimensions.
* Otherwise normalize an every channel separately.
*
* Across spatial:
* @f[
* norm = \sqrt[p]{\epsilon + \sum_{x, y, c} |src(x, y, c)|^p } \\
* dst(x, y, c) = \frac{ src(x, y, c) }{norm}
* @f]
*
* Channel wise normalization:
* @f[
* norm(c) = \sqrt[p]{\epsilon + \sum_{x, y} |src(x, y, c)|^p } \\
* dst(x, y, c) = \frac{ src(x, y, c) }{norm(c)}
* @f]
*
* Where `x, y` - spatial coordinates, `c` - channel.
*
* An every sample in the batch is normalized separately. Optionally,
* output is scaled by the trained parameters.
*/
class CV_EXPORTS NormalizeBBoxLayer : public Layer
{
public:
float pnorm, epsilon;
CV_DEPRECATED_EXTERNAL bool acrossSpatial;
static Ptr<NormalizeBBoxLayer> create(const LayerParams& params);
};
/**
* @brief Resize input 4-dimensional blob by nearest neighbor or bilinear strategy.
*
* Layer is used to support TensorFlow's resize_nearest_neighbor and resize_bilinear ops.
*/
class CV_EXPORTS ResizeLayer : public Layer
{
public:
static Ptr<ResizeLayer> create(const LayerParams& params);
};
/**
* @brief Bilinear resize layer from https://github.com/cdmh/deeplab-public-ver2
*
* It differs from @ref ResizeLayer in output shape and resize scales computations.
*/
class CV_EXPORTS InterpLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS ProposalLayer : public Layer
{
public:
static Ptr<ProposalLayer> create(const LayerParams& params);
};
class CV_EXPORTS CropAndResizeLayer : public Layer
{
public:
static Ptr<Layer> create(const LayerParams& params);
};
class CV_EXPORTS CumSumLayer : public Layer
{
public:
int exclusive;
int reverse;
static Ptr<CumSumLayer> create(const LayerParams& params);
};
//! @}
//! @}
CV__DNN_INLINE_NS_END
}
}
#endif

View File

@ -0,0 +1,160 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <opencv2/core.hpp>
#include <map>
#include <ostream>
#include <opencv2/dnn/dnn.hpp>
#ifndef OPENCV_DNN_DNN_DICT_HPP
#define OPENCV_DNN_DNN_DICT_HPP
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//! @addtogroup dnn
//! @{
/** @brief This struct stores the scalar value (or array) of one of the following type: double, cv::String or int64.
* @todo Maybe int64 is useless because double type exactly stores at least 2^52 integers.
*/
struct CV_EXPORTS_W DictValue
{
DictValue(const DictValue &r);
DictValue(bool i) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = i ? 1 : 0; } //!< Constructs integer scalar
DictValue(int64 i = 0) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = i; } //!< Constructs integer scalar
CV_WRAP DictValue(int i) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = i; } //!< Constructs integer scalar
DictValue(unsigned p) : type(Param::INT), pi(new AutoBuffer<int64,1>) { (*pi)[0] = p; } //!< Constructs integer scalar
CV_WRAP DictValue(double p) : type(Param::REAL), pd(new AutoBuffer<double,1>) { (*pd)[0] = p; } //!< Constructs floating point scalar
CV_WRAP DictValue(const String &s) : type(Param::STRING), ps(new AutoBuffer<String,1>) { (*ps)[0] = s; } //!< Constructs string scalar
DictValue(const char *s) : type(Param::STRING), ps(new AutoBuffer<String,1>) { (*ps)[0] = s; } //!< @overload
template<typename TypeIter>
static DictValue arrayInt(TypeIter begin, int size); //!< Constructs integer array
template<typename TypeIter>
static DictValue arrayReal(TypeIter begin, int size); //!< Constructs floating point array
template<typename TypeIter>
static DictValue arrayString(TypeIter begin, int size); //!< Constructs array of strings
template<typename T>
T get(int idx = -1) const; //!< Tries to convert array element with specified index to requested type and returns its.
int size() const;
CV_WRAP bool isInt() const;
CV_WRAP bool isString() const;
CV_WRAP bool isReal() const;
CV_WRAP int getIntValue(int idx = -1) const;
CV_WRAP double getRealValue(int idx = -1) const;
CV_WRAP String getStringValue(int idx = -1) const;
DictValue &operator=(const DictValue &r);
friend std::ostream &operator<<(std::ostream &stream, const DictValue &dictv);
~DictValue();
private:
Param type;
union
{
AutoBuffer<int64, 1> *pi;
AutoBuffer<double, 1> *pd;
AutoBuffer<String, 1> *ps;
void *pv;
};
DictValue(Param _type, void *_p) : type(_type), pv(_p) {}
void release();
};
/** @brief This class implements name-value dictionary, values are instances of DictValue. */
class CV_EXPORTS Dict
{
typedef std::map<String, DictValue> _Dict;
_Dict dict;
public:
//! Checks a presence of the @p key in the dictionary.
bool has(const String &key) const;
//! If the @p key in the dictionary then returns pointer to its value, else returns NULL.
DictValue *ptr(const String &key);
/** @overload */
const DictValue *ptr(const String &key) const;
//! If the @p key in the dictionary then returns its value, else an error will be generated.
const DictValue &get(const String &key) const;
/** @overload */
template <typename T>
T get(const String &key) const;
//! If the @p key in the dictionary then returns its value, else returns @p defaultValue.
template <typename T>
T get(const String &key, const T &defaultValue) const;
//! Sets new @p value for the @p key, or adds new key-value pair into the dictionary.
template<typename T>
const T &set(const String &key, const T &value);
//! Erase @p key from the dictionary.
void erase(const String &key);
friend std::ostream &operator<<(std::ostream &stream, const Dict &dict);
std::map<String, DictValue>::const_iterator begin() const;
std::map<String, DictValue>::const_iterator end() const;
};
//! @}
CV__DNN_INLINE_NS_END
}
}
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,412 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_INL_HPP
#define OPENCV_DNN_DNN_INL_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
template<typename TypeIter>
DictValue DictValue::arrayInt(TypeIter begin, int size)
{
DictValue res(Param::INT, new AutoBuffer<int64, 1>(size));
for (int j = 0; j < size; begin++, j++)
(*res.pi)[j] = *begin;
return res;
}
template<typename TypeIter>
DictValue DictValue::arrayReal(TypeIter begin, int size)
{
DictValue res(Param::REAL, new AutoBuffer<double, 1>(size));
for (int j = 0; j < size; begin++, j++)
(*res.pd)[j] = *begin;
return res;
}
template<typename TypeIter>
DictValue DictValue::arrayString(TypeIter begin, int size)
{
DictValue res(Param::STRING, new AutoBuffer<String, 1>(size));
for (int j = 0; j < size; begin++, j++)
(*res.ps)[j] = *begin;
return res;
}
template<>
inline DictValue DictValue::get<DictValue>(int idx) const
{
CV_Assert(idx == -1);
return *this;
}
template<>
inline int64 DictValue::get<int64>(int idx) const
{
CV_Assert((idx == -1 && size() == 1) || (idx >= 0 && idx < size()));
idx = (idx == -1) ? 0 : idx;
if (type == Param::INT)
{
return (*pi)[idx];
}
else if (type == Param::REAL)
{
double doubleValue = (*pd)[idx];
double fracpart, intpart;
fracpart = std::modf(doubleValue, &intpart);
CV_Assert(fracpart == 0.0);
return (int64)doubleValue;
}
else if (type == Param::STRING)
{
return std::atoi((*ps)[idx].c_str());
}
else
{
CV_Assert(isInt() || isReal() || isString());
return 0;
}
}
template<>
inline int DictValue::get<int>(int idx) const
{
return (int)get<int64>(idx);
}
inline int DictValue::getIntValue(int idx) const
{
return (int)get<int64>(idx);
}
template<>
inline unsigned DictValue::get<unsigned>(int idx) const
{
return (unsigned)get<int64>(idx);
}
template<>
inline bool DictValue::get<bool>(int idx) const
{
return (get<int64>(idx) != 0);
}
template<>
inline double DictValue::get<double>(int idx) const
{
CV_Assert((idx == -1 && size() == 1) || (idx >= 0 && idx < size()));
idx = (idx == -1) ? 0 : idx;
if (type == Param::REAL)
{
return (*pd)[idx];
}
else if (type == Param::INT)
{
return (double)(*pi)[idx];
}
else if (type == Param::STRING)
{
return std::atof((*ps)[idx].c_str());
}
else
{
CV_Assert(isReal() || isInt() || isString());
return 0;
}
}
inline double DictValue::getRealValue(int idx) const
{
return get<double>(idx);
}
template<>
inline float DictValue::get<float>(int idx) const
{
return (float)get<double>(idx);
}
template<>
inline String DictValue::get<String>(int idx) const
{
CV_Assert(isString());
CV_Assert((idx == -1 && ps->size() == 1) || (idx >= 0 && idx < (int)ps->size()));
return (*ps)[(idx == -1) ? 0 : idx];
}
inline String DictValue::getStringValue(int idx) const
{
return get<String>(idx);
}
inline void DictValue::release()
{
switch (type)
{
case Param::INT:
delete pi;
break;
case Param::STRING:
delete ps;
break;
case Param::REAL:
delete pd;
break;
case Param::BOOLEAN:
case Param::MAT:
case Param::MAT_VECTOR:
case Param::ALGORITHM:
case Param::FLOAT:
case Param::UNSIGNED_INT:
case Param::UINT64:
case Param::UCHAR:
case Param::SCALAR:
break; // unhandled
}
}
inline DictValue::~DictValue()
{
release();
}
inline DictValue & DictValue::operator=(const DictValue &r)
{
if (&r == this)
return *this;
if (r.type == Param::INT)
{
AutoBuffer<int64, 1> *tmp = new AutoBuffer<int64, 1>(*r.pi);
release();
pi = tmp;
}
else if (r.type == Param::STRING)
{
AutoBuffer<String, 1> *tmp = new AutoBuffer<String, 1>(*r.ps);
release();
ps = tmp;
}
else if (r.type == Param::REAL)
{
AutoBuffer<double, 1> *tmp = new AutoBuffer<double, 1>(*r.pd);
release();
pd = tmp;
}
type = r.type;
return *this;
}
inline DictValue::DictValue(const DictValue &r)
: pv(NULL)
{
type = r.type;
if (r.type == Param::INT)
pi = new AutoBuffer<int64, 1>(*r.pi);
else if (r.type == Param::STRING)
ps = new AutoBuffer<String, 1>(*r.ps);
else if (r.type == Param::REAL)
pd = new AutoBuffer<double, 1>(*r.pd);
}
inline bool DictValue::isString() const
{
return (type == Param::STRING);
}
inline bool DictValue::isInt() const
{
return (type == Param::INT);
}
inline bool DictValue::isReal() const
{
return (type == Param::REAL || type == Param::INT);
}
inline int DictValue::size() const
{
switch (type)
{
case Param::INT:
return (int)pi->size();
case Param::STRING:
return (int)ps->size();
case Param::REAL:
return (int)pd->size();
case Param::BOOLEAN:
case Param::MAT:
case Param::MAT_VECTOR:
case Param::ALGORITHM:
case Param::FLOAT:
case Param::UNSIGNED_INT:
case Param::UINT64:
case Param::UCHAR:
case Param::SCALAR:
break; // unhandled
}
CV_Error_(Error::StsInternal, ("Unhandled type (%d)", static_cast<int>(type)));
}
inline std::ostream &operator<<(std::ostream &stream, const DictValue &dictv)
{
int i;
if (dictv.isInt())
{
for (i = 0; i < dictv.size() - 1; i++)
stream << dictv.get<int64>(i) << ", ";
stream << dictv.get<int64>(i);
}
else if (dictv.isReal())
{
for (i = 0; i < dictv.size() - 1; i++)
stream << dictv.get<double>(i) << ", ";
stream << dictv.get<double>(i);
}
else if (dictv.isString())
{
for (i = 0; i < dictv.size() - 1; i++)
stream << "\"" << dictv.get<String>(i) << "\", ";
stream << dictv.get<String>(i);
}
return stream;
}
/////////////////////////////////////////////////////////////////
inline bool Dict::has(const String &key) const
{
return dict.count(key) != 0;
}
inline DictValue *Dict::ptr(const String &key)
{
_Dict::iterator i = dict.find(key);
return (i == dict.end()) ? NULL : &i->second;
}
inline const DictValue *Dict::ptr(const String &key) const
{
_Dict::const_iterator i = dict.find(key);
return (i == dict.end()) ? NULL : &i->second;
}
inline const DictValue &Dict::get(const String &key) const
{
_Dict::const_iterator i = dict.find(key);
if (i == dict.end())
CV_Error(Error::StsObjectNotFound, "Required argument \"" + key + "\" not found into dictionary");
return i->second;
}
template <typename T>
inline T Dict::get(const String &key) const
{
return this->get(key).get<T>();
}
template <typename T>
inline T Dict::get(const String &key, const T &defaultValue) const
{
_Dict::const_iterator i = dict.find(key);
if (i != dict.end())
return i->second.get<T>();
else
return defaultValue;
}
template<typename T>
inline const T &Dict::set(const String &key, const T &value)
{
_Dict::iterator i = dict.find(key);
if (i != dict.end())
i->second = DictValue(value);
else
dict.insert(std::make_pair(key, DictValue(value)));
return value;
}
inline void Dict::erase(const String &key)
{
dict.erase(key);
}
inline std::ostream &operator<<(std::ostream &stream, const Dict &dict)
{
Dict::_Dict::const_iterator it;
for (it = dict.dict.begin(); it != dict.dict.end(); it++)
stream << it->first << " : " << it->second << "\n";
return stream;
}
inline std::map<String, DictValue>::const_iterator Dict::begin() const
{
return dict.begin();
}
inline std::map<String, DictValue>::const_iterator Dict::end() const
{
return dict.end();
}
CV__DNN_INLINE_NS_END
}
}
#endif

View File

@ -0,0 +1,78 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
#ifndef OPENCV_DNN_LAYER_DETAILS_HPP
#define OPENCV_DNN_LAYER_DETAILS_HPP
#include <opencv2/dnn/layer.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
/** @brief Registers layer constructor in runtime.
* @param type string, containing type name of the layer.
* @param constructorFunc pointer to the function of type LayerRegister::Constructor, which creates the layer.
* @details This macros must be placed inside the function code.
*/
#define CV_DNN_REGISTER_LAYER_FUNC(type, constructorFunc) \
cv::dnn::LayerFactory::registerLayer(#type, constructorFunc);
/** @brief Registers layer class in runtime.
* @param type string, containing type name of the layer.
* @param class C++ class, derived from Layer.
* @details This macros must be placed inside the function code.
*/
#define CV_DNN_REGISTER_LAYER_CLASS(type, class) \
cv::dnn::LayerFactory::registerLayer(#type, cv::dnn::details::_layerDynamicRegisterer<class>);
/** @brief Registers layer constructor on module load time.
* @param type string, containing type name of the layer.
* @param constructorFunc pointer to the function of type LayerRegister::Constructor, which creates the layer.
* @details This macros must be placed outside the function code.
*/
#define CV_DNN_REGISTER_LAYER_FUNC_STATIC(type, constructorFunc) \
static cv::dnn::details::_LayerStaticRegisterer __LayerStaticRegisterer_##type(#type, constructorFunc);
/** @brief Registers layer class on module load time.
* @param type string, containing type name of the layer.
* @param class C++ class, derived from Layer.
* @details This macros must be placed outside the function code.
*/
#define CV_DNN_REGISTER_LAYER_CLASS_STATIC(type, class) \
Ptr<Layer> __LayerStaticRegisterer_func_##type(LayerParams &params) \
{ return Ptr<Layer>(new class(params)); } \
static cv::dnn::details::_LayerStaticRegisterer __LayerStaticRegisterer_##type(#type, __LayerStaticRegisterer_func_##type);
namespace details {
template<typename LayerClass>
Ptr<Layer> _layerDynamicRegisterer(LayerParams &params)
{
return Ptr<Layer>(LayerClass::create(params));
}
//allows automatically register created layer on module load time
class _LayerStaticRegisterer
{
String type;
public:
_LayerStaticRegisterer(const String &layerType, LayerFactory::Constructor layerConstructor)
{
this->type = layerType;
LayerFactory::registerLayer(layerType, layerConstructor);
}
~_LayerStaticRegisterer()
{
LayerFactory::unregisterLayer(type);
}
};
} // namespace
CV__DNN_INLINE_NS_END
}} // namespace
#endif

View File

@ -0,0 +1,85 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_LAYER_HPP
#define OPENCV_DNN_LAYER_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//! @addtogroup dnn
//! @{
//!
//! @defgroup dnnLayerFactory Utilities for New Layers Registration
//! @{
/** @brief %Layer factory allows to create instances of registered layers. */
class CV_EXPORTS LayerFactory
{
public:
//! Each Layer class must provide this function to the factory
typedef Ptr<Layer>(*Constructor)(LayerParams &params);
//! Registers the layer class with typename @p type and specified @p constructor. Thread-safe.
static void registerLayer(const String &type, Constructor constructor);
//! Unregisters registered layer with specified type name. Thread-safe.
static void unregisterLayer(const String &type);
/** @brief Creates instance of registered layer.
* @param type type name of creating layer.
* @param params parameters which will be used for layer initialization.
* @note Thread-safe.
*/
static Ptr<Layer> createLayerInstance(const String &type, LayerParams& params);
private:
LayerFactory();
};
//! @}
//! @}
CV__DNN_INLINE_NS_END
}
}
#endif

View File

@ -0,0 +1,29 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_LAYER_REG_HPP
#define OPENCV_DNN_LAYER_REG_HPP
#include <opencv2/dnn.hpp>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//! @addtogroup dnn
//! @{
typedef std::map<std::string, std::vector<LayerFactory::Constructor> > LayerFactory_Impl;
//! Register layer types of DNN model.
//!
//! @note In order to thread-safely access the factory, see getLayerFactoryMutex() function.
LayerFactory_Impl& getLayerFactoryImpl();
//! Get the mutex guarding @ref LayerFactory_Impl, see getLayerFactoryImpl() function.
Mutex& getLayerFactoryMutex();
//! @}
CV__DNN_INLINE_NS_END
}
}
#endif

View File

@ -0,0 +1,259 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_DNN_DNN_SHAPE_UTILS_HPP
#define OPENCV_DNN_DNN_SHAPE_UTILS_HPP
#include <opencv2/dnn/dnn.hpp>
#include <opencv2/core/types_c.h> // CV_MAX_DIM
#include <iostream>
#include <ostream>
#include <sstream>
namespace cv {
namespace dnn {
CV__DNN_INLINE_NS_BEGIN
//Slicing
struct _Range : public cv::Range
{
_Range(const Range &r) : cv::Range(r) {}
_Range(int start_, int size_ = 1) : cv::Range(start_, start_ + size_) {}
};
static inline Mat slice(const Mat &m, const _Range &r0)
{
Range ranges[CV_MAX_DIM];
for (int i = 1; i < m.dims; i++)
ranges[i] = Range::all();
ranges[0] = r0;
return m(&ranges[0]);
}
static inline Mat slice(const Mat &m, const _Range &r0, const _Range &r1)
{
CV_Assert(m.dims >= 2);
Range ranges[CV_MAX_DIM];
for (int i = 2; i < m.dims; i++)
ranges[i] = Range::all();
ranges[0] = r0;
ranges[1] = r1;
return m(&ranges[0]);
}
static inline Mat slice(const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2)
{
CV_Assert(m.dims >= 3);
Range ranges[CV_MAX_DIM];
for (int i = 3; i < m.dims; i++)
ranges[i] = Range::all();
ranges[0] = r0;
ranges[1] = r1;
ranges[2] = r2;
return m(&ranges[0]);
}
static inline Mat slice(const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2, const _Range &r3)
{
CV_Assert(m.dims >= 4);
Range ranges[CV_MAX_DIM];
for (int i = 4; i < m.dims; i++)
ranges[i] = Range::all();
ranges[0] = r0;
ranges[1] = r1;
ranges[2] = r2;
ranges[3] = r3;
return m(&ranges[0]);
}
static inline Mat getPlane(const Mat &m, int n, int cn)
{
CV_Assert(m.dims > 2);
int sz[CV_MAX_DIM];
for(int i = 2; i < m.dims; i++)
{
sz[i-2] = m.size.p[i];
}
return Mat(m.dims - 2, sz, m.type(), (void*)m.ptr<float>(n, cn));
}
static inline MatShape shape(const int* dims, const int n)
{
MatShape shape;
shape.assign(dims, dims + n);
return shape;
}
static inline MatShape shape(const Mat& mat)
{
return shape(mat.size.p, mat.dims);
}
static inline MatShape shape(const MatSize& sz)
{
return shape(sz.p, sz.dims());
}
static inline MatShape shape(const UMat& mat)
{
return shape(mat.size.p, mat.dims);
}
#if 0 // issues with MatExpr wrapped into InputArray
static inline
MatShape shape(InputArray input)
{
int sz[CV_MAX_DIM];
int ndims = input.sizend(sz);
return shape(sz, ndims);
}
#endif
namespace {inline bool is_neg(int i) { return i < 0; }}
static inline MatShape shape(int a0, int a1=-1, int a2=-1, int a3=-1)
{
int dims[] = {a0, a1, a2, a3};
MatShape s = shape(dims, 4);
s.erase(std::remove_if(s.begin(), s.end(), is_neg), s.end());
return s;
}
static inline int total(const MatShape& shape, int start = -1, int end = -1)
{
if (start == -1) start = 0;
if (end == -1) end = (int)shape.size();
if (shape.empty())
return 0;
int elems = 1;
CV_Assert(start <= (int)shape.size() && end <= (int)shape.size() &&
start <= end);
for(int i = start; i < end; i++)
{
elems *= shape[i];
}
return elems;
}
static inline MatShape concat(const MatShape& a, const MatShape& b)
{
MatShape c = a;
c.insert(c.end(), b.begin(), b.end());
return c;
}
static inline std::string toString(const MatShape& shape, const String& name = "")
{
std::ostringstream ss;
if (!name.empty())
ss << name << ' ';
ss << '[';
for(size_t i = 0, n = shape.size(); i < n; ++i)
ss << ' ' << shape[i];
ss << " ]";
return ss.str();
}
static inline void print(const MatShape& shape, const String& name = "")
{
std::cout << toString(shape, name) << std::endl;
}
static inline std::ostream& operator<<(std::ostream &out, const MatShape& shape)
{
out << toString(shape);
return out;
}
/// @brief Converts axis from `[-dims; dims)` (similar to Python's slice notation) to `[0; dims)` range.
static inline
int normalize_axis(int axis, int dims)
{
CV_Check(axis, axis >= -dims && axis < dims, "");
axis = (axis < 0) ? (dims + axis) : axis;
CV_DbgCheck(axis, axis >= 0 && axis < dims, "");
return axis;
}
static inline
int normalize_axis(int axis, const MatShape& shape)
{
return normalize_axis(axis, (int)shape.size());
}
static inline
Range normalize_axis_range(const Range& r, int axisSize)
{
if (r == Range::all())
return Range(0, axisSize);
CV_CheckGE(r.start, 0, "");
Range clamped(r.start,
r.end > 0 ? std::min(r.end, axisSize) : axisSize + r.end + 1);
CV_DbgCheckGE(clamped.start, 0, "");
CV_CheckLT(clamped.start, clamped.end, "");
CV_CheckLE(clamped.end, axisSize, "");
return clamped;
}
static inline
bool isAllOnes(const MatShape &inputShape, int startPos, int endPos)
{
CV_Assert(!inputShape.empty());
CV_CheckGE((int) inputShape.size(), startPos, "");
CV_CheckGE(startPos, 0, "");
CV_CheckLE(startPos, endPos, "");
CV_CheckLE((size_t)endPos, inputShape.size(), "");
for (size_t i = startPos; i < endPos; i++)
{
if (inputShape[i] != 1)
return false;
}
return true;
}
CV__DNN_INLINE_NS_END
}
}
#endif

View File

@ -0,0 +1,24 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_UTILS_DEBUG_UTILS_HPP
#define OPENCV_DNN_UTILS_DEBUG_UTILS_HPP
#include "../dnn.hpp"
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
/**
* @brief Skip model import after diagnostic run in readNet() functions.
* @param[in] skip Indicates whether to skip the import.
*
* This is an internal OpenCV function not intended for users.
*/
CV_EXPORTS void skipModelImport(bool skip);
CV__DNN_INLINE_NS_END
}} // namespace
#endif // OPENCV_DNN_UTILS_DEBUG_UTILS_HPP

View File

@ -0,0 +1,76 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef OPENCV_DNN_UTILS_INF_ENGINE_HPP
#define OPENCV_DNN_UTILS_INF_ENGINE_HPP
#include "../dnn.hpp"
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
/* Values for 'OPENCV_DNN_BACKEND_INFERENCE_ENGINE_TYPE' parameter */
#define CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API "NN_BUILDER"
#define CV_DNN_BACKEND_INFERENCE_ENGINE_NGRAPH "NGRAPH"
/** @brief Returns Inference Engine internal backend API.
*
* See values of `CV_DNN_BACKEND_INFERENCE_ENGINE_*` macros.
*
* Default value is controlled through `OPENCV_DNN_BACKEND_INFERENCE_ENGINE_TYPE` runtime parameter (environment variable).
*/
CV_EXPORTS_W cv::String getInferenceEngineBackendType();
/** @brief Specify Inference Engine internal backend API.
*
* See values of `CV_DNN_BACKEND_INFERENCE_ENGINE_*` macros.
*
* @returns previous value of internal backend API
*/
CV_EXPORTS_W cv::String setInferenceEngineBackendType(const cv::String& newBackendType);
/** @brief Release a Myriad device (binded by OpenCV).
*
* Single Myriad device cannot be shared across multiple processes which uses
* Inference Engine's Myriad plugin.
*/
CV_EXPORTS_W void resetMyriadDevice();
/* Values for 'OPENCV_DNN_IE_VPU_TYPE' parameter */
#define CV_DNN_INFERENCE_ENGINE_VPU_TYPE_UNSPECIFIED ""
/// Intel(R) Movidius(TM) Neural Compute Stick, NCS (USB 03e7:2150), Myriad2 (https://software.intel.com/en-us/movidius-ncs)
#define CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 "Myriad2"
/// Intel(R) Neural Compute Stick 2, NCS2 (USB 03e7:2485), MyriadX (https://software.intel.com/ru-ru/neural-compute-stick)
#define CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X "MyriadX"
#define CV_DNN_INFERENCE_ENGINE_CPU_TYPE_ARM_COMPUTE "ARM_COMPUTE"
#define CV_DNN_INFERENCE_ENGINE_CPU_TYPE_X86 "X86"
/** @brief Returns Inference Engine VPU type.
*
* See values of `CV_DNN_INFERENCE_ENGINE_VPU_TYPE_*` macros.
*/
CV_EXPORTS_W cv::String getInferenceEngineVPUType();
/** @brief Returns Inference Engine CPU type.
*
* Specify OpenVINO plugin: CPU or ARM.
*/
CV_EXPORTS_W cv::String getInferenceEngineCPUType();
/** @brief Release a HDDL plugin.
*/
CV_EXPORTS_W void releaseHDDLPlugin();
CV__DNN_INLINE_NS_END
}} // namespace
#endif // OPENCV_DNN_UTILS_INF_ENGINE_HPP

View File

@ -0,0 +1,21 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_VERSION_HPP
#define OPENCV_DNN_VERSION_HPP
/// Use with major OpenCV version only.
#define OPENCV_DNN_API_VERSION 20211004
#if !defined CV_DOXYGEN && !defined CV_STATIC_ANALYSIS && !defined CV_DNN_DONT_ADD_INLINE_NS
#define CV__DNN_INLINE_NS __CV_CAT(dnn4_v, OPENCV_DNN_API_VERSION)
#define CV__DNN_INLINE_NS_BEGIN namespace CV__DNN_INLINE_NS {
#define CV__DNN_INLINE_NS_END }
namespace cv { namespace dnn { namespace CV__DNN_INLINE_NS { } using namespace CV__DNN_INLINE_NS; }}
#else
#define CV__DNN_INLINE_NS_BEGIN
#define CV__DNN_INLINE_NS_END
#endif
#endif // OPENCV_DNN_VERSION_HPP