feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,368 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_CUBLAS_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_CUBLAS_HPP
#include "error.hpp"
#include "stream.hpp"
#include "pointer.hpp"
#include <opencv2/core.hpp>
#include <cublas_v2.h>
#include <cstddef>
#include <memory>
#include <utility>
#define CUDA4DNN_CHECK_CUBLAS(call) \
::cv::dnn::cuda4dnn::csl::cublas::detail::check((call), CV_Func, __FILE__, __LINE__)
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cublas {
/** @brief exception class for errors thrown by the cuBLAS API */
class cuBLASException : public CUDAException {
public:
using CUDAException::CUDAException;
};
namespace detail {
static void check(cublasStatus_t status, const char* func, const char* file, int line) {
auto cublasGetErrorString = [](cublasStatus_t err) {
switch (err) {
case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
case CUBLAS_STATUS_LICENSE_ERROR: return "CUBLAS_STATUS_LICENSE_ERROR";
}
return "UNKNOWN_CUBLAS_ERROR";
};
if (status != CUBLAS_STATUS_SUCCESS)
throw cuBLASException(Error::GpuApiCallError, cublasGetErrorString(status), func, file, line);
}
}
/** non-copyable cuBLAS smart handle
*
* UniqueHandle is a smart non-sharable wrapper for cuBLAS handle which ensures that the handle
* is destroyed after use. The handle must always be associated with a non-default stream. The stream
* must be specified during construction.
*
* Refer to stream API for more information for the choice of forcing non-default streams.
*/
class UniqueHandle {
public:
UniqueHandle() noexcept : handle{ nullptr } { }
UniqueHandle(UniqueHandle&) = delete;
UniqueHandle(UniqueHandle&& other) noexcept {
stream = std::move(other.stream);
handle = other.handle;
other.handle = nullptr;
}
/** creates a cuBLAS handle and associates it with the stream specified
*
* Exception Guarantee: Basic
*/
UniqueHandle(Stream strm) : stream(std::move(strm)) {
CV_Assert(stream);
CUDA4DNN_CHECK_CUBLAS(cublasCreate(&handle));
try {
CUDA4DNN_CHECK_CUBLAS(cublasSetStream(handle, stream.get()));
} catch (...) {
/* cublasDestroy won't throw if a valid handle is passed */
CUDA4DNN_CHECK_CUBLAS(cublasDestroy(handle));
throw;
}
}
~UniqueHandle() noexcept {
if (handle) {
/* cublasDestroy won't throw if a valid handle is passed */
CUDA4DNN_CHECK_CUBLAS(cublasDestroy(handle));
}
}
UniqueHandle& operator=(const UniqueHandle&) = delete;
UniqueHandle& operator=(UniqueHandle&& other) noexcept {
CV_Assert(other);
if (&other != this) {
UniqueHandle(std::move(*this)); /* destroy current handle */
stream = std::move(other.stream);
handle = other.handle;
other.handle = nullptr;
}
return *this;
}
/** returns the raw cuBLAS handle */
cublasHandle_t get() const noexcept {
CV_Assert(handle);
return handle;
}
/** returns true if the handle is valid */
explicit operator bool() const noexcept { return static_cast<bool>(handle); }
private:
Stream stream;
cublasHandle_t handle;
};
/** @brief sharable cuBLAS smart handle
*
* Handle is a smart sharable wrapper for cuBLAS handle which ensures that the handle
* is destroyed after all references to the handle are destroyed. The handle must always
* be associated with a non-default stream. The stream must be specified during construction.
*
* @note Moving a Handle object to another invalidates the former
*/
class Handle {
public:
Handle() = default;
Handle(const Handle&) = default;
Handle(Handle&&) = default;
/** creates a cuBLAS handle and associates it with the stream specified
*
* Exception Guarantee: Basic
*/
Handle(Stream strm) : handle(std::make_shared<UniqueHandle>(std::move(strm))) { }
Handle& operator=(const Handle&) = default;
Handle& operator=(Handle&&) = default;
/** returns true if the handle is valid */
explicit operator bool() const noexcept { return static_cast<bool>(handle); }
/** returns the raw cuBLAS handle */
cublasHandle_t get() const noexcept {
CV_Assert(handle);
return handle->get();
}
private:
std::shared_ptr<UniqueHandle> handle;
};
/** @brief GEMM for colummn-major matrices
*
* \f$ C = \alpha AB + \beta C \f$
*
* @tparam T matrix element type (must be `half` or `float`)
*
* @param handle valid cuBLAS Handle
* @param transa use transposed matrix of A for computation
* @param transb use transposed matrix of B for computation
* @param rows_c number of rows in C
* @param cols_c number of columns in C
* @param common_dim common dimension of A (or trans A) and B (or trans B)
* @param alpha scale factor for AB
* @param[in] A pointer to column-major matrix A in device memory
* @param lda leading dimension of matrix A
* @param[in] B pointer to column-major matrix B in device memory
* @param ldb leading dimension of matrix B
* @param beta scale factor for C
* @param[in,out] C pointer to column-major matrix C in device memory
* @param ldc leading dimension of matrix C
*
* Exception Guarantee: Basic
*/
template <class T>
void gemm(const Handle& handle,
bool transa, bool transb,
std::size_t rows_c, std::size_t cols_c, std::size_t common_dim,
T alpha, const DevicePtr<const T> A, std::size_t lda,
const DevicePtr<const T> B, std::size_t ldb,
T beta, const DevicePtr<T> C, std::size_t ldc);
template <> inline
void gemm<half>(const Handle& handle,
bool transa, bool transb,
std::size_t rows_c, std::size_t cols_c, std::size_t common_dim,
half alpha, const DevicePtr<const half> A, std::size_t lda,
const DevicePtr<const half> B, std::size_t ldb,
half beta, const DevicePtr<half> C, std::size_t ldc)
{
CV_Assert(handle);
auto opa = transa ? CUBLAS_OP_T : CUBLAS_OP_N,
opb = transb ? CUBLAS_OP_T : CUBLAS_OP_N;
int irows_c = static_cast<int>(rows_c),
icols_c = static_cast<int>(cols_c),
icommon_dim = static_cast<int>(common_dim),
ilda = static_cast<int>(lda),
ildb = static_cast<int>(ldb),
ildc = static_cast<int>(ldc);
CUDA4DNN_CHECK_CUBLAS(
cublasHgemm(
handle.get(),
opa, opb,
irows_c, icols_c, icommon_dim,
&alpha, A.get(), ilda,
B.get(), ildb,
&beta, C.get(), ildc
)
);
}
template <> inline
void gemm<float>(const Handle& handle,
bool transa, bool transb,
std::size_t rows_c, std::size_t cols_c, std::size_t common_dim,
float alpha, const DevicePtr<const float> A, std::size_t lda,
const DevicePtr<const float> B, std::size_t ldb,
float beta, const DevicePtr<float> C, std::size_t ldc)
{
CV_Assert(handle);
auto opa = transa ? CUBLAS_OP_T : CUBLAS_OP_N,
opb = transb ? CUBLAS_OP_T : CUBLAS_OP_N;
int irows_c = static_cast<int>(rows_c),
icols_c = static_cast<int>(cols_c),
icommon_dim = static_cast<int>(common_dim),
ilda = static_cast<int>(lda),
ildb = static_cast<int>(ldb),
ildc = static_cast<int>(ldc);
CUDA4DNN_CHECK_CUBLAS(
cublasSgemm(
handle.get(),
opa, opb,
irows_c, icols_c, icommon_dim,
&alpha, A.get(), ilda,
B.get(), ildb,
&beta, C.get(), ildc
)
);
}
/** @brief Strided batched GEMM for colummn-major matrices
*
* \f$ C_i = \alpha A_i B_i + \beta C_i \f$ for a stack of matrices A, B and C indexed by i
*
* @tparam T matrix element type (must be `half` or `float`)
*
* @param handle valid cuBLAS Handle
* @param transa use transposed matrix of A_i for computation
* @param transb use transposed matrix of B_i for computation
* @param rows_c number of rows in C_i
* @param cols_c number of columns in C_i
* @param common_dim common dimension of A_i (or trans A_i) and B_i (or trans B_i)
* @param alpha scale factor for A_i B_i
* @param[in] A pointer to stack of column-major matrices A in device memory
* @param lda leading dimension of matrix A_i
* @param strideA stride between matrices in A
* @param[in] B pointer to stack of column-major matrices B in device memory
* @param ldb leading dimension of matrix B_i
* @param strideB stride between matrices in B
* @param beta scale factor for C_i
* @param[in,out] C pointer to stack of column-major matrices C in device memory
* @param ldc leading dimension of matrix C_i
* @param strideC stride between matrices in C
* @param batchCount number of matrices in the batch
*
* Exception Guarantee: Basic
*/
template <class T>
void gemmStridedBatched(const Handle& handle,
bool transa, bool transb,
std::size_t rows_c, std::size_t cols_c, std::size_t common_dim,
T alpha, const DevicePtr<const T> A, std::size_t lda, std::size_t strideA,
const DevicePtr<const T> B, std::size_t ldb, std::size_t strideB,
T beta, const DevicePtr<T> C, std::size_t ldc, std::size_t strideC,
std::size_t batchCount);
template <> inline
void gemmStridedBatched<half>(const Handle& handle,
bool transa, bool transb,
std::size_t rows_c, std::size_t cols_c, std::size_t common_dim,
half alpha, const DevicePtr<const half> A, std::size_t lda, std::size_t strideA,
const DevicePtr<const half> B, std::size_t ldb, std::size_t strideB,
half beta, const DevicePtr<half> C, std::size_t ldc, std::size_t strideC,
std::size_t batchCount)
{
CV_Assert(handle);
const auto opa = transa ? CUBLAS_OP_T : CUBLAS_OP_N,
opb = transb ? CUBLAS_OP_T : CUBLAS_OP_N;
const auto irows_c = static_cast<int>(rows_c),
icols_c = static_cast<int>(cols_c),
icommon_dim = static_cast<int>(common_dim),
ilda = static_cast<int>(lda),
ildb = static_cast<int>(ldb),
ildc = static_cast<int>(ldc);
const auto batch_count = static_cast<int>(batchCount);
const auto stride_a = static_cast<long long int>(strideA),
stride_b = static_cast<long long int>(strideB),
stride_c = static_cast<long long int>(strideC);
CV_Assert(stride_c >= irows_c * icols_c); // output matrices must not overlap
CUDA4DNN_CHECK_CUBLAS(
cublasHgemmStridedBatched(
handle.get(),
opa, opb,
irows_c, icols_c, icommon_dim,
&alpha, A.get(), ilda, stride_a,
B.get(), ildb, stride_b,
&beta, C.get(), ildc, stride_c,
batch_count
)
);
}
template <> inline
void gemmStridedBatched<float>(const Handle& handle,
bool transa, bool transb,
std::size_t rows_c, std::size_t cols_c, std::size_t common_dim,
float alpha, const DevicePtr<const float> A, std::size_t lda, std::size_t strideA,
const DevicePtr<const float> B, std::size_t ldb, std::size_t strideB,
float beta, const DevicePtr<float> C, std::size_t ldc, std::size_t strideC,
std::size_t batchCount)
{
CV_Assert(handle);
const auto opa = transa ? CUBLAS_OP_T : CUBLAS_OP_N,
opb = transb ? CUBLAS_OP_T : CUBLAS_OP_N;
const auto irows_c = static_cast<int>(rows_c),
icols_c = static_cast<int>(cols_c),
icommon_dim = static_cast<int>(common_dim),
ilda = static_cast<int>(lda),
ildb = static_cast<int>(ldb),
ildc = static_cast<int>(ldc);
const auto batch_count = static_cast<int>(batchCount);
const auto stride_a = static_cast<long long int>(strideA),
stride_b = static_cast<long long int>(strideB),
stride_c = static_cast<long long int>(strideC);
CV_Assert(stride_c >= irows_c * icols_c); // output matrices must not overlap
CUDA4DNN_CHECK_CUBLAS(
cublasSgemmStridedBatched(
handle.get(),
opa, opb,
irows_c, icols_c, icommon_dim,
&alpha, A.get(), ilda, stride_a,
B.get(), ildb, stride_b,
&beta, C.get(), ildc, stride_c,
batch_count
)
);
}
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cublas */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_CUBLAS_HPP */

View File

@ -0,0 +1,10 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_CUDNN_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_CUDNN_HPP
#include "cudnn/cudnn.hpp"
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_CUDNN_HPP */

View File

@ -0,0 +1,80 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_CUDA4DNN_CSL_CUDNN_ACTIVATION_HPP
#define OPENCV_DNN_CUDA4DNN_CSL_CUDNN_ACTIVATION_HPP
#include <cudnn.h>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cudnn {
class ActivationDescriptor {
public:
enum class ActivationType {
IDENTITY,
RELU,
CLIPPED_RELU,
TANH,
SIGMOID,
ELU
};
ActivationDescriptor() noexcept : descriptor{ nullptr } { }
ActivationDescriptor(const ActivationDescriptor&) = delete;
ActivationDescriptor(ActivationDescriptor&& other) noexcept
: descriptor{ other.descriptor } {
other.descriptor = nullptr;
}
/* `relu_ceiling_or_elu_alpha`:
* - `alpha` coefficient in ELU activation
* - `ceiling` for CLIPPED_RELU activation
*/
ActivationDescriptor(ActivationType type, double relu_ceiling_or_elu_alpha = 0.0) {
CUDA4DNN_CHECK_CUDNN(cudnnCreateActivationDescriptor(&descriptor));
try {
const auto mode = [type] {
switch(type) {
case ActivationType::IDENTITY: return CUDNN_ACTIVATION_IDENTITY;
case ActivationType::RELU: return CUDNN_ACTIVATION_RELU;
case ActivationType::CLIPPED_RELU: return CUDNN_ACTIVATION_CLIPPED_RELU;
case ActivationType::SIGMOID: return CUDNN_ACTIVATION_SIGMOID;
case ActivationType::TANH: return CUDNN_ACTIVATION_TANH;
case ActivationType::ELU: return CUDNN_ACTIVATION_ELU;
}
CV_Assert(0);
return CUDNN_ACTIVATION_IDENTITY;
} ();
CUDA4DNN_CHECK_CUDNN(cudnnSetActivationDescriptor(descriptor, mode, CUDNN_NOT_PROPAGATE_NAN, relu_ceiling_or_elu_alpha));
} catch(...) {
/* cudnnDestroyActivationDescriptor will not fail for a valid descriptor object */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyActivationDescriptor(descriptor));
throw;
}
}
~ActivationDescriptor() noexcept {
if (descriptor != nullptr) {
/* cudnnDestroyActivationDescriptor will not fail */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyActivationDescriptor(descriptor));
}
}
ActivationDescriptor& operator=(const ActivationDescriptor&) = delete;
ActivationDescriptor& operator=(ActivationDescriptor&& other) noexcept {
descriptor = other.descriptor;
other.descriptor = nullptr;
return *this;
};
cudnnActivationDescriptor_t get() const noexcept { return descriptor; }
private:
cudnnActivationDescriptor_t descriptor;
};
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif /* OPENCV_DNN_CUDA4DNN_CSL_CUDNN_ACTIVATION_HPP */

View File

@ -0,0 +1,637 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_CUDA4DNN_CSL_CUDNN_CONVOLUTION_HPP
#define OPENCV_DNN_CUDA4DNN_CSL_CUDNN_CONVOLUTION_HPP
#include "cudnn.hpp"
#include "activation.hpp"
#include "../pointer.hpp"
#include "../workspace.hpp"
#include <cudnn.h>
#include <cstddef>
#include <array>
#include <algorithm>
#include <vector>
#include <type_traits>
#include <iterator>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cudnn {
/** describe convolution filters
*
* @tparam T type of elements in the kernels
*/
template <class T>
class FilterDescriptor {
public:
FilterDescriptor() noexcept : descriptor{ nullptr } { }
FilterDescriptor(const FilterDescriptor&) = delete;
FilterDescriptor(FilterDescriptor&& other) noexcept
: descriptor{ other.descriptor } {
other.descriptor = nullptr;
}
/** constructs a filter descriptor from the filter dimensions provided in \p shape
*
* Shape dimensions:
* 0: number of filters
* 1: number of input feature maps
* 2..n: kernel dimensions
*
* Exception Guarantee: Strong
*/
template <class SequenceContainer, typename = decltype(std::begin(std::declval<SequenceContainer>()))>
FilterDescriptor(const SequenceContainer& shape) {
constructor(shape.begin(), shape.end());
}
/** constructs a filter descriptor from the filter dimensions provided in [begin, end)
*
* Shape dimensions:
* 0: number of filters
* 1: number of input feature maps
* 2..n: kernel dimensions
*
* Exception Guarantee: Strong
*/
template <class ForwardItr, typename = typename std::enable_if<!std::is_integral<ForwardItr>::value, void>::type> // TODO is_iterator
FilterDescriptor(ForwardItr begin, ForwardItr end) {
constructor(begin, end);
}
/** constructs a filter descriptor from the filter dimensions provided as arguments
*
* Shape dimensions:
* 0: number of filters
* 1: number of input feature maps
* 2..n: kernel dimensions
*
* Exception Guarantee: Strong
*/
template <class ...Sizes>
FilterDescriptor(Sizes ...sizes) {
static_assert(sizeof...(Sizes) >= 3, "filter descriptors must have at least three dimensions");
static_assert(sizeof...(Sizes) <= CUDNN_DIM_MAX, "required rank exceeds maximum supported rank");
std::array<int, sizeof...(Sizes)> dims = { static_cast<int>(sizes)... };
constructor(std::begin(dims), std::end(dims));
}
~FilterDescriptor() noexcept {
if (descriptor != nullptr) {
/* cudnnDestroyFilterDescriptor will not fail for a valid descriptor object */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyFilterDescriptor(descriptor));
}
}
FilterDescriptor& operator=(const FilterDescriptor&) = delete;
FilterDescriptor& operator=(FilterDescriptor&& other) noexcept {
descriptor = other.descriptor;
other.descriptor = nullptr;
return *this;
};
cudnnFilterDescriptor_t get() const noexcept { return descriptor; }
private:
template <class ForwardItr>
void constructor(ForwardItr start, ForwardItr end) {
CV_Assert(start != end);
CV_Assert(std::distance(start, end) >= 3);
CV_Assert(std::distance(start, end) <= CUDNN_DIM_MAX);
CUDA4DNN_CHECK_CUDNN(cudnnCreateFilterDescriptor(&descriptor));
try {
const auto rank = std::distance(start, end);
if (rank == 4) {
std::array<int, 4> dims;
std::copy(start, end, std::begin(dims));
CUDA4DNN_CHECK_CUDNN(
cudnnSetFilter4dDescriptor(
descriptor,
detail::get_data_type<T>(), CUDNN_TENSOR_NCHW,
dims[0], dims[1], dims[2], dims[3]
)
);
} else {
std::vector<int> dims(start, end);
CUDA4DNN_CHECK_CUDNN(
cudnnSetFilterNdDescriptor(
descriptor,
detail::get_data_type<T>(), CUDNN_TENSOR_NCHW,
dims.size(), dims.data()
)
);
}
} catch (...) {
/* cudnnDestroyFilterDescriptor will not fail for a valid descriptor object */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyFilterDescriptor(descriptor));
throw;
}
}
cudnnFilterDescriptor_t descriptor;
};
/** describes a convolution operation
*
* @tparam T type of element participating in convolution
*/
template <class T>
class ConvolutionDescriptor {
public:
ConvolutionDescriptor() noexcept : descriptor{ nullptr } { }
ConvolutionDescriptor(const ConvolutionDescriptor&) = delete;
ConvolutionDescriptor(ConvolutionDescriptor&& other) noexcept
: descriptor{ other.descriptor } {
other.descriptor = nullptr;
}
/** constructs a convolution descriptor
*
* Pre-conditions:
* - \p zero_padding, \p stride and \p dilation must have the same size
*
* The length of the containers is interpreted as the order of the convolution.
*
* Exception Guarantee: Strong
*/
template <class SequenceContainer, typename = decltype(std::begin(std::declval<SequenceContainer>()))>
ConvolutionDescriptor(
const SequenceContainer& zero_padding,
const SequenceContainer& stride,
const SequenceContainer& dilation,
std::size_t group_count)
{
constructor(zero_padding, stride, dilation, group_count);
}
~ConvolutionDescriptor() noexcept {
if (descriptor != nullptr) {
/* cudnnDestroyConvolutionDescriptor will not fail for a valid descriptor object */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyConvolutionDescriptor(descriptor));
}
}
ConvolutionDescriptor& operator=(const ConvolutionDescriptor&) = delete;
ConvolutionDescriptor& operator=(ConvolutionDescriptor&& other) noexcept {
descriptor = other.descriptor;
other.descriptor = nullptr;
return *this;
};
cudnnConvolutionDescriptor_t get() const noexcept { return descriptor; }
private:
template <class SequenceContainer>
void constructor(
const SequenceContainer& zero_padding,
const SequenceContainer& stride,
const SequenceContainer& dilation,
std::size_t group_count)
{
CV_Assert(zero_padding.size() == stride.size());
CV_Assert(zero_padding.size() == dilation.size());
CUDA4DNN_CHECK_CUDNN(cudnnCreateConvolutionDescriptor(&descriptor));
try {
const auto rank = zero_padding.size();
if (rank == 2) {
CUDA4DNN_CHECK_CUDNN(
cudnnSetConvolution2dDescriptor(
descriptor,
zero_padding[0], zero_padding[1],
stride[0], stride[1],
dilation[0], dilation[1],
CUDNN_CROSS_CORRELATION,
detail::get_data_type<T>()
)
);
} else {
std::vector<int> ipadding(std::begin(zero_padding), std::end(zero_padding));
std::vector<int> istride(std::begin(stride), std::end(stride));
std::vector<int> idilation(std::begin(dilation), std::end(dilation));
CUDA4DNN_CHECK_CUDNN(
cudnnSetConvolutionNdDescriptor(
descriptor,
rank, ipadding.data(), istride.data(), idilation.data(),
CUDNN_CROSS_CORRELATION,
detail::get_data_type<T>()
)
);
}
CUDA4DNN_CHECK_CUDNN(cudnnSetConvolutionGroupCount(descriptor, group_count));
#if CUDNN_MAJOR >= 8
/* cuDNN 7 and below use FMA math by default. cuDNN 8 includes TF32 Tensor Ops
* in the default setting. TF32 convolutions have lower precision than FP32.
* Hence, we set the math type to CUDNN_FMA_MATH to reproduce old behavior.
*/
CUDA4DNN_CHECK_CUDNN(cudnnSetConvolutionMathType(descriptor, CUDNN_FMA_MATH));
#endif
if (std::is_same<T, half>::value)
CUDA4DNN_CHECK_CUDNN(cudnnSetConvolutionMathType(descriptor, CUDNN_TENSOR_OP_MATH));
} catch (...) {
/* cudnnDestroyConvolutionDescriptor will not fail for a valid descriptor object */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyConvolutionDescriptor(descriptor));
throw;
}
}
cudnnConvolutionDescriptor_t descriptor;
};
/** wrapper around a convolution algorithm
*
* @tparam T type of elements being convolved
*/
template <class T>
class ConvolutionAlgorithm {
public:
ConvolutionAlgorithm() noexcept : workspace_size{ 0 } { }
ConvolutionAlgorithm(ConvolutionAlgorithm&) = default;
ConvolutionAlgorithm(ConvolutionAlgorithm&&) = default;
/** selects a good algorithm for convolution for given configuration
*
* Exception Guarantee: Strong
*/
ConvolutionAlgorithm(
const Handle& handle,
const ConvolutionDescriptor<T>& convDesc,
const FilterDescriptor<T>& filterDesc,
const TensorDescriptor<T>& inputDesc,
const TensorDescriptor<T>& outputDesc)
{
#if CUDNN_MAJOR >= 8
int requestedAlgoCount = 0, returnedAlgoCount = 0;
CUDA4DNN_CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithmMaxCount(handle.get(), &requestedAlgoCount));
std::vector<cudnnConvolutionFwdAlgoPerf_t> results(requestedAlgoCount);
CUDA4DNN_CHECK_CUDNN(
cudnnGetConvolutionForwardAlgorithm_v7(
handle.get(),
inputDesc.get(), filterDesc.get(), convDesc.get(), outputDesc.get(),
requestedAlgoCount,
&returnedAlgoCount,
&results[0]
)
);
size_t free_memory, total_memory;
CUDA4DNN_CHECK_CUDA(cudaMemGetInfo(&free_memory, &total_memory));
bool found_conv_algorithm = false;
for (int i = 0; i < returnedAlgoCount; i++)
{
if (results[i].status == CUDNN_STATUS_SUCCESS &&
results[i].algo != CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED &&
results[i].memory < free_memory)
{
found_conv_algorithm = true;
algo = results[i].algo;
workspace_size = results[i].memory;
break;
}
}
if (!found_conv_algorithm)
CV_Error (cv::Error::GpuApiCallError, "cuDNN did not return a suitable algorithm for convolution.");
#else
CUDA4DNN_CHECK_CUDNN(
cudnnGetConvolutionForwardAlgorithm(
handle.get(),
inputDesc.get(), filterDesc.get(), convDesc.get(), outputDesc.get(),
CUDNN_CONVOLUTION_FWD_PREFER_FASTEST,
0, /* no memory limit */
&algo
)
);
CUDA4DNN_CHECK_CUDNN(
cudnnGetConvolutionForwardWorkspaceSize(
handle.get(),
inputDesc.get(), filterDesc.get(), convDesc.get(), outputDesc.get(),
algo, &workspace_size
)
);
#endif
}
ConvolutionAlgorithm& operator=(const ConvolutionAlgorithm&) = default;
ConvolutionAlgorithm& operator=(ConvolutionAlgorithm&& other) = default;
cudnnConvolutionFwdAlgo_t get() const noexcept { return algo; }
/** number of bytes of workspace memory required by the algorithm */
std::size_t get_workspace_size() const noexcept { return workspace_size; }
private:
cudnnConvolutionFwdAlgo_t algo;
std::size_t workspace_size;
};
/** gives the shape of the output tensor of convolution
*
* Exception Guarantee: Basic
*/
template <class T>
void getConvolutionForwardOutputDim(
const ConvolutionDescriptor<T>& convDesc,
const FilterDescriptor<T>& filterDesc,
const TensorDescriptor<T>& inputDesc,
std::vector<int>& output)
{
output.clear();
output.resize(CUDNN_DIM_MAX); /* we use `output` to hold temporaries */
std::vector<int> temp(CUDNN_DIM_MAX);
cudnnDataType_t tempDataType;
CUDA4DNN_CHECK_CUDNN(
cudnnGetTensorNdDescriptor(
inputDesc.get(),
CUDNN_DIM_MAX + 1, /* according to docs, this is what we do to get the rank */
&tempDataType,
output.data(),
temp.data(),
temp.data()
)
);
const auto rank = output[0];
output.resize(rank);
CUDA4DNN_CHECK_CUDNN(
cudnnGetConvolutionNdForwardOutputDim(
convDesc.get(), inputDesc.get(), filterDesc.get(), rank, output.data()
)
);
}
/** @brief performs convolution
*
* dstValue = alpha * result + beta * priorDstValue
*
* @tparam T convolution element type (must be `half` or `float`)
*
* @param handle valid cuDNN Handle
* @param convDesc convolution description
* @param convAlgo algorithm to use for convolution
* @param workspace workspace memory which meets the requirements of \p convAlgo
* @param filterDesc filter descriptor
* @param[in] filterPtr pointer to device memory containing the filters
* @param inputDesc tensor descriptor describing the input
* @param[in] inputPtr pointer to input tensor in device memory
* @param alpha result scale factor
* @param beta previous value scale factor
* @param outputDesc tensor descriptor describing the output
* @param[out] outputPtr pointer to output tensor in device memory
*
* Exception Guarantee: Basic
*/
template <class T>
void convolve(
const Handle& handle,
const ConvolutionDescriptor<T>& convDesc,
const ConvolutionAlgorithm<T>& convAlgo,
WorkspaceInstance workspace,
const FilterDescriptor<T>& filterDesc,
DevicePtr<const T> filterPtr,
const TensorDescriptor<T>& inputDesc,
DevicePtr<const T> inputPtr,
T alpha, T beta,
const TensorDescriptor<T>& outputDesc,
DevicePtr<T> outputPtr)
{
CV_Assert(handle);
CUDA4DNN_CHECK_CUDNN(
cudnnConvolutionForward(
handle.get(),
&alpha, inputDesc.get(), inputPtr.get(),
filterDesc.get(), filterPtr.get(),
convDesc.get(), convAlgo.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes(),
&beta, outputDesc.get(), outputPtr.get()
)
);
}
template <> inline
void convolve(
const Handle& handle,
const ConvolutionDescriptor<half>& convDesc,
const ConvolutionAlgorithm<half>& convAlgo,
WorkspaceInstance workspace,
const FilterDescriptor<half>& filterDesc,
DevicePtr<const half> filterPtr,
const TensorDescriptor<half>& inputDesc,
DevicePtr<const half> inputPtr,
half alpha, half beta,
const TensorDescriptor<half>& outputDesc,
DevicePtr<half> outputPtr)
{
CV_Assert(handle);
/* we specalize for fp16 as the scaling factors must be provided as `float` */
float alpha_ = alpha, beta_ = beta;
CUDA4DNN_CHECK_CUDNN(
cudnnConvolutionForward(
handle.get(),
&alpha_, inputDesc.get(), inputPtr.get(),
filterDesc.get(), filterPtr.get(),
convDesc.get(), convAlgo.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes(),
&beta_, outputDesc.get(), outputPtr.get()
)
);
}
/** @brief performs convolution, bias addition and activation simultaneously
*
* dstValue = act(alpha * conv(input) + bias)
*
* @tparam T convolution element type (must be `half` or `float`)
*
* @param handle valid cuDNN Handle
* @param convDesc convolution description
* @param convAlgo algorithm to use for convolution
* @param workspace workspace memory which meets the requirements of \p convAlgo
* @param filterDesc filter descriptor
* @param[in] filterPtr pointer to device memory containing the filters
* @param alpha convolution scale factor
* @param inputDesc tensor descriptor describing the input
* @param[in] inputPtr pointer to input tensor in device memory
* @param biasDesc tensor descriptor describing the bias
* @param[in] biasPtr pointer to bias tensor in device memory
* @param actDesc activation descriptor
* @param outputDesc tensor descriptor describing the output
* @param[out] outputPtr pointer to output tensor in device memory
*
* Exception Guarantee: Basic
*/
template <class T>
void convolve_with_bias_activation(
const Handle& handle,
T alpha,
const ConvolutionDescriptor<T>& convDesc,
const ConvolutionAlgorithm<T>& convAlgo,
WorkspaceInstance workspace,
const FilterDescriptor<T>& filterDesc,
DevicePtr<const T> filterPtr,
const TensorDescriptor<T>& inputDesc,
DevicePtr<const T> inputPtr,
const TensorDescriptor<T>& biasDesc,
DevicePtr<const T> biasPtr,
const ActivationDescriptor& actDesc,
const TensorDescriptor<T>& outputDesc,
DevicePtr<T> outputPtr)
{
CV_Assert(handle);
T alpha2 = 0.0;
CUDA4DNN_CHECK_CUDNN(cudnnConvolutionBiasActivationForward(
handle.get(),
&alpha, inputDesc.get(), inputPtr.get(),
filterDesc.get(), filterPtr.get(),
convDesc.get(), convAlgo.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes(),
&alpha2, outputDesc.get(), outputPtr.get(),
biasDesc.get(), biasPtr.get(),
actDesc.get(),
outputDesc.get(), outputPtr.get()));
}
template <> inline
void convolve_with_bias_activation(
const Handle& handle,
half alpha,
const ConvolutionDescriptor<half>& convDesc,
const ConvolutionAlgorithm<half>& convAlgo,
WorkspaceInstance workspace,
const FilterDescriptor<half>& filterDesc,
DevicePtr<const half> filterPtr,
const TensorDescriptor<half>& inputDesc,
DevicePtr<const half> inputPtr,
const TensorDescriptor<half>& biasDesc,
DevicePtr<const half> biasPtr,
const ActivationDescriptor& actDesc,
const TensorDescriptor<half>& outputDesc,
DevicePtr<half> outputPtr)
{
CV_Assert(handle);
float alpha_ = alpha, alpha2 = 0.0;
CUDA4DNN_CHECK_CUDNN(cudnnConvolutionBiasActivationForward(
handle.get(),
&alpha_, inputDesc.get(), inputPtr.get(),
filterDesc.get(), filterPtr.get(),
convDesc.get(), convAlgo.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes(),
&alpha2, outputDesc.get(), outputPtr.get(),
biasDesc.get(), biasPtr.get(),
actDesc.get(),
outputDesc.get(), outputPtr.get()));
}
/** @brief performs convolution, bias addition, eltwise addition and activation simultaneously
*
* dstValue = act(alpha1 * conv(input) + bias + alpha2 * eltwise)
*
* @tparam T convolution element type (must be `half` or `float`)
*
* @param handle valid cuDNN Handle
* @param convDesc convolution description
* @param convAlgo algorithm to use for convolution
* @param workspace workspace memory which meets the requirements of \p convAlgo
* @param filterDesc filter descriptor
* @param[in] filterPtr pointer to device memory containing the filters
* @param alpha1 convolution scale factor
* @param inputDesc tensor descriptor describing the input
* @param[in] inputPtr pointer to input tensor in device memory
* @param biasDesc tensor descriptor describing the bias
* @param[in] biasPtr pointer to bias tensor in device memory
* @param alpha2 eltwise scale factor
* @param eltwiseDesc tensor descriptor describing the eltwise tensor
* @param[in] eltwisePtr pointer to the eltwise tensor in device memory
* @param actDesc activation descriptor
* @param outputDesc tensor descriptor describing the output
* @param[out] outputPtr pointer to output tensor in device memory
*
* Exception Guarantee: Basic
*/
template <class T>
void convolve_with_bias_eltwise_activation(
const Handle& handle,
T alpha1,
const ConvolutionDescriptor<T>& convDesc,
const ConvolutionAlgorithm<T>& convAlgo,
WorkspaceInstance workspace,
const FilterDescriptor<T>& filterDesc,
DevicePtr<const T> filterPtr,
const TensorDescriptor<T>& inputDesc,
DevicePtr<const T> inputPtr,
const TensorDescriptor<T>& biasDesc,
DevicePtr<const T> biasPtr,
T alpha2,
const TensorDescriptor<T>& eltwiseDesc,
DevicePtr<const T> eltwisePtr,
const ActivationDescriptor& actDesc,
const TensorDescriptor<T>& outputDesc,
DevicePtr<T> outputPtr)
{
CV_Assert(handle);
CUDA4DNN_CHECK_CUDNN(cudnnConvolutionBiasActivationForward(
handle.get(),
&alpha1, inputDesc.get(), inputPtr.get(),
filterDesc.get(), filterPtr.get(),
convDesc.get(), convAlgo.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes(),
&alpha2, eltwiseDesc.get(), eltwisePtr.get(),
biasDesc.get(), biasPtr.get(),
actDesc.get(),
outputDesc.get(), outputPtr.get()));
}
template <> inline
void convolve_with_bias_eltwise_activation(
const Handle& handle,
half alpha1,
const ConvolutionDescriptor<half>& convDesc,
const ConvolutionAlgorithm<half>& convAlgo,
WorkspaceInstance workspace,
const FilterDescriptor<half>& filterDesc,
DevicePtr<const half> filterPtr,
const TensorDescriptor<half>& inputDesc,
DevicePtr<const half> inputPtr,
const TensorDescriptor<half>& biasDesc,
DevicePtr<const half> biasPtr,
half alpha2,
const TensorDescriptor<half>& eltwiseDesc,
DevicePtr<const half> eltwisePtr,
const ActivationDescriptor& actDesc,
const TensorDescriptor<half>& outputDesc,
DevicePtr<half> outputPtr)
{
CV_Assert(handle);
float alpha1_ = alpha1, alpha2_ = alpha2;
CUDA4DNN_CHECK_CUDNN(cudnnConvolutionBiasActivationForward(
handle.get(),
&alpha1_, inputDesc.get(), inputPtr.get(),
filterDesc.get(), filterPtr.get(),
convDesc.get(), convAlgo.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes(),
&alpha2_, eltwiseDesc.get(), eltwisePtr.get(),
biasDesc.get(), biasPtr.get(),
actDesc.get(),
outputDesc.get(), outputPtr.get()));
}
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif /* OPENCV_DNN_CUDA4DNN_CSL_CUDNN_CONVOLUTION_HPP */

View File

@ -0,0 +1,292 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_CUDA4DNN_CSL_CUDNN_CUDNN_HPP
#define OPENCV_DNN_CUDA4DNN_CSL_CUDNN_CUDNN_HPP
#include "../pointer.hpp"
#include <cudnn.h>
#include <cstddef>
#include <array>
#include <algorithm>
#include <functional>
#include <numeric>
#include <vector>
#include <type_traits>
#include <iterator>
#define CUDA4DNN_CHECK_CUDNN(call) \
::cv::dnn::cuda4dnn::csl::cudnn::detail::check((call), CV_Func, __FILE__, __LINE__)
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cudnn {
/** @brief exception class for errors thrown by the cuDNN API */
class cuDNNException : public CUDAException {
public:
cuDNNException(cudnnStatus_t code, const std::string& msg, const std::string& func, const std::string& file, int line)
: CUDAException(Error::GpuApiCallError, msg, func, file, line), cudnnError{code}
{
}
cudnnStatus_t getCUDNNStatus() const noexcept { return cudnnError; }
private:
cudnnStatus_t cudnnError;
};
namespace detail {
inline void check(cudnnStatus_t status, const char* func, const char* file, int line) {
if (status != CUDNN_STATUS_SUCCESS)
throw cuDNNException(status, cudnnGetErrorString(status), func, file, line);
}
/** get_data_type<T> returns the equivalent cudnn enumeration constant for type T */
using cudnn_data_enum_type = decltype(CUDNN_DATA_FLOAT);
template <class> cudnn_data_enum_type get_data_type();
template <> inline cudnn_data_enum_type get_data_type<half>() { return CUDNN_DATA_HALF; }
template <> inline cudnn_data_enum_type get_data_type<float>() { return CUDNN_DATA_FLOAT; }
}
/** @brief noncopyable cuDNN smart handle
*
* UniqueHandle is a smart non-sharable wrapper for cuDNN handle which ensures that the handle
* is destroyed after use.
*/
class UniqueHandle {
public:
UniqueHandle() noexcept : handle{ nullptr } { }
UniqueHandle(UniqueHandle&) = delete;
UniqueHandle(UniqueHandle&& other) noexcept {
stream = std::move(other.stream);
handle = other.handle;
other.handle = nullptr;
}
/** creates a cuDNN handle and associates it with the stream specified
*
* Exception Guarantee: Basic
*/
UniqueHandle(Stream strm) : stream(std::move(strm)) {
CV_Assert(stream);
CUDA4DNN_CHECK_CUDNN(cudnnCreate(&handle));
try {
CUDA4DNN_CHECK_CUDNN(cudnnSetStream(handle, stream.get()));
} catch (...) {
/* cudnnDestroy won't throw if a valid handle is passed */
CUDA4DNN_CHECK_CUDNN(cudnnDestroy(handle));
throw;
}
}
~UniqueHandle() noexcept {
if (handle != nullptr) {
/* cudnnDestroy won't throw if a valid handle is passed */
CUDA4DNN_CHECK_CUDNN(cudnnDestroy(handle));
}
}
UniqueHandle& operator=(const UniqueHandle&) = delete;
UniqueHandle& operator=(UniqueHandle&& other) noexcept {
CV_Assert(other);
if (&other != this) {
UniqueHandle(std::move(*this)); /* destroy current handle */
stream = std::move(other.stream);
handle = other.handle;
other.handle = nullptr;
}
return *this;
}
/** returns the raw cuDNN handle */
cudnnHandle_t get() const noexcept {
CV_Assert(handle);
return handle;
}
/** returns true if the handle is valid */
explicit operator bool() const noexcept { return static_cast<bool>(handle); }
private:
Stream stream;
cudnnHandle_t handle;
};
/** @brief sharable cuDNN smart handle
*
* Handle is a smart sharable wrapper for cuDNN handle which ensures that the handle
* is destroyed after all references to the handle are destroyed. The handle must always
* be associated with a non-default stream. The stream must be specified during construction.
*
* @note Moving a Handle object to another invalidates the former
*/
class Handle {
public:
Handle() = default;
Handle(const Handle&) = default;
Handle(Handle&&) = default;
/** creates a cuDNN handle and associates it with the stream specified
*
* Exception Guarantee: Basic
*/
Handle(Stream strm) : handle(std::make_shared<UniqueHandle>(std::move(strm))) { }
Handle& operator=(const Handle&) = default;
Handle& operator=(Handle&&) = default;
/** returns true if the handle is valid */
explicit operator bool() const noexcept { return static_cast<bool>(handle); }
/** returns the raw cuDNN handle */
cudnnHandle_t get() const noexcept {
CV_Assert(handle);
return handle->get();
}
private:
std::shared_ptr<UniqueHandle> handle;
};
/** describe a tensor
*
* @tparam T type of elements in the tensor
*/
template <class T>
class TensorDescriptor {
public:
TensorDescriptor() noexcept : descriptor{ nullptr } { }
TensorDescriptor(const TensorDescriptor&) = delete;
TensorDescriptor(TensorDescriptor&& other) noexcept
: descriptor{ other.descriptor } {
other.descriptor = nullptr;
}
/** constructs a tensor descriptor from the axis lengths provided in \p shape
*
* Exception Guarantee: Basic
*/
template <class SequenceContainer, typename = decltype(std::begin(std::declval<SequenceContainer>()))>
TensorDescriptor(const SequenceContainer& shape) {
constructor(shape.begin(), shape.end());
}
/** constructs a tensor descriptor from the axis lengths provided in [begin, end)
*
* Exception Guarantee: Basic
*/
template <class ForwardItr, typename = typename std::enable_if<!std::is_integral<ForwardItr>::value, void>::type> // TODO is_iterator
TensorDescriptor(ForwardItr begin, ForwardItr end) {
constructor(begin, end);
}
/** constructs a tensor descriptor from the axis lengths provided as arguments
*
* Exception Guarantee: Basic
*/
template <class ...Sizes>
TensorDescriptor(Sizes ...sizes) {
static_assert(sizeof...(Sizes) <= CUDNN_DIM_MAX, "required rank exceeds maximum supported rank");
std::array<int, sizeof...(Sizes)> dims = { static_cast<int>(sizes)... };
constructor(std::begin(dims), std::end(dims));
}
~TensorDescriptor() noexcept {
if (descriptor != nullptr) {
/* cudnnDestroyTensorDescriptor will not fail */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyTensorDescriptor(descriptor));
}
}
TensorDescriptor& operator=(const TensorDescriptor&) = delete;
TensorDescriptor& operator=(TensorDescriptor&& other) noexcept {
descriptor = other.descriptor;
other.descriptor = nullptr;
return *this;
};
cudnnTensorDescriptor_t get() const noexcept { return descriptor; }
private:
template <class ForwardItr>
void constructor(ForwardItr start, ForwardItr end) {
CV_Assert(start != end);
CV_Assert(std::distance(start, end) <= CUDNN_DIM_MAX);
CUDA4DNN_CHECK_CUDNN(cudnnCreateTensorDescriptor(&descriptor));
try {
/* cuDNN documentation recommends using the 4d tensor API whenever possible
* hence, we create a 4d tensor descriptors for 3d tensor
*/
const auto rank = std::distance(start, end);
if (rank <= 4) {
std::array<int, 4> dims;
std::fill(std::begin(dims), std::end(dims), 1);
/* suppose we have a 3d tensor, the first axis is the batch axis and
* the second axis is the channel axis (generally)
*
* cuDNN frequently assumes that the first axis is the batch axis and the
* second axis is the channel axis; hence, we copy the shape of a lower rank
* tensor to the beginning of `dims`
*/
std::copy(start, end, std::begin(dims));
CUDA4DNN_CHECK_CUDNN(
cudnnSetTensor4dDescriptor(descriptor,
CUDNN_TENSOR_NCHW, detail::get_data_type<T>(),
dims[0], dims[1], dims[2], dims[3]
)
);
} else {
std::vector<int> stride(rank);
stride.back() = 1;
/* WHAT WE HAVE NOW:
* stride[-1] = 1
* stride[-2] = garbage
* stride[-3] = garbage
* stride[-4] = garbage
* ...
*/
std::copy(start + 1, end, stride.begin());
/* WHAT WE HAVE NOW:
* stride[-1] = 1
* stride[-2] = dim[-1]
* stride[-3] = dim[-2]
* stride[-4] = dim[-3]
* ...
*/
std::partial_sum(stride.rbegin(), stride.rend(), stride.rbegin(), std::multiplies<int>());
/* WHAT WE HAVE NOW:
* stride[-1] = 1
* stride[-2] = stride[-1] * dim[-1]
* stride[-3] = stride[-2] * dim[-2]
* stride[-4] = stride[-3] * dim[-3]
* ...
*/
std::vector<int> dims(start, end);
CUDA4DNN_CHECK_CUDNN(
cudnnSetTensorNdDescriptor(descriptor,
detail::get_data_type<T>(), rank,
dims.data(), stride.data()
)
);
}
} catch (...) {
/* cudnnDestroyTensorDescriptor will not fail */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyTensorDescriptor(descriptor));
throw;
}
}
cudnnTensorDescriptor_t descriptor;
};
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif /* OPENCV_DNN_CUDA4DNN_CSL_CUDNN_HPP */

View File

@ -0,0 +1,205 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_CUDA4DNN_CSL_CUDNN_LRN_HPP
#define OPENCV_DNN_CUDA4DNN_CSL_CUDNN_LRN_HPP
#include "cudnn.hpp"
#include "../pointer.hpp"
#include "../workspace.hpp"
#include <opencv2/core.hpp>
#include <cudnn.h>
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cudnn {
class LRNDescriptor {
public:
enum class LRNType {
ACROSS_CHANNELS,
WITHIN_CHANNEL
};
LRNDescriptor() noexcept : descriptor{ nullptr } { }
LRNDescriptor(const LRNDescriptor&) = delete;
LRNDescriptor(LRNDescriptor&& other) noexcept
: descriptor{ other.descriptor }, type{ other.type } {
other.descriptor = nullptr;
}
/** sets up a LRN descriptor
*
* @param local_size size of the normalization window
* @param alpha variance scaling parameter
* @param beta power parameter
* @param k bias parameter
*
* @note \p alpha is divided by the window width in across channels mode
* @note \p alpha is divided by the (window width)^spatialDimensions in within channel mode
*
* @note the \p alpha, \p beta and \p k will be type casted to the tensor datatype during operation
*
* Exception Guarantee: Basic
*/
LRNDescriptor(std::size_t local_size, double alpha, double beta, double k, LRNType type_) {
constructor(local_size, alpha, beta, k, type_);
}
~LRNDescriptor() noexcept {
if (descriptor != nullptr) {
/* cudnnDestroyLRNDescriptor will not fail for a valid descriptor */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyLRNDescriptor(descriptor));
}
}
LRNDescriptor& operator=(const LRNDescriptor&) = delete;
LRNDescriptor& operator=(LRNDescriptor&& other) noexcept {
descriptor = other.descriptor;
type = other.type;
other.descriptor = nullptr;
return *this;
};
cudnnLRNDescriptor_t get() const noexcept { return descriptor; }
LRNType getType() const noexcept { return type; }
private:
void constructor(std::size_t local_size, double alpha, double beta, double k, LRNType type_) {
CV_Assert(CUDNN_LRN_MIN_N <= local_size && local_size <= CUDNN_LRN_MAX_N);
type = type_;
CUDA4DNN_CHECK_CUDNN(cudnnCreateLRNDescriptor(&descriptor));
try {
CUDA4DNN_CHECK_CUDNN(
cudnnSetLRNDescriptor(
descriptor,
local_size,
alpha,
beta,
k
)
);
} catch (...) {
/* cudnnDestroyLRNDescriptor will not fail for a valid descriptor */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyLRNDescriptor(descriptor));
throw;
}
}
cudnnLRNDescriptor_t descriptor;
LRNType type;
};
/** @brief performs local response normalization
*
* dstValue = alpha * result + beta * priorDstValue
*
* @tparam T element type (must be `half` or `float`)
*
* @param handle valid cuDNN Handle
* @param lrnDesc LRN description
* @param inputDesc tensor descriptor describing the input
* @param[in] inputPtr pointer to input tensor in device memory
* @param alpha result scale factor
* @param beta previous value scale factor
* @param outputDesc tensor descriptor describing the output
* @param[out] outputPtr pointer to output tensor in device memory
* @param workspace workspace memory which meets the requirements of \p convAlgo
*
* Exception Guarantee: Basic
*/
template <class T>
void LRNForward(
const Handle& handle,
const LRNDescriptor& lrnDesc,
const TensorDescriptor<T>& inputDesc,
DevicePtr<const T> inputPtr,
T alpha, T beta,
const TensorDescriptor<T>& outputDesc,
DevicePtr<T> outputPtr,
WorkspaceInstance workspace)
{
CV_Assert(handle);
if (lrnDesc.getType() == LRNDescriptor::LRNType::ACROSS_CHANNELS) {
CUDA4DNN_CHECK_CUDNN(
cudnnLRNCrossChannelForward(
handle.get(),
lrnDesc.get(), CUDNN_LRN_CROSS_CHANNEL_DIM1,
&alpha, inputDesc.get(), inputPtr.get(),
&beta, outputDesc.get(), outputPtr.get()
)
);
} else if (lrnDesc.getType() == LRNDescriptor::LRNType::WITHIN_CHANNEL) {
std::size_t size;
CUDA4DNN_CHECK_CUDNN(cudnnGetTensorSizeInBytes(inputDesc.get(), &size));
DevicePtr<void> temp1 = workspace.get_span<half>(size).data();
DevicePtr<void> temp2 = workspace.get_span<half>(size).data();
CUDA4DNN_CHECK_CUDNN(
cudnnDivisiveNormalizationForward(
handle.get(),
lrnDesc.get(), CUDNN_DIVNORM_PRECOMPUTED_MEANS,
&alpha, inputDesc.get(), inputPtr.get(),
NULL,
static_cast<void*>(temp1), static_cast<void*>(temp2),
&beta, outputDesc.get(), outputPtr.get()
)
);
}
}
template <> inline
void LRNForward(
const Handle& handle,
const LRNDescriptor& lrnDesc,
const TensorDescriptor<half>& inputDesc,
DevicePtr<const half> inputPtr,
half alpha, half beta,
const TensorDescriptor<half>& outputDesc,
DevicePtr<half> outputPtr,
WorkspaceInstance workspace)
{
CV_Assert(handle);
/* we specalize for fp16 as the scaling factors must be provided as `float` */
float alpha_ = alpha, beta_ = beta;
if (lrnDesc.getType() == LRNDescriptor::LRNType::ACROSS_CHANNELS) {
CUDA4DNN_CHECK_CUDNN(
cudnnLRNCrossChannelForward(
handle.get(),
lrnDesc.get(), CUDNN_LRN_CROSS_CHANNEL_DIM1,
&alpha_, inputDesc.get(), inputPtr.get(),
&beta_, outputDesc.get(), outputPtr.get()
)
);
} else if (lrnDesc.getType() == LRNDescriptor::LRNType::WITHIN_CHANNEL) {
std::size_t size;
CUDA4DNN_CHECK_CUDNN(cudnnGetTensorSizeInBytes(inputDesc.get(), &size));
DevicePtr<void> temp1 = workspace.get_span<half>(size).data();
DevicePtr<void> temp2 = workspace.get_span<half>(size).data();
CUDA4DNN_CHECK_CUDNN(
cudnnDivisiveNormalizationForward(
handle.get(),
lrnDesc.get(), CUDNN_DIVNORM_PRECOMPUTED_MEANS,
&alpha_, inputDesc.get(), inputPtr.get(),
NULL,
static_cast<void*>(temp1), static_cast<void*>(temp2),
&beta_, outputDesc.get(), outputPtr.get()
)
);
}
}
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif /* OPENCV_DNN_CUDA4DNN_CSL_CUDNN_LRN_HPP */

View File

@ -0,0 +1,236 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_CUDA4DNN_CSL_CUDNN_POOLING_HPP
#define OPENCV_DNN_CUDA4DNN_CSL_CUDNN_POOLING_HPP
#include "cudnn.hpp"
#include "../pointer.hpp"
#include <opencv2/core.hpp>
#include <cudnn.h>
#include <cstddef>
#include <array>
#include <algorithm>
#include <vector>
#include <type_traits>
#include <iterator>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cudnn {
class PoolingDescriptor {
public:
enum class PoolingType {
MAX,
MAX_DETERMINISTIC,
AVERAGE_EXCLUDE_PADDING,
AVERAGE_INCLUDE_PADDING
};
PoolingDescriptor() noexcept : descriptor{ nullptr } { }
PoolingDescriptor(const PoolingDescriptor&) = delete;
PoolingDescriptor(PoolingDescriptor&& other) noexcept
: descriptor{ other.descriptor } {
other.descriptor = nullptr;
}
/** constructs a pooling descriptor
*
* Pre-conditions:
* - \p window_size, \p padding and \p stride must have the same size
*
* The length of the containers is interpreted as the order of the pooling operation.
*
* Exception Guarantee: Basic
*/
template <class SequenceContainer, typename = decltype(std::begin(std::declval<SequenceContainer>()))>
PoolingDescriptor(
const SequenceContainer& window_size,
const SequenceContainer& padding,
const SequenceContainer& stride,
PoolingType type)
{
constructor(window_size, padding, stride, type);
}
~PoolingDescriptor() noexcept {
if (descriptor != nullptr) {
/* cudnnDestroyPoolingDescriptor will not fail for a valid descriptor */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyPoolingDescriptor(descriptor));
}
}
PoolingDescriptor& operator=(const PoolingDescriptor&) = delete;
PoolingDescriptor& operator=(PoolingDescriptor&& other) noexcept {
descriptor = other.descriptor;
other.descriptor = nullptr;
return *this;
};
cudnnPoolingDescriptor_t get() const noexcept { return descriptor; }
private:
template <class SequenceContainer>
void constructor(
const SequenceContainer& window_size,
const SequenceContainer& padding,
const SequenceContainer& stride,
PoolingType type)
{
CV_Assert(window_size.size() == padding.size());
CV_Assert(window_size.size() == stride.size());
auto get_pooling_type = [] (PoolingType type) {
switch (type) {
case PoolingType::MAX:
return CUDNN_POOLING_MAX;
case PoolingType::MAX_DETERMINISTIC:
return CUDNN_POOLING_MAX_DETERMINISTIC;
case PoolingType::AVERAGE_EXCLUDE_PADDING:
return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
case PoolingType::AVERAGE_INCLUDE_PADDING:
return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
}
CV_Error(Error::StsBadArg, "unknown pooling type");
};
CUDA4DNN_CHECK_CUDNN(cudnnCreatePoolingDescriptor(&descriptor));
try {
const auto rank = window_size.size();
if (rank == 2) {
CUDA4DNN_CHECK_CUDNN(
cudnnSetPooling2dDescriptor(
descriptor,
get_pooling_type(type), CUDNN_PROPAGATE_NAN,
window_size[0], window_size[1],
padding[0], padding[1],
stride[0], stride[1]
)
);
} else {
std::vector<int> iwindow_size(std::begin(window_size), std::end(window_size));
std::vector<int> ipadding(std::begin(padding), std::end(padding));
std::vector<int> istride(std::begin(stride), std::end(stride));
CUDA4DNN_CHECK_CUDNN(
cudnnSetPoolingNdDescriptor(
descriptor,
get_pooling_type(type), CUDNN_PROPAGATE_NAN,
rank, iwindow_size.data(), ipadding.data(), istride.data()
)
);
}
} catch (...) {
/* cudnnDestroyPoolingDescriptor will not fail for a valid descriptor */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyPoolingDescriptor(descriptor));
throw;
}
}
cudnnPoolingDescriptor_t descriptor;
};
/** gives the shape of the output tensor after pooling
*
* @note it's not required to enforce the this shape in the output tensor; slightly different shapes will work
*
* Exception Guarantee: Basic
*/
template <class T> inline
void getPoolingForwardOutputDim(
const PoolingDescriptor& poolingDesc,
const TensorDescriptor<T>& inputDesc,
std::vector<int>& output_dim)
{
output_dim.clear();
output_dim.resize(CUDNN_DIM_MAX); /* we use `output_dim` to hold temporaries */
std::vector<int> temp(CUDNN_DIM_MAX);
cudnnDataType_t tempDataType;
CUDA4DNN_CHECK_CUDNN(
cudnnGetTensorNdDescriptor(
inputDesc.get(),
CUDNN_DIM_MAX + 1, /* according to docs, this is what we do to get the rank */
&tempDataType,
output_dim.data(),
temp.data(),
temp.data()
)
);
const auto rank = output_dim[0];
output_dim.resize(rank);
CUDA4DNN_CHECK_CUDNN(
cudnnGetPoolingNdForwardOutputDim(poolingDesc.get(), inputDesc.get(), rank, output_dim.data())
);
}
/** @brief performs pooling operation
*
* dstValue = alpha * result + beta * priorDstValue
*
* @tparam T pooling element type (must be `half` or `float`)
*
* @param handle valid cuDNN Handle
* @param poolingDesc pooling description
* @param inputDesc tensor descriptor describing the input
* @param[in] inputPtr pointer to input tensor in device memory
* @param alpha result scale factor
* @param beta previous value scale factor
* @param outputDesc tensor descriptor describing the output
* @param[out] outputPtr pointer to output tensor in device memory
*
* Exception Guarantee: Basic
*/
template <class T>
void pool(
const Handle& handle,
const PoolingDescriptor& poolingDesc,
const TensorDescriptor<T>& inputDesc,
const DevicePtr<const T> inputPtr,
T alpha, T beta,
const TensorDescriptor<T>& outputDesc,
DevicePtr<T> outputPtr)
{
CV_Assert(handle);
CUDA4DNN_CHECK_CUDNN(
cudnnPoolingForward(
handle.get(),
poolingDesc.get(),
&alpha, inputDesc.get(), inputPtr.get(),
&beta, outputDesc.get(), outputPtr.get()
)
);
}
template <> inline
void pool(
const Handle& handle,
const PoolingDescriptor& poolingDesc,
const TensorDescriptor<half>& inputDesc,
const DevicePtr<const half> inputPtr,
half alpha, half beta,
const TensorDescriptor<half>& outputDesc,
DevicePtr<half> outputPtr)
{
CV_Assert(handle);
/* we specalize for fp16 as the scaling factors must be provided as `float` */
float alpha_ = alpha, beta_ = beta;
CUDA4DNN_CHECK_CUDNN(
cudnnPoolingForward(
handle.get(),
poolingDesc.get(),
&alpha_, inputDesc.get(), inputPtr.get(),
&beta_, outputDesc.get(), outputPtr.get()
)
);
}
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif /* OPENCV_DNN_CUDA4DNN_CSL_CUDNN_POOLING_HPP */

View File

@ -0,0 +1,68 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_CUDA4DNN_CSL_CUDNN_SOFTMAX_HPP
#define OPENCV_DNN_CUDA4DNN_CSL_CUDNN_SOFTMAX_HPP
#include "cudnn.hpp"
#include "../pointer.hpp"
#include <cudnn.h>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cudnn {
/** @brief computes softmax (or log softmax)
*
* @tparam T element type (must be `half` or `float`)
*
* @param handle valid cuDNN handle
* @param outputDesc tensor descriptor for A
* @param[out] output pointer to tensor in device memory
* @param inputDesc tensor descriptor for C
* @param[in] input pointer to tensor in device memory
* @param log apply log on probabilities
*
* Exception Guarantee: Basic
*/
template <class T>
void softmax(const cudnn::Handle& handle,
const TensorDescriptor<T>& outputDesc, DevicePtr<T> output,
const TensorDescriptor<T>& inputDesc, DevicePtr<const T> input,
bool log)
{
T alpha = 1.0, beta = 0.0;
cudnnSoftmaxAlgorithm_t algo = log ? CUDNN_SOFTMAX_LOG : CUDNN_SOFTMAX_ACCURATE;
CUDA4DNN_CHECK_CUDNN(
cudnnSoftmaxForward(
handle.get(),
algo, CUDNN_SOFTMAX_MODE_CHANNEL,
&alpha, inputDesc.get(), input.get(),
&beta, outputDesc.get(), output.get()
)
);
}
template <> inline
void softmax(const cudnn::Handle& handle,
const TensorDescriptor<half>& outputDesc, DevicePtr<half> output,
const TensorDescriptor<half>& inputDesc, DevicePtr<const half> input,
bool log)
{
/* we specalize for fp16 as the scaling factors must be provided as `float` */
float alpha = 1.0, beta = 0.0;
cudnnSoftmaxAlgorithm_t algo = log ? CUDNN_SOFTMAX_LOG : CUDNN_SOFTMAX_ACCURATE;
CUDA4DNN_CHECK_CUDNN(
cudnnSoftmaxForward(
handle.get(),
algo, CUDNN_SOFTMAX_MODE_CHANNEL,
&alpha, inputDesc.get(), input.get(),
&beta, outputDesc.get(), output.get()
)
);
}
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif /* OPENCV_DNN_CUDA4DNN_CSL_CUDNN_SOFTMAX_HPP */

View File

@ -0,0 +1,142 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_CUDA4DNN_CSL_CUDNN_TRANSFORM_HPP
#define OPENCV_DNN_CUDA4DNN_CSL_CUDNN_TRANSFORM_HPP
#include "../pointer.hpp"
#include "cudnn.hpp"
#include <cudnn.h>
#include <vector>
#include <type_traits>
#include <iterator>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cudnn {
/** describes a tensor transform operation
*
* Supported transformations:
* - add or remove asymmetric padding
*/
class TensorTransformDescriptor {
public:
TensorTransformDescriptor() noexcept : descriptor{ nullptr } { }
TensorTransformDescriptor(const TensorTransformDescriptor&) = delete;
TensorTransformDescriptor(TensorTransformDescriptor&& other) noexcept
: descriptor{ other.descriptor } {
other.descriptor = nullptr;
}
/** constructs a convolution descriptor
*
* Pre-conditions:
* - \p padding_left and \p padding_right must have the same size
*
* The length of the containers is interpreted as the rank of the tensors which will be given.
*
* @note \p padding_left and \p padding_right may have negative values to remove padding
*
* Exception Guarantee: Basic
*/
template <class SequenceContainer, typename = decltype(std::begin(std::declval<SequenceContainer>()))>
TensorTransformDescriptor(
const SequenceContainer& padding_left,
const SequenceContainer& padding_right)
{
constructor(padding_left, padding_right);
}
~TensorTransformDescriptor() noexcept {
if (descriptor != nullptr) {
/* cudnnDestroyTensorTransformDescriptor will not fail for a valid descriptor */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyTensorTransformDescriptor(descriptor));
}
}
TensorTransformDescriptor& operator=(const TensorTransformDescriptor&) = delete;
TensorTransformDescriptor& operator=(TensorTransformDescriptor&& other) noexcept {
descriptor = other.descriptor;
other.descriptor = nullptr;
return *this;
};
cudnnTensorTransformDescriptor_t get() const noexcept { return descriptor; }
private:
template <class SequenceContainer>
void constructor(
const SequenceContainer& padding_left,
const SequenceContainer& padding_right
)
{
CV_Assert(padding_left.size() == padding_right.size());
auto ipadding_left = std::vector<int32_t>(std::begin(padding_left), std::end(padding_left));
auto ipadding_right = std::vector<int32_t>(std::begin(padding_right), std::end(padding_right));
CUDA4DNN_CHECK_CUDNN(cudnnCreateTensorTransformDescriptor(&descriptor));
try {
CUDA4DNN_CHECK_CUDNN(
cudnnSetTensorTransformDescriptor(
descriptor,
ipadding_left.size(), CUDNN_TENSOR_NCHW,
ipadding_left.data(), ipadding_right.data(),
NULL, CUDNN_TRANSFORM_FOLD
)
);
} catch (...) {
/* cudnnDestroyTensorTransformDescriptor will not fail for a valid descriptor */
CUDA4DNN_CHECK_CUDNN(cudnnDestroyTensorTransformDescriptor(descriptor));
throw;
}
}
cudnnTensorTransformDescriptor_t descriptor;
};
template <class T>
void transform(
const Handle& handle,
const TensorTransformDescriptor& transDesc,
const TensorDescriptor<T>& inputDesc,
DevicePtr<const T> inputPtr,
const TensorDescriptor<T>& outputDesc,
DevicePtr<T> outputPtr)
{
T alpha = 1.0, beta = 0.0;
CUDA4DNN_CHECK_CUDNN(
cudnnTransformTensorEx(
handle.get(),
transDesc.get(),
&alpha, inputDesc.get(), inputPtr.get(),
&beta, outputDesc.get(), outputPtr.get()
)
);
}
template <> inline
void transform(
const Handle& handle,
const TensorTransformDescriptor& transDesc,
const TensorDescriptor<half>& inputDesc,
DevicePtr<const half> inputPtr,
const TensorDescriptor<half>& outputDesc,
DevicePtr<half> outputPtr)
{
/* we specalize for fp16 as the scaling factors must be provided as `float` */
float alpha = 1.0, beta = 0.0;
CUDA4DNN_CHECK_CUDNN(
cudnnTransformTensorEx(
handle.get(),
transDesc.get(),
&alpha, inputDesc.get(), inputPtr.get(),
&beta, outputDesc.get(), outputPtr.get()
)
);
}
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif /* OPENCV_DNN_CUDA4DNN_CSL_CUDNN_TRANSFORM_HPP */

View File

@ -0,0 +1,183 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_CUDA4DNN_CSL_CUDNN_TRANSPOSE_CONVOLUTION_HPP
#define OPENCV_DNN_CUDA4DNN_CSL_CUDNN_TRANSPOSE_CONVOLUTION_HPP
#include "cudnn.hpp"
#include "convolution.hpp"
#include "../pointer.hpp"
#include "../workspace.hpp"
#include <cudnn.h>
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cudnn {
/** wrapper around a transpose convolution algorithm
*
* @tparam T type of elements being transpose-convolved
*/
template <class T>
class TransposeConvolutionAlgorithm {
public:
TransposeConvolutionAlgorithm() noexcept : workspace_size{ 0 } { }
TransposeConvolutionAlgorithm(TransposeConvolutionAlgorithm&) = default;
TransposeConvolutionAlgorithm(TransposeConvolutionAlgorithm&&) = default;
TransposeConvolutionAlgorithm(
const Handle& handle,
const ConvolutionDescriptor<T>& convDesc,
const FilterDescriptor<T>& filterDesc,
const TensorDescriptor<T>& inputDesc,
const TensorDescriptor<T>& outputDesc)
{
#if CUDNN_MAJOR >= 8
int requestedAlgoCount = 0, returnedAlgoCount = 0;
CUDA4DNN_CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithmMaxCount(handle.get(), &requestedAlgoCount));
std::vector<cudnnConvolutionBwdDataAlgoPerf_t> results(requestedAlgoCount);
CUDA4DNN_CHECK_CUDNN(
cudnnGetConvolutionBackwardDataAlgorithm_v7(
handle.get(),
filterDesc.get(), inputDesc.get(), convDesc.get(), outputDesc.get(),
requestedAlgoCount,
&returnedAlgoCount,
&results[0]
)
);
size_t free_memory, total_memory;
CUDA4DNN_CHECK_CUDA(cudaMemGetInfo(&free_memory, &total_memory));
bool found_conv_algorithm = false;
for (int i = 0; i < returnedAlgoCount; i++)
{
if (results[i].status == CUDNN_STATUS_SUCCESS &&
results[i].algo != CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED &&
results[i].memory < free_memory)
{
found_conv_algorithm = true;
dalgo = results[i].algo;
workspace_size = results[i].memory;
break;
}
}
if (!found_conv_algorithm)
CV_Error (cv::Error::GpuApiCallError, "cuDNN did not return a suitable algorithm for transpose convolution.");
#else
CUDA4DNN_CHECK_CUDNN(
cudnnGetConvolutionBackwardDataAlgorithm(
handle.get(),
filterDesc.get(), inputDesc.get(), convDesc.get(), outputDesc.get(),
CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST,
0, /* no memory limit */
&dalgo
)
);
CUDA4DNN_CHECK_CUDNN(
cudnnGetConvolutionBackwardDataWorkspaceSize(
handle.get(),
filterDesc.get(), inputDesc.get(), convDesc.get(), outputDesc.get(),
dalgo, &workspace_size
)
);
#endif
}
TransposeConvolutionAlgorithm& operator=(const TransposeConvolutionAlgorithm&) = default;
TransposeConvolutionAlgorithm& operator=(TransposeConvolutionAlgorithm&& other) = default;
cudnnConvolutionBwdDataAlgo_t get() const noexcept { return dalgo; }
std::size_t get_workspace_size() const noexcept { return workspace_size; }
private:
cudnnConvolutionBwdDataAlgo_t dalgo;
std::size_t workspace_size;
};
/** @brief performs transpose convolution
*
* dstValue = alpha * result + beta * priorDstValue
*
* @tparam T transpose convolution element type (must be `half` or `float`)
*
* @param handle valid cuDNN Handle
* @param convDesc convolution description
* @param transConvAlgo algorithm to use for convolution
* @param workspace workspace memory which meets the requirements of \p convAlgo
* @param filterDesc filter descriptor
* @param[in] filterPtr pointer to device memory containing the filters
* @param inputDesc tensor descriptor describing the input
* @param[in] inputPtr pointer to input tensor in device memory
* @param alpha result scale factor
* @param beta previous value scale factor
* @param outputDesc tensor descriptor describing the output
* @param[out] outputPtr pointer to output tensor in device memory
*
* Exception Guarantee: Basic
*/
template <class T>
void transpose_convolve(
const Handle& handle,
const ConvolutionDescriptor<T>& convDesc,
const TransposeConvolutionAlgorithm<T>& transConvAlgo,
WorkspaceInstance workspace,
const FilterDescriptor<T>& filterDesc,
DevicePtr<const T> filterPtr,
const TensorDescriptor<T>& inputDesc,
DevicePtr<const T> inputPtr,
T alpha, T beta,
const TensorDescriptor<T>& outputDesc,
DevicePtr<T> outputPtr)
{
CUDA4DNN_CHECK_CUDNN(
cudnnConvolutionBackwardData(
handle.get(),
&alpha,
filterDesc.get(), filterPtr.get(),
inputDesc.get(), inputPtr.get(),
convDesc.get(), transConvAlgo.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes(),
&beta, outputDesc.get(), outputPtr.get()
)
);
}
template <> inline
void transpose_convolve(
const Handle& handle,
const ConvolutionDescriptor<half>& convDesc,
const TransposeConvolutionAlgorithm<half>& convAlgo,
WorkspaceInstance workspace,
const FilterDescriptor<half>& filterDesc,
DevicePtr<const half> filterPtr,
const TensorDescriptor<half>& inputDesc,
DevicePtr<const half> inputPtr,
half alpha, half beta,
const TensorDescriptor<half>& outputDesc,
DevicePtr<half> outputPtr)
{
/* we specalize for fp16 as the scaling factors must be provided as `float` */
float alpha_ = alpha, beta_ = beta;
CUDA4DNN_CHECK_CUDNN(
cudnnConvolutionBackwardData(
handle.get(),
&alpha_,
filterDesc.get(), filterPtr.get(),
inputDesc.get(), inputPtr.get(),
convDesc.get(), convAlgo.get(),
static_cast<void*>(workspace.get()), workspace.size_in_bytes(),
&beta_, outputDesc.get(), outputPtr.get()
)
);
}
}}}}} /* namespace cv::dnn::cuda4dnn::csl::cudnn */
#endif /* OPENCV_DNN_CUDA4DNN_CSL_CUDNN_TRANSPOSE_CONVOLUTION_HPP */

View File

@ -0,0 +1,30 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_ERROR_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_ERROR_HPP
#include <opencv2/core.hpp>
#include <cuda_runtime_api.h>
#define CUDA4DNN_CHECK_CUDA(call) \
::cv::dnn::cuda4dnn::csl::detail::check((call), CV_Func, __FILE__, __LINE__)
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
/** @brief exception class for errors thrown by the CUDA APIs */
class CUDAException : public cv::Exception {
public:
using cv::Exception::Exception;
};
namespace detail {
inline void check(cudaError_t err, const char* func, const char* file, int line) {
if (err != cudaSuccess)
throw CUDAException(Error::GpuApiCallError, cudaGetErrorString(err), func, file, line);
}
}
}}}} /* namespace cv::dnn::cuda4dnn::csl */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_ERROR_HPP */

View File

@ -0,0 +1,103 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_EVENT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_EVENT_HPP
#include "error.hpp"
#include "stream.hpp"
#include <opencv2/core/utils/logger.hpp>
#include <cuda_runtime_api.h>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
/** @brief sharable CUDA event
*
* Event is a smart sharable wrapper for CUDA event handle which ensures that
* the handle is destroyed after use.
*
* @note Moving an Event object to another invalidates the former
*/
class Event {
public:
Event() noexcept : event{ nullptr } { }
Event(const Event&) = delete;
Event(Event&& other) noexcept
: event{ other.event } {
other.event = nullptr;
}
/** if \p create is `true`, a new event will be created; otherwise, an empty event object is created */
Event(bool create, bool timing_event = false) : event{nullptr} {
if (create) {
unsigned int flags = (timing_event ? 0 : cudaEventDisableTiming);
CUDA4DNN_CHECK_CUDA(cudaEventCreateWithFlags(&event, flags));
}
}
~Event() {
try {
if (event != nullptr)
CUDA4DNN_CHECK_CUDA(cudaEventDestroy(event));
} catch (const CUDAException& ex) {
std::ostringstream os;
os << "Asynchronous exception caught during CUDA event destruction.\n";
os << ex.what();
os << "Exception will be ignored.\n";
CV_LOG_WARNING(0, os.str().c_str());
}
}
Event& operator=(const Event&) noexcept = delete;
Event& operator=(Event&& other) noexcept {
event = other.event;
other.event = nullptr;
return *this;
}
/** mark a point in \p stream */
void record(const Stream& stream) {
CV_Assert(stream);
CUDA4DNN_CHECK_CUDA(cudaEventRecord(event, stream.get()));
}
/** blocks the caller thread until all operations before the event finish */
void synchronize() const { CUDA4DNN_CHECK_CUDA(cudaEventSynchronize(event)); }
/** returns true if there are operations pending before the event completes */
bool busy() const {
auto status = cudaEventQuery(event);
if (status == cudaErrorNotReady)
return true;
CUDA4DNN_CHECK_CUDA(status);
return false;
}
cudaEvent_t get() const noexcept { return event; }
/** returns true if the event is valid */
explicit operator bool() const noexcept { return event; }
private:
cudaEvent_t event;
};
/** makes a stream wait on an event */
inline void StreamWaitOnEvent(const Stream& stream, const Event& event) {
CV_Assert(stream);
CUDA4DNN_CHECK_CUDA(cudaStreamWaitEvent(stream.get(), event.get(), 0));
}
/** returns the time elapsed between two events in milliseconds */
inline float TimeElapsedBetweenEvents(const Event& start, const Event& end) {
float temp;
CUDA4DNN_CHECK_CUDA(cudaEventElapsedTime(&temp, start.get(), end.get()));
return temp;
}
}}}} /* namespace cv::dnn::cuda4dnn::csl */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_EVENT_HPP */

View File

@ -0,0 +1,303 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_MEMORY_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_MEMORY_HPP
#include "error.hpp"
#include "pointer.hpp"
#include <opencv2/core.hpp>
#include <cuda_runtime_api.h>
#include <cstddef>
#include <type_traits>
#include <memory>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
/* @brief smart device pointer with allocation/deallocation methods
*
* ManagedPtr is a smart shared device pointer which also handles memory allocation.
*/
template <class T>
class ManagedPtr {
static_assert(!std::is_const<T>::value && !std::is_volatile<T>::value, "T cannot be cv-qualified");
static_assert(std::is_standard_layout<T>::value, "T must satisfy StandardLayoutType");
public:
using element_type = T;
using pointer = DevicePtr<element_type>;
using const_pointer = DevicePtr<typename std::add_const<element_type>::type>;
using size_type = std::size_t;
ManagedPtr() noexcept : wrapped{ nullptr }, n{ 0 }, capacity{ 0 } { }
ManagedPtr(const ManagedPtr&) noexcept = default;
ManagedPtr(ManagedPtr&& other) noexcept
: wrapped{ std::move(other.wrapped) }, n{ other.n }, capacity { other.capacity }
{
other.reset();
}
/** allocates device memory for \p count number of element */
ManagedPtr(size_type count) {
if (count <= 0) {
CV_Error(Error::StsBadArg, "number of elements is zero or negative");
}
void* temp = nullptr;
CUDA4DNN_CHECK_CUDA(cudaMalloc(&temp, count * sizeof(element_type)));
auto ptr = typename pointer::pointer(static_cast<element_type*>(temp));
wrapped.reset(ptr, [](element_type* ptr) {
if (ptr != nullptr) {
/* contract violation for std::shared_ptr if cudaFree throws */
try {
CUDA4DNN_CHECK_CUDA(cudaFree(ptr));
} catch (const CUDAException& ex) {
std::ostringstream os;
os << "Device memory deallocation failed in deleter.\n";
os << ex.what();
os << "Exception will be ignored.\n";
CV_LOG_WARNING(0, os.str().c_str());
}
}
});
/* std::shared_ptr<T>::reset invokves the deleter if an exception occurs; hence, we don't
* need to have a try-catch block to free the allocated device memory
*/
n = capacity = count;
}
ManagedPtr& operator=(ManagedPtr&& other) noexcept {
wrapped = std::move(other.wrapped);
n = other.n;
capacity = other.capacity;
other.reset();
return *this;
}
size_type size() const noexcept { return n; }
void reset() noexcept { wrapped.reset(); n = capacity = 0; }
/**
* deallocates any previously allocated memory and allocates device memory
* for \p count number of elements
*
* @note no reallocation if the previously allocated memory has no owners and the requested memory size fits in it
* @note use move constructor to guarantee a deallocation of the previously allocated memory
*
* Exception Guarantee: Strong
*/
void reset(size_type count) {
/* we need to fully own the memory to perform optimizations */
if (wrapped.use_count() == 1) {
/* avoid reallocation if the existing capacity is sufficient */
if (count <= capacity) {
n = count;
return;
}
}
/* no optimization performed; allocate memory */
ManagedPtr tmp(count);
swap(tmp, *this);
}
pointer get() const noexcept { return pointer(wrapped.get()); }
explicit operator bool() const noexcept { return wrapped; }
friend bool operator==(const ManagedPtr& lhs, const ManagedPtr& rhs) noexcept { return lhs.wrapped == rhs.wrapped; }
friend bool operator!=(const ManagedPtr& lhs, const ManagedPtr& rhs) noexcept { return lhs.wrapped != rhs.wrapped; }
friend void swap(ManagedPtr& lhs, ManagedPtr& rhs) noexcept {
using std::swap;
swap(lhs.wrapped, rhs.wrapped);
swap(lhs.n, rhs.n);
swap(lhs.capacity, rhs.capacity);
}
private:
std::shared_ptr<element_type> wrapped;
size_type n, capacity;
};
/** copies entire memory block pointed by \p src to \p dest
*
* \param[in] src device pointer
* \param[out] dest host pointer
*
* Pre-conditions:
* - memory pointed by \p dest must be large enough to hold the entire block of memory held by \p src
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(T *dest, const ManagedPtr<T>& src) {
memcpy<T>(dest, src.get(), src.size());
}
/** copies data from memory pointed by \p src to fully fill \p dest
*
* \param[in] src host pointer
* \param[out] dest device pointer
*
* Pre-conditions:
* - memory pointed by \p src must be at least as big as the memory block held by \p dest
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(const ManagedPtr<T>& dest, const T* src) {
memcpy<T>(dest.get(), src, dest.size());
}
/** copies data from memory pointed by \p src to \p dest
*
* if the two \p src and \p dest have different sizes, the number of elements copied is
* equal to the size of the smaller memory block
*
* \param[in] src device pointer
* \param[out] dest device pointer
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(const ManagedPtr<T>& dest, const ManagedPtr<T>& src) {
memcpy<T>(dest.get(), src.get(), std::min(dest.size(), src.size()));
}
/** sets device memory block to a specific 8-bit value
*
* \param[in] src device pointer
* \param[out] ch 8-bit value to fill the device memory with
*
* Exception Guarantee: Basic
*/
template <class T>
void memset(const ManagedPtr<T>& dest, std::int8_t ch) {
memset<T>(dest.get(), ch, dest.size());
}
/** copies entire memory block pointed by \p src to \p dest asynchronously
*
* \param[in] src device pointer
* \param[out] dest host pointer
* \param stream CUDA stream that has to be used for the memory transfer
*
* Pre-conditions:
* - memory pointed by \p dest must be large enough to hold the entire block of memory held by \p src
* - \p dest points to page-locked memory
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(T *dest, const ManagedPtr<T>& src, const Stream& stream) {
CV_Assert(stream);
memcpy<T>(dest, src.get(), src.size(), stream);
}
/** copies data from memory pointed by \p src to \p dest asynchronously
*
* \param[in] src host pointer
* \param[out] dest device pointer
* \param stream CUDA stream that has to be used for the memory transfer
*
* Pre-conditions:
* - memory pointed by \p dest must be large enough to hold the entire block of memory held by \p src
* - \p src points to page-locked memory
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(const ManagedPtr<T>& dest, const T* src, const Stream& stream) {
CV_Assert(stream);
memcpy<T>(dest.get(), src, dest.size(), stream);
}
/** copies data from memory pointed by \p src to \p dest asynchronously
*
* \param[in] src device pointer
* \param[out] dest device pointer
* \param stream CUDA stream that has to be used for the memory transfer
*
* if the two \p src and \p dest have different sizes, the number of elements copied is
* equal to the size of the smaller memory block
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(ManagedPtr<T>& dest, const ManagedPtr<T>& src, const Stream& stream) {
CV_Assert(stream);
memcpy<T>(dest.get(), src.get(), std::min(dest.size(), src.size()), stream);
}
/** sets device memory block to a specific 8-bit value asynchronously
*
* \param[in] src device pointer
* \param[out] ch 8-bit value to fill the device memory with
* \param stream CUDA stream that has to be used for the memory operation
*
* Exception Guarantee: Basic
*/
template <class T>
void memset(const ManagedPtr<T>& dest, int ch, const Stream& stream) {
CV_Assert(stream);
memset<T>(dest.get(), ch, dest.size(), stream);
}
/** @brief registers host memory as page-locked and unregisters on destruction */
class MemoryLockGuard {
public:
MemoryLockGuard() noexcept : ptr { nullptr } { }
MemoryLockGuard(const MemoryLockGuard&) = delete;
MemoryLockGuard(MemoryLockGuard&& other) noexcept : ptr{ other.ptr } {
other.ptr = nullptr;
}
/** page-locks \p size_in_bytes bytes of memory starting from \p ptr_
*
* Pre-conditions:
* - host memory should be unregistered
*/
MemoryLockGuard(void* ptr_, std::size_t size_in_bytes) {
CUDA4DNN_CHECK_CUDA(cudaHostRegister(ptr_, size_in_bytes, cudaHostRegisterPortable));
ptr = ptr_;
}
MemoryLockGuard& operator=(const MemoryLockGuard&) = delete;
MemoryLockGuard& operator=(MemoryLockGuard&& other) noexcept {
if (&other != this) {
if(ptr != nullptr) {
/* cudaHostUnregister does not throw for a valid ptr */
CUDA4DNN_CHECK_CUDA(cudaHostUnregister(ptr));
}
ptr = other.ptr;
other.ptr = nullptr;
}
return *this;
}
~MemoryLockGuard() {
if(ptr != nullptr) {
/* cudaHostUnregister does not throw for a valid ptr */
CUDA4DNN_CHECK_CUDA(cudaHostUnregister(ptr));
}
}
private:
void *ptr;
};
}}}} /* namespace cv::dnn::cuda4dnn::csl */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_MEMORY_HPP */

View File

@ -0,0 +1,20 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_NVCC_DEFS_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_NVCC_DEFS_HPP
#include <cuda_runtime_api.h>
#ifdef __CUDACC__
# define CUDA4DNN_HOST __host__
# define CUDA4DNN_DEVICE __device__
# define CUDA4DNN_HOST_DEVICE CUDA4DNN_HOST CUDA4DNN_DEVICE
#else
# define CUDA4DNN_HOST
# define CUDA4DNN_DEVICE
# define CUDA4DNN_HOST_DEVICE
#endif
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_NVCC_DEFS_HPP */

View File

@ -0,0 +1,411 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_POINTER_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_POINTER_HPP
#include "nvcc_defs.hpp"
#include "error.hpp"
#include "stream.hpp"
#include <opencv2/core.hpp>
#include <cuda_runtime_api.h>
#include <cstddef>
#include <type_traits>
#include <ostream>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
/** @brief provides a type-safe device pointer
*
* DevicePtr wraps a raw pointer and mimics its behaviour. It does not implicitly convert
* to a raw pointer. This ensures that accidental mixing of host and device pointers do not happen.
*
* It is meant to point to locations in device memory. Hence, it provides dereferencing or
* array subscript capability for device code only.
*
* A `const DevicePtr<T>` represents an immutable pointer to a mutable memory.
* A `DevicePtr<const T>` represents a mutable pointer to an immutable memory.
* A `const DevicePtr<const T>` represents an immutable pointer to an immutable memory.
*
* A `DevicePtr<T>` can implicitly convert to `DevicePtr<const T>`.
*
* Specializations:
* - DevicePtr<void>/DevicePtr<const void> do not support pointer arithmetic (but relational operators are provided)
* - any device pointer pointing to mutable memory is implicitly convertible to DevicePtr<void>
* - any device pointer is implicitly convertible to DevicePtr<const void>
* - DevicePtr<void> can be explicitly converted to any device pointer
* - DevicePtr<const void> can be explicitly converted to any device pointer pointing to immutable memory
*/
template <class T>
class DevicePtr {
static_assert(std::is_standard_layout<T>::value, "T must satisfy StandardLayoutType");
public:
using element_type = T;
using difference_type = std::ptrdiff_t;
using pointer = typename std::add_pointer<element_type>::type;
using reference = typename std::add_lvalue_reference<element_type>::type;
DevicePtr() = default;
CUDA4DNN_HOST_DEVICE explicit DevicePtr(pointer ptr_) noexcept : ptr{ ptr_ } { }
CUDA4DNN_HOST_DEVICE DevicePtr operator=(pointer ptr_) noexcept { ptr = ptr_; return *this; }
CUDA4DNN_HOST_DEVICE pointer get() const noexcept { return ptr; };
CUDA4DNN_DEVICE reference operator[](difference_type idx) const noexcept { return get()[idx]; }
CUDA4DNN_DEVICE reference operator*() const noexcept { return *get(); }
CUDA4DNN_DEVICE pointer operator->() const noexcept { return get(); }
template<class U = T, typename std::enable_if<!std::is_const<U>::value, bool>::type = true>
CUDA4DNN_HOST_DEVICE operator DevicePtr<typename std::add_const<U>::type>() const noexcept {
return DevicePtr<typename std::add_const<U>::type>{ptr};
}
CUDA4DNN_HOST_DEVICE explicit operator bool() const noexcept { return ptr; }
CUDA4DNN_HOST_DEVICE DevicePtr operator++() noexcept {
++ptr;
return *this;
}
CUDA4DNN_HOST_DEVICE DevicePtr operator++(int) noexcept {
auto tmp = DevicePtr(*this);
ptr++;
return tmp;
}
CUDA4DNN_HOST_DEVICE DevicePtr operator--() noexcept {
--ptr;
return *this;
}
CUDA4DNN_HOST_DEVICE DevicePtr operator--(int) noexcept {
auto tmp = DevicePtr(*this);
ptr--;
return tmp;
}
CUDA4DNN_HOST_DEVICE DevicePtr operator+=(std::ptrdiff_t offset) noexcept {
ptr += offset;
return *this;
}
CUDA4DNN_HOST_DEVICE DevicePtr operator-=(std::ptrdiff_t offset) noexcept {
ptr -= offset;
return *this;
}
CUDA4DNN_HOST_DEVICE friend DevicePtr operator+(DevicePtr lhs, std::ptrdiff_t offset) noexcept {
return lhs += offset;
}
CUDA4DNN_HOST_DEVICE friend DevicePtr operator-(DevicePtr lhs, std::ptrdiff_t offset) noexcept {
return lhs -= offset;
}
CUDA4DNN_HOST_DEVICE friend difference_type operator-(DevicePtr lhs, DevicePtr rhs) noexcept {
return lhs.ptr - rhs.ptr;
}
CUDA4DNN_HOST_DEVICE friend bool operator==(DevicePtr lhs, DevicePtr rhs) noexcept { return lhs.ptr == rhs.ptr; }
CUDA4DNN_HOST_DEVICE friend bool operator!=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(lhs == rhs); }
CUDA4DNN_HOST_DEVICE friend bool operator<(DevicePtr lhs, DevicePtr rhs) noexcept { return lhs.ptr < rhs.ptr; }
CUDA4DNN_HOST_DEVICE friend bool operator>(DevicePtr lhs, DevicePtr rhs) noexcept { return rhs < lhs; }
CUDA4DNN_HOST_DEVICE friend bool operator<=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(rhs < lhs); }
CUDA4DNN_HOST_DEVICE friend bool operator>=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(lhs < rhs); }
CUDA4DNN_HOST_DEVICE explicit operator pointer() const noexcept { return ptr; }
CUDA4DNN_HOST friend void swap(DevicePtr& lhs, DevicePtr& rhs) noexcept {
using std::swap;
swap(lhs.ptr, rhs.ptr);
}
template <class U, class V>
CUDA4DNN_HOST friend std::basic_ostream<U, V>& operator<<(std::basic_ostream<U, V>& os, DevicePtr other) {
os << other.get() << " (device)";
return os;
}
private:
pointer ptr;
};
template <>
class DevicePtr<const void> {
public:
using element_type = const void;
using pointer = typename std::add_pointer<element_type>::type;
DevicePtr() = default;
/* host const void pointer to const void device pointer */
CUDA4DNN_HOST_DEVICE explicit DevicePtr(pointer ptr_) noexcept : ptr{ ptr_ } { }
/* allow any device pointer to be implicitly convereted to void device pointer */
template <class T>
CUDA4DNN_HOST_DEVICE DevicePtr(DevicePtr<T> ptr_) noexcept : ptr{ ptr_.get() } { }
CUDA4DNN_HOST_DEVICE DevicePtr operator=(pointer ptr_) noexcept { ptr = ptr_; return *this; }
CUDA4DNN_HOST_DEVICE pointer get() const noexcept { return ptr; };
CUDA4DNN_HOST_DEVICE explicit operator bool() const noexcept { return ptr; }
CUDA4DNN_HOST_DEVICE friend bool operator==(DevicePtr lhs, DevicePtr rhs) noexcept { return lhs.ptr == rhs.ptr; }
CUDA4DNN_HOST_DEVICE friend bool operator!=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(lhs == rhs); }
CUDA4DNN_HOST_DEVICE friend bool operator<(DevicePtr lhs, DevicePtr rhs) noexcept { return lhs.ptr < rhs.ptr; }
CUDA4DNN_HOST_DEVICE friend bool operator>(DevicePtr lhs, DevicePtr rhs) noexcept { return rhs < lhs; }
CUDA4DNN_HOST_DEVICE friend bool operator<=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(rhs < lhs); }
CUDA4DNN_HOST_DEVICE friend bool operator>=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(lhs < rhs); }
/* explicit conversion into host void pointer */
CUDA4DNN_HOST_DEVICE explicit operator pointer() const noexcept { return ptr; }
/* const void device pointer can be explicitly casted into any const device pointer type */
template <class T, typename std::enable_if<std::is_const<T>::value, bool>::type = true>
CUDA4DNN_HOST_DEVICE explicit operator DevicePtr<T>() const noexcept {
return static_cast<T*>(ptr);
}
CUDA4DNN_HOST friend void swap(DevicePtr& lhs, DevicePtr& rhs) noexcept {
using std::swap;
swap(lhs.ptr, rhs.ptr);
}
template <class U, class V>
CUDA4DNN_HOST friend std::basic_ostream<U, V>& operator<<(std::basic_ostream<U, V>& os, DevicePtr other) {
os << other.get() << " (device)";
return os;
}
private:
pointer ptr;
};
template <>
class DevicePtr<void> {
public:
using element_type = void;
using pointer = typename std::add_pointer<element_type>::type;
DevicePtr() = default;
/* host pointer to device pointer */
CUDA4DNN_HOST_DEVICE explicit DevicePtr(pointer ptr_) noexcept : ptr{ ptr_ } { }
/* allow any device pointer to mutable memory to be implicitly convereted to void device pointer */
template <class T, typename std::enable_if<!std::is_const<T>::value, bool>::type = false>
CUDA4DNN_HOST_DEVICE DevicePtr(DevicePtr<T> ptr_) noexcept : ptr { ptr_.get() } { }
CUDA4DNN_HOST_DEVICE DevicePtr operator=(pointer ptr_) noexcept { ptr = ptr_; return *this; }
CUDA4DNN_HOST_DEVICE pointer get() const noexcept { return ptr; };
CUDA4DNN_HOST_DEVICE operator DevicePtr<const void>() const noexcept { return DevicePtr<const void>{ptr}; }
CUDA4DNN_HOST_DEVICE explicit operator bool() const noexcept { return ptr; }
CUDA4DNN_HOST_DEVICE friend bool operator==(DevicePtr lhs, DevicePtr rhs) noexcept { return lhs.ptr == rhs.ptr; }
CUDA4DNN_HOST_DEVICE friend bool operator!=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(lhs == rhs); }
CUDA4DNN_HOST_DEVICE friend bool operator<(DevicePtr lhs, DevicePtr rhs) noexcept { return lhs.ptr < rhs.ptr; }
CUDA4DNN_HOST_DEVICE friend bool operator>(DevicePtr lhs, DevicePtr rhs) noexcept { return rhs < lhs; }
CUDA4DNN_HOST_DEVICE friend bool operator<=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(rhs < lhs); }
CUDA4DNN_HOST_DEVICE friend bool operator>=(DevicePtr lhs, DevicePtr rhs) noexcept { return !(lhs < rhs); }
/* explicit conversion into host void pointer */
CUDA4DNN_HOST_DEVICE explicit operator pointer() const noexcept { return ptr; }
/* void device pointer can be explicitly casted into any device pointer type */
template <class T>
CUDA4DNN_HOST_DEVICE explicit operator DevicePtr<T>() const noexcept {
return DevicePtr<T>(static_cast<T*>(ptr));
}
CUDA4DNN_HOST friend void swap(DevicePtr& lhs, DevicePtr& rhs) noexcept {
using std::swap;
swap(lhs.ptr, rhs.ptr);
}
template <class U, class V>
CUDA4DNN_HOST friend std::basic_ostream<U, V>& operator<<(std::basic_ostream<U, V>& os, DevicePtr other) {
os << other.get() << " (device)";
return os;
}
private:
pointer ptr;
};
template <class T>
bool is_aligned(DevicePtr<const T> ptr, std::size_t alignment) {
auto addr = reinterpret_cast<std::intptr_t>(ptr.get());
return addr % alignment == 0;
}
/** copies \p n elements from \p src to \p dest4
*
* \param[in] src device pointer
* \param[out] dest host pointer
*
* Pre-conditions:
* - memory pointed by \p dest and \p src must be large enough to hold \p n elements
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(T *dest, DevicePtr<const T> src, std::size_t n) {
if (n <= 0) {
CV_Error(Error::StsBadArg, "number of elements to copy is zero or negtaive");
}
CUDA4DNN_CHECK_CUDA(cudaMemcpy(dest, src.get(), n * sizeof(T), cudaMemcpyDefault));
}
/** copies \p n elements from \p src to \p dest
*
* \param[in] src host pointer
* \param[out] dest device pointer
*
* Pre-conditions:
* - memory pointed by \p dest and \p src must be large enough to hold \p n elements
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(DevicePtr<T> dest, const T* src, std::size_t n) {
if (n <= 0) {
CV_Error(Error::StsBadArg, "number of elements to copy is zero or negtaive");
}
CUDA4DNN_CHECK_CUDA(cudaMemcpy(dest.get(), src, n * sizeof(T), cudaMemcpyDefault));
}
/** copies \p n elements from \p src to \p dest
*
* \param[in] src device pointer
* \param[out] dest device pointer
*
* Pre-conditions:
* - memory pointed by \p dest and \p src must be large enough to hold \p n elements
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(DevicePtr<T> dest, DevicePtr<const T> src, std::size_t n) {
if (n <= 0) {
CV_Error(Error::StsBadArg, "number of elements to copy is zero or negtaive");
}
CUDA4DNN_CHECK_CUDA(cudaMemcpy(dest.get(), src.get(), n * sizeof(T), cudaMemcpyDefault));
}
/** sets \p n elements to \p ch in \p dest
*
* \param[in] src device pointer
* \param[out] ch 8-bit value to fill the device memory with
*
* Pre-conditions:
* - memory pointed by \p dest must be large enough to hold \p n elements
*
* Exception Guarantee: Basic
*/
template <class T>
void memset(DevicePtr<T> dest, std::int8_t ch, std::size_t n) {
if (n <= 0) {
CV_Error(Error::StsBadArg, "number of elements to copy is zero or negtaive");
}
CUDA4DNN_CHECK_CUDA(cudaMemset(dest.get(), ch, n * sizeof(T)));
}
/** copies \p n elements from \p src to \p dest asynchronously
*
* \param[in] src device pointer
* \param[out] dest host pointer
* \param stream CUDA stream that has to be used for the memory transfer
*
* Pre-conditions:
* - memory pointed by \p dest and \p src must be large enough to hold \p n elements
* - \p dest points to page-locked memory
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(T *dest, DevicePtr<const T> src, std::size_t n, const Stream& stream) {
if (n <= 0) {
CV_Error(Error::StsBadArg, "number of elements to copy is zero or negtaive");
}
CUDA4DNN_CHECK_CUDA(cudaMemcpyAsync(dest, src.get(), n * sizeof(T), cudaMemcpyDefault, stream.get()));
}
/** copies data from memory pointed by \p src to \p dest asynchronously
*
* \param[in] src host pointer
* \param[out] dest device pointer
* \param stream CUDA stream that has to be used for the memory transfer
*
* Pre-conditions:
* - memory pointed by \p dest and \p src must be large enough to hold \p n elements
* - \p src points to page-locked memory
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(DevicePtr<T> dest, const T *src, std::size_t n, const Stream& stream) {
if (n <= 0) {
CV_Error(Error::StsBadArg, "number of elements to copy is zero or negtaive");
}
CUDA4DNN_CHECK_CUDA(cudaMemcpyAsync(dest.get(), src, n * sizeof(T), cudaMemcpyDefault, stream.get()));
}
/** copies \p n elements from \p src to \p dest asynchronously
*
* \param[in] src device pointer
* \param[out] dest device pointer
* \param stream CUDA stream that has to be used for the memory transfer
*
* Pre-conditions:
* - memory pointed by \p dest and \p src must be large enough to hold \p n elements
*
* Exception Guarantee: Basic
*/
template <class T>
void memcpy(DevicePtr<T> dest, DevicePtr<const T> src, std::size_t n, const Stream& stream) {
if (n <= 0) {
CV_Error(Error::StsBadArg, "number of elements to copy is zero or negtaive");
}
CUDA4DNN_CHECK_CUDA(cudaMemcpyAsync(dest.get(), src.get(), n * sizeof(T), cudaMemcpyDefault, stream.get()));
}
/** sets \p n elements to \p ch in \p dest asynchronously
*
* \param[in] src device pointer
* \param[out] ch 8-bit value to fill the device memory with
* \param stream CUDA stream that has to be used for the memory operation
*
* Pre-conditions:
* - memory pointed by \p dest must be large enough to hold \p n elements
*
* Exception Guarantee: Basic
*/
template <class T>
void memset(DevicePtr<T> dest, std::int8_t ch, std::size_t n, const Stream& stream) {
if (n <= 0) {
CV_Error(Error::StsBadArg, "number of elements to copy is zero or negtaive");
}
CUDA4DNN_CHECK_CUDA(cudaMemsetAsync(dest.get(), ch, n * sizeof(T), stream.get()));
}
}}}} /* namespace cv::dnn::cuda4dnn::csl */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_POINTER_HPP */

View File

@ -0,0 +1,82 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_SPAN_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_SPAN_HPP
#include "pointer.hpp"
#include "nvcc_defs.hpp"
#include "../../cuda/types.hpp"
#include <cstddef>
#include <type_traits>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
/** @brief provides non-owning mutable access for device arrays
*
* const Span<T>/Span<T> provides mutable access to the elements unless T is const qualified
* const Span<T> makes the span immutable but not the elements
*/
template <class T>
class Span {
static_assert(std::is_standard_layout<T>::value, "T must satisfy StandardLayoutType");
public:
using value_type = T;
using size_type = device::size_type;
using index_type = device::index_type;
using pointer = DevicePtr<value_type>;
using const_pointer = DevicePtr<typename std::add_const<value_type>::type>;
using reference = typename std::add_lvalue_reference<value_type>::type;
using const_reference = typename std::add_lvalue_reference<typename std::add_const<value_type>::type>;
Span() noexcept : ptr{ nullptr }, sz{ 0 } { }
CUDA4DNN_HOST_DEVICE Span(pointer first, pointer last) noexcept : ptr{ first }, sz{ last - first } { }
CUDA4DNN_HOST_DEVICE Span(pointer first, size_type count) noexcept : ptr{ first }, sz{ count } { }
CUDA4DNN_HOST_DEVICE size_type size() const noexcept { return sz; }
CUDA4DNN_HOST_DEVICE bool empty() const noexcept { return size() == 0; }
CUDA4DNN_DEVICE reference operator[](index_type index) const { return ptr[index]; }
CUDA4DNN_HOST_DEVICE pointer data() const noexcept { return ptr; }
template<class U = T, class V = typename std::add_const<U>::type,
typename std::enable_if<!std::is_const<U>::value, bool>::type = true>
CUDA4DNN_HOST_DEVICE operator Span<V>() const noexcept { return Span<V>{ptr, sz}; }
private:
pointer ptr;
size_type sz;
};
/** @brief provides non-owning immutable view for device arrays */
template <class T>
using View = Span<const T>;
/** returns true if the address of a span/view is aligned to \p alignment number of elements (not bytes) */
template <class T>
bool is_address_aligned(View<T> v, std::size_t alignment) {
return is_aligned(v.data(), alignment * sizeof(T));
}
/** returns true if the size of a span/view is a multiple of \p alignment */
template <class T>
bool is_size_aligned(View<T> v, std::size_t alignment) {
return v.size() % alignment == 0;
}
/** @brief returns true if the address and the size of the span/view is aligned
* \p alignment refers to the number of elements (not bytes)
*/
template <class T>
bool is_fully_aligned(View<T> v, std::size_t alignment) {
return is_address_aligned(v, alignment) && is_size_aligned(v, alignment);
}
}}}} /* namespace cv::dnn::cuda4dnn::csl */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_SPAN_HPP */

View File

@ -0,0 +1,161 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_STREAM_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_STREAM_HPP
#include "error.hpp"
#include <opencv2/core.hpp>
#include <opencv2/core/utils/logger.hpp>
#include <cuda_runtime_api.h>
#include <memory>
#include <sstream>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
/** \file stream.hpp
*
* Default streams are not supported as they limit flexiblity. All operations are always
* carried out in non-default streams in the CUDA backend. The stream classes sacrifice
* the ability to support default streams in exchange for better error detection. That is,
* a default constructed stream represents no stream and any attempt to use it will throw an
* exception.
*/
/** @brief non-copyable smart CUDA stream
*
* UniqueStream is a smart non-sharable wrapper for CUDA stream handle which ensures that
* the handle is destroyed after use. Unless explicitly specified by a constructor argument,
* the stream object does not represent any stream by default.
*/
class UniqueStream {
public:
UniqueStream() noexcept : stream{ 0 } { }
UniqueStream(UniqueStream&) = delete;
UniqueStream(UniqueStream&& other) noexcept {
stream = other.stream;
other.stream = 0;
}
/** creates a non-default stream if `create` is true; otherwise, no stream is created */
UniqueStream(bool create) : stream{ 0 } {
if (create) {
/* we create non-blocking streams to avoid inrerruptions from users using the default stream */
CUDA4DNN_CHECK_CUDA(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
}
}
~UniqueStream() {
try {
/* cudaStreamDestroy does not throw if a valid stream is passed unless a previous
* asynchronous operation errored.
*/
if (stream != 0)
CUDA4DNN_CHECK_CUDA(cudaStreamDestroy(stream));
} catch (const CUDAException& ex) {
std::ostringstream os;
os << "Asynchronous exception caught during CUDA stream destruction.\n";
os << ex.what();
os << "Exception will be ignored.\n";
CV_LOG_WARNING(0, os.str().c_str());
}
}
UniqueStream& operator=(const UniqueStream&) = delete;
UniqueStream& operator=(UniqueStream&& other) noexcept {
CV_Assert(other);
if (&other != this) {
UniqueStream(std::move(*this)); /* destroy current stream */
stream = other.stream;
other.stream = 0;
}
return *this;
}
/** returns the raw CUDA stream handle */
cudaStream_t get() const noexcept {
CV_Assert(stream);
return stream;
}
/** blocks the calling thread until all pending operations in the stream finish */
void synchronize() const {
CV_Assert(stream);
CUDA4DNN_CHECK_CUDA(cudaStreamSynchronize(stream));
}
/** returns true if there are pending operations in the stream */
bool busy() const {
CV_Assert(stream);
auto status = cudaStreamQuery(stream);
if (status == cudaErrorNotReady)
return true;
CUDA4DNN_CHECK_CUDA(status);
return false;
}
/** returns true if the stream is valid */
explicit operator bool() const noexcept { return static_cast<bool>(stream); }
private:
cudaStream_t stream;
};
/** @brief sharable smart CUDA stream
*
* Stream is a smart sharable wrapper for CUDA stream handle which ensures that
* the handle is destroyed after use. Unless explicitly specified in the constructor,
* the stream object represents no stream.
*/
class Stream {
public:
Stream() { }
Stream(const Stream&) = default;
Stream(Stream&&) = default;
/** if \p create is `true`, a new stream will be created; otherwise, no stream is created */
Stream(bool create) {
if (create)
stream = std::make_shared<UniqueStream>(create);
}
Stream& operator=(const Stream&) = default;
Stream& operator=(Stream&&) = default;
/** blocks the caller thread until all operations in the stream are complete */
void synchronize() const {
CV_Assert(stream);
stream->synchronize();
}
/** returns true if there are operations pending in the stream */
bool busy() const {
CV_Assert(stream);
return stream->busy();
}
/** returns true if the object points has a valid stream */
explicit operator bool() const noexcept {
if (!stream)
return false;
return stream->operator bool();
}
cudaStream_t get() const noexcept {
CV_Assert(stream);
return stream->get();
}
private:
std::shared_ptr<UniqueStream> stream;
};
}}}} /* namespace cv::dnn::cuda4dnn::csl */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_STREAM_HPP */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,477 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_TENSOR_OPS_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_TENSOR_OPS_HPP
#include "stream.hpp"
#include "tensor.hpp"
#include "pointer.hpp"
#include "cublas.hpp"
#include "cudnn.hpp"
#include "workspace.hpp"
#include "cudnn/convolution.hpp"
#include "cudnn/pooling.hpp"
#include "cudnn/lrn.hpp"
#include "cudnn/softmax.hpp"
#include "cudnn/transform.hpp"
#include "cudnn/transpose_convolution.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <array>
#include <vector>
#include <algorithm>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
namespace tensor_ops {
/** @brief copies data between tensors
*
* Pre-conditions:
* - \p dest and \p src must have the same shape
*
* Exception Guarantee: Basic
*/
template <class T> inline
void copy(const Stream& stream, TensorSpan<T> dest, TensorView<T> src) {
CV_Assert(is_shape_same(dest, src));
if (dest.get() != src.get())
memcpy(dest.get(), src.get(), dest.size(), stream);
}
namespace detail {
template <class T>
void assertGEMMCompatiblity(const TensorSpan<T>& result, bool transa, const TensorView<T>& A, bool transb, const TensorView<T>& B) {
/* check dimension requirements for matrix multiplication */
if (!transa && !transb) {
CV_Assert(A.get_axis_size(-2) == result.get_axis_size(-2));
CV_Assert(A.get_axis_size(-1) == B.get_axis_size(-2));
CV_Assert(B.get_axis_size(-1) == result.get_axis_size(-1));
} else if (!transa && transb) {
CV_Assert(A.get_axis_size(-2) == result.get_axis_size(-2));
CV_Assert(A.get_axis_size(-1) == B.get_axis_size(-1));
CV_Assert(B.get_axis_size(-2) == result.get_axis_size(-1));
} else if (transa && !transb) {
CV_Assert(A.get_axis_size(-1) == result.get_axis_size(-2));
CV_Assert(A.get_axis_size(-2) == B.get_axis_size(-2));
CV_Assert(B.get_axis_size(-1) == result.get_axis_size(-1));
} else {
CV_Assert(A.get_axis_size(-1) == result.get_axis_size(-2));
CV_Assert(A.get_axis_size(-2) == B.get_axis_size(-1));
CV_Assert(B.get_axis_size(-2) == result.get_axis_size(-1));
}
}
}
/** @brief performs generalized matrix-multiplication
*
* Pre-conditions:
* - \p A and \p B must meet the mathematical requirements for matrix multiplication
* - \p result must be large enough to hold the result
*
* Exception Guarantee: Basic
*/
template <class T> inline
void gemm(const cublas::Handle& handle, T beta, TensorSpan<T> result, T alpha, bool transa, TensorView<T> A, bool transb, TensorView<T> B) {
/* matrix operations can be performed only on tensors with rank two or below */
CV_Assert(get_effective_rank(A) <= 2);
CV_Assert(get_effective_rank(B) <= 2);
CV_Assert(get_effective_rank(result) <= 2);
const auto result_nr = result.get_axis_size(-2);
const auto result_nc = result.get_axis_size(-1);
const auto common_dim = A.get_axis_size(transa ? -2 : -1);
const auto A_nc = A.get_axis_size(-1);
const auto B_nc = B.get_axis_size(-1);
detail::assertGEMMCompatiblity(result, transa, A, transb, B);
/* tensors are stored in row-major but cublas::gemm operates on column-major matrices
* a row-major matrix when read as column-major matrix gives the transpose of the intended matrix
*
* Required: C = AB
* what cuBLAS sees: C^T = A^TB^T = (BA)^T
*
* By reversing operands, we effectively perform:
* C^T = B^TA^T = (AB)^T
*
* which gives C = AB
*/
cublas::gemm<T>(handle,
transb, transa,
result_nc, result_nr, common_dim,
alpha, B.get(), B_nc,
A.get(), A_nc,
beta, result.get(), result_nc);
}
/** @brief performs generalized matrix-multiplication for a strided batch of matrices
*
* Pre-conditions:
* - A, B and C must be rank three tensors with dimensions (batch, rows, cols)
* - the last two axes of \p A and \p B must meet the mathematical requirements for matrix multiplication
* - \p result must be large enough to hold the result and the matrices must not overlap in memory
* - batch dimension should be same in \p A, \p B and \p result
*
* Exception Guarantee: Basic
*/
template <class T> inline
void gemmStridedBatched(const cublas::Handle& handle, T beta, TensorSpan<T> result, T alpha, bool transa, TensorView<T> A, bool transb, TensorView<T> B) {
CV_Assert(A.rank() == 3);
CV_Assert(B.rank() == 3);
CV_Assert(result.rank() == 3);
const auto batch_size = result.get_axis_size(0);
CV_Assert(batch_size == A.get_axis_size(0));
CV_Assert(batch_size == B.get_axis_size(0));
detail::assertGEMMCompatiblity(result, transa, A, transb, B);
const auto result_nr = result.get_axis_size(-2);
const auto result_nc = result.get_axis_size(-1);
const auto common_dim = A.get_axis_size(transa ? -2 : -1);
const auto A_nc = A.get_axis_size(-1);
const auto B_nc = B.get_axis_size(-1);
std::size_t strideA = (A.size() / batch_size),
strideB = (B.size() / batch_size),
strideC = (result.size() / batch_size);
cublas::gemmStridedBatched<T>(handle,
transb, transa,
result_nc, result_nr, common_dim,
alpha, B.get(), B_nc, strideB,
A.get(), A_nc, strideA,
beta, result.get(), result_nc, strideC,
batch_size);
}
/** @brief performs element-wise addition with broadcasting
*
* Pre-conditions:
* - \p A and \p result must be compatible tensors
*
* Exception Guarantee: Basic
*/
template <class T> inline
void softmax(const cudnn::Handle& handle, TensorSpan<T> output, TensorView<T> input, int channel_axis, bool log) {
CV_Assert(is_shape_same(output, input));
channel_axis = clamp_axis(channel_axis, input.rank());
std::size_t outer_size = input.size_range(0, channel_axis);
auto channel_size = input.get_axis_size(channel_axis);
std::size_t inner_size = input.size_range(channel_axis + 1, input.rank());
std::array<std::size_t, 4> shape = { outer_size, channel_size, 1, inner_size };
using cudnn::TensorDescriptor;
auto inputDesc = TensorDescriptor<T>(shape);
auto outputDesc = TensorDescriptor<T>(shape);
cudnn::softmax(handle, outputDesc, output.get(), inputDesc, input.get(), log);
}
}
template <class T>
class Convolution {
using TensorDescriptor = cudnn::TensorDescriptor<T>;
using FilterDescriptor = cudnn::FilterDescriptor<T>;
using ConvolutionDescriptor = cudnn::ConvolutionDescriptor<T>;
using ConvolutionAlgorithm = cudnn::ConvolutionAlgorithm<T>;
using ActivationDescriptor = cudnn::ActivationDescriptor;
public:
using ActivationType = ActivationDescriptor::ActivationType;
struct params_type {
/* convolution */
std::vector<std::size_t> input_shape;
std::vector<std::size_t> filter_shape;
std::vector<std::size_t> padding;
std::vector<std::size_t> stride;
std::vector<std::size_t> dilation;
std::size_t groups;
/* bias and activation (only RELU supported) */
std::vector<std::size_t> bias_shape;
ActivationType activation_type; /* MUST BE identity if there is no bias and ReLU if there is bias */
bool eltwise;
};
Convolution() = default;
Convolution(const Convolution&) = delete;
Convolution(Convolution&&) = default;
Convolution(cudnn::Handle handle, const params_type& params) {
cudnnHandle = std::move(handle);
inputTensorDesc = TensorDescriptor(params.input_shape);
filterDesc = FilterDescriptor(params.filter_shape);
convDesc = ConvolutionDescriptor(params.padding, params.stride, params.dilation, params.groups);
std::vector<int> output_dims;
getConvolutionForwardOutputDim(convDesc, filterDesc, inputTensorDesc, output_dims);
outputTensorDesc = TensorDescriptor(output_dims);
algo = ConvolutionAlgorithm(cudnnHandle, convDesc, filterDesc, inputTensorDesc, outputTensorDesc);
if (!params.bias_shape.empty()) {
CV_Assert(params.activation_type == ActivationType::RELU);
biasTensorDesc = TensorDescriptor(params.bias_shape);
if (params.eltwise)
eltwiseTensorDesc = TensorDescriptor(output_dims);
activationDesc = ActivationDescriptor(params.activation_type, 0.0);
} else {
CV_Assert(params.activation_type == ActivationType::IDENTITY);
}
}
Convolution& operator=(const Convolution&) = delete;
Convolution& operator=(Convolution&&) = default;
std::size_t get_workspace_size() const noexcept {
return algo.get_workspace_size();
}
void convolve(TensorSpan<T> output, TensorView<T> input, TensorView<T> filters, WorkspaceInstance scratchpad) {
cudnn::convolve<T>(
cudnnHandle,
convDesc, algo, scratchpad,
filterDesc, filters.get(),
inputTensorDesc, input.get(),
1.0, 0.0, outputTensorDesc, output.get()
);
}
void convolve_with_bias_activation(TensorSpan<T> output, TensorView<T> input, TensorView<T> filters, TensorView<T> bias, WorkspaceInstance scratchpad) {
cudnn::convolve_with_bias_activation<T>(
cudnnHandle,
1.0, convDesc, algo, scratchpad,
filterDesc, filters.get(),
inputTensorDesc, input.get(),
biasTensorDesc, bias.get(),
activationDesc,
outputTensorDesc, output.get()
);
}
void convolve_with_bias_eltwise_activation(TensorSpan<T> output, TensorView<T> input, TensorView<T> filters, TensorView<T> bias, TensorView<T> eltwise, WorkspaceInstance scratchpad) {
cudnn::convolve_with_bias_eltwise_activation<T>(
cudnnHandle,
1.0, convDesc, algo, scratchpad,
filterDesc, filters.get(),
inputTensorDesc, input.get(),
biasTensorDesc, bias.get(),
1.0, eltwiseTensorDesc, eltwise.get(),
activationDesc,
outputTensorDesc, output.get()
);
}
private:
cudnn::Handle cudnnHandle;
TensorDescriptor inputTensorDesc, outputTensorDesc;
FilterDescriptor filterDesc;
ConvolutionDescriptor convDesc;
ConvolutionAlgorithm algo;
TensorDescriptor biasTensorDesc;
TensorDescriptor eltwiseTensorDesc;
ActivationDescriptor activationDesc;
};
template <class T>
class TransposeConvolution {
using TensorDescriptor = cudnn::TensorDescriptor<T>;
using FilterDescriptor = cudnn::FilterDescriptor<T>;
using ConvolutionDescriptor = cudnn::ConvolutionDescriptor<T>;
using TransposeConvolutionAlgorithm = cudnn::TransposeConvolutionAlgorithm<T>;
public:
struct params_type {
std::vector<std::size_t> input_shape;
std::vector<std::size_t> output_shape;
std::vector<std::size_t> filter_shape;
std::vector<std::size_t> padding;
std::vector<std::size_t> stride;
std::vector<std::size_t> dilation;
std::size_t groups;
};
TransposeConvolution() = default;
TransposeConvolution(const TransposeConvolution&) = delete;
TransposeConvolution(TransposeConvolution&&) = default;
TransposeConvolution(cudnn::Handle handle, const params_type& params) {
cudnnHandle = std::move(handle);
filterDesc = FilterDescriptor(params.filter_shape);
convDesc = ConvolutionDescriptor(params.padding, params.stride, params.dilation, params.groups);
/* input_shape is the output shape for convolution
* output_shape is the input shape for convolution
*/
convInputTensorDesc = TensorDescriptor(params.output_shape);
std::vector<int> conv_output_dims;
getConvolutionForwardOutputDim(convDesc, filterDesc, convInputTensorDesc, conv_output_dims);
/* the convolution output must be identical to what cuDNN expects */
CV_Assert(std::equal(std::begin(conv_output_dims), std::end(conv_output_dims), std::begin(params.input_shape)));
convOutputTensorDesc = TensorDescriptor(params.input_shape);
algo = TransposeConvolutionAlgorithm(cudnnHandle, convDesc, filterDesc, convOutputTensorDesc, convInputTensorDesc);
}
TransposeConvolution& operator=(const TransposeConvolution&) = delete;
TransposeConvolution& operator=(TransposeConvolution&&) = default;
std::size_t get_workspace_size() const noexcept {
return algo.get_workspace_size();
}
void transpose_convolve(TensorSpan<T> output, TensorView<T> input, TensorView<T> filters, WorkspaceInstance scratchpad) {
cudnn::transpose_convolve<T>(
cudnnHandle,
convDesc, algo, scratchpad,
filterDesc, filters.get(),
convOutputTensorDesc, input.get(),
1.0, 0.0, convInputTensorDesc, output.get()
);
}
private:
cudnn::Handle cudnnHandle;
TensorDescriptor convInputTensorDesc, convOutputTensorDesc;
FilterDescriptor filterDesc;
ConvolutionDescriptor convDesc;
TransposeConvolutionAlgorithm algo;
};
template <class T>
class Pooling {
using TensorDescriptor = cudnn::TensorDescriptor<T>;
using PoolingDescriptor = cudnn::PoolingDescriptor;
public:
using PoolingType = PoolingDescriptor::PoolingType;
struct params_type {
std::vector<std::size_t> input_shape;
std::vector<std::size_t> output_shape;
std::vector<std::size_t> window_size;
std::vector<std::size_t> padding;
std::vector<std::size_t> stride;
PoolingType type;
};
Pooling() = default;
Pooling(const Pooling&) = delete;
Pooling(Pooling&&) = default;
Pooling(cudnn::Handle handle, const params_type& params) {
cudnnHandle = std::move(handle);
inputTensorDesc = TensorDescriptor(params.input_shape);
poolingDesc = PoolingDescriptor(params.window_size, params.padding, params.stride, params.type);
//std::vector<int> output_dim;
//getPoolingForwardOutputDim(poolingDesc, inputTensorDesc, output_dim);
outputTensorDesc = TensorDescriptor(params.output_shape);
}
Pooling& operator=(const Pooling&) = delete;
Pooling& operator=(Pooling&&) = default;
void pool(TensorView<T> input, TensorSpan<T> output) {
cudnn::pool<T>(
cudnnHandle,
poolingDesc,
inputTensorDesc, input.get(),
1.0, 0.0, outputTensorDesc, output.get()
);
}
private:
cudnn::Handle cudnnHandle;
TensorDescriptor inputTensorDesc, outputTensorDesc;
PoolingDescriptor poolingDesc;
};
template <class T>
class LRN {
using LRNDescriptor = cudnn::LRNDescriptor;
using TensorDescriptor = cudnn::TensorDescriptor<T>;
public:
using LRNType = LRNDescriptor::LRNType;
LRN() = default;
LRN(const LRN&) = delete;
LRN(LRN&&) = default;
LRN(cudnn::Handle handle, std::size_t local_size, T alpha, T beta, T k, LRNType type) {
cudnnHandle = std::move(handle);
lrnDesc = LRNDescriptor(local_size, alpha, beta, k, type);
}
LRN& operator=(const LRN&) = delete;
LRN& operator=(LRN&&) = default;
void normalize(TensorView<T> input, TensorSpan<T> output, WorkspaceInstance workspace) {
cudnn::LRNForward<T>(
cudnnHandle,
lrnDesc,
TensorDescriptor(input.shape_as_vector()), input.get(),
1.0, 0.0, TensorDescriptor(output.shape_as_vector()), output.get(),
workspace
);
}
private:
cudnn::Handle cudnnHandle;
LRNDescriptor lrnDesc;
};
template <class T>
class TensorTransform {
using TensorTransformDescriptor = cudnn::TensorTransformDescriptor;
using TensorDescriptor = cudnn::TensorDescriptor<T>;
public:
TensorTransform() = default;
TensorTransform(const TensorTransform&) = delete;
TensorTransform(TensorTransform&&) = default;
template <class SequenceContainer>
TensorTransform(cudnn::Handle handle, const SequenceContainer& paddingLeft, const SequenceContainer& paddingRight) {
cudnnHandle = std::move(handle);
transDesc = TensorTransformDescriptor(paddingLeft, paddingRight);
}
TensorTransform& operator=(const TensorTransform&) = delete;
TensorTransform& operator=(TensorTransform&&) = default;
void transform(TensorView<T> input, TensorSpan<T> output) {
cudnn::transform<T>(
cudnnHandle,
transDesc,
TensorDescriptor(input.shape_as_vector()), input.get(),
TensorDescriptor(output.shape_as_vector()), output.get()
);
}
private:
cudnn::Handle cudnnHandle;
TensorTransformDescriptor transDesc;
};
}}}} /* namespace cv::dnn::cuda4dnn::csl */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_TENSOR_OPS_HPP */

View File

@ -0,0 +1,166 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CSL_WORKSPACE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CSL_WORKSPACE_HPP
#include "pointer.hpp"
#include "span.hpp"
#include "tensor.hpp"
#include <cstddef>
#include <cstdint>
#include <iterator>
namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
/** @brief maintains a single block of reusable device memory
*
* Each Workspace object is intended to be used by a single entity at a time but by
* different entities at different times. It maintains a single reusable block of memory which
* is sufficient for the largest consumer.
*/
class Workspace {
public:
/** @brief reserve \p bytes of memory */
void require(std::size_t bytes) {
if (bytes > ptr.size())
ptr.reset(bytes);
}
/** @brief number of bytes reserved by the largest consumer */
std::size_t size() const noexcept {
return ptr.size();
}
/** @brief returns the pointer to the workspace memory */
DevicePtr<unsigned char> get() {
return ptr.get();
}
private:
ManagedPtr<unsigned char> ptr;
};
/** used to compute total workspace size from several workspace requests */
class WorkspaceBuilder {
public:
WorkspaceBuilder() noexcept : max_size_in_bytes{ 0 } { }
/** request memory for \p count number of elements of the type \tparam T */
template <class T = std::int8_t>
void require(std::size_t count) noexcept {
auto blocks256 = (count * sizeof(T) + 255) / 256;
max_size_in_bytes += blocks256 * 256;
}
/** returns the total workspace memory that is required */
std::size_t required_workspace_size() const noexcept { return max_size_in_bytes; }
private:
std::size_t max_size_in_bytes;
};
/** general memory block from a workspace which can be passed on to the requester */
class WorkspaceInstance {
public:
/** returns a device pointer to the workspace memory */
template <class T = void>
DevicePtr<T> get() const noexcept {
return static_cast<DevicePtr<T>>(ptr);
}
/** returnss the size of the workspace memory in bytes */
std::size_t size_in_bytes() const noexcept {
return size_in_bytes_;
}
/** creates a Span<T> of \p count elements from the workspace memory */
template <class T>
Span<T> get_span(std::size_t count = 0) const {
if (count == 0)
count = size_in_bytes_ / sizeof(T);
if (count * sizeof(T) > size_in_bytes_)
CV_Error(Error::StsNoMem, "memory not sufficient");
return Span<T>(static_cast<DevicePtr<T>>(ptr), count);
}
/** creates a TensorSpan<T> of the given shape from the workspace memory */
template <class T, class ForwardItr>
TensorSpan<T> get_tensor_span(ForwardItr shape_begin, ForwardItr shape_end) const {
using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;
auto required_size = std::accumulate(shape_begin, shape_end, 1, std::multiplies<ItrValueType>());
if (required_size * sizeof(T) > size_in_bytes_)
CV_Error(Error::StsNoMem, "memory not sufficient");
return TensorSpan<T>(static_cast<DevicePtr<T>>(ptr), shape_begin, shape_end);
}
private:
DevicePtr<void> ptr;
std::size_t size_in_bytes_;
friend class WorkspaceAllocator;
WorkspaceInstance(DevicePtr<void> ptr_, std::size_t size_in_bytes__)
: ptr{ ptr_ }, size_in_bytes_{ size_in_bytes__ } { }
};
/** used to split a single workspace into constituents */
class WorkspaceAllocator {
public:
WorkspaceAllocator() = default;
WorkspaceAllocator(Workspace& workspace) noexcept
: current{ workspace.get() }, bytes_remaining { workspace.size() }
{
CV_Assert(is_aligned<void>(current, 256));
CV_Assert(bytes_remaining % 256 == 0);
}
/** allocates a Span<T> of \p count elements from the workspace memory */
template <class T>
Span<T> get_span(std::size_t count = 0) {
return accquire<T>(count);
}
/** allocates a TensorSpan<T> of the given shape from the workspace memory */
template <class T, class ForwardItr>
TensorSpan<T> get_tensor_span(ForwardItr start, ForwardItr end) {
using ItrValueType = typename std::iterator_traits<ForwardItr>::value_type;
auto required_size = std::accumulate(start, end, 1, std::multiplies<ItrValueType>());
return TensorSpan<T>(accquire<T>(required_size).data(), start, end);
}
/** allocates a WorkspaceInstance of size \p bytes from the workspace memory */
WorkspaceInstance get_instance(std::size_t bytes = 0) {
auto span = accquire(bytes);
return WorkspaceInstance(DevicePtr<void>(span.data()), span.size());
}
private:
template <class T = std::int8_t>
Span<T> accquire(std::size_t count = 0) {
auto ptr = current;
if (count == 0)
count = bytes_remaining / sizeof(T);
auto blocks256 = (count * sizeof(T) + 255) / 256;
if (bytes_remaining < blocks256 * 256)
CV_Error(Error::StsNoMem, "out of workspace memory");
bytes_remaining -= blocks256 * 256;
current = static_cast<DevicePtr<std::int8_t>>(current) + blocks256 * 256;
return Span<T>(static_cast<DevicePtr<T>>(ptr), count);
}
DevicePtr<void> current;
std::size_t bytes_remaining;
};
}}}} /* namespace cv::dnn::cuda4dnn::csl */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CSL_WORKSPACE_HPP */

View File

@ -0,0 +1,31 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CXX_UTILS_IS_ITERATOR_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CXX_UTILS_IS_ITERATOR_HPP
#include <iterator>
#include <type_traits>
namespace cv { namespace dnn { namespace cuda4dnn { namespace cxx_utils {
namespace detail {
template <class T, class Tag, class = void>
struct is_iterator_helper : std::false_type {};
template <class T, class Tag>
struct is_iterator_helper<T, Tag,
typename std::enable_if<std::is_base_of<Tag, typename std::iterator_traits<T>::iterator_category>::value, void>::type
> : std::true_type {};
}
template <class T>
using is_iterator = typename detail::is_iterator_helper<T, std::input_iterator_tag>;
template <class T>
using is_forward_iterator = typename detail::is_iterator_helper<T, std::forward_iterator_tag>;
}}}} /* namespace cv::dnn::cuda4dnn::csl::cxx_utils */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CXX_UTILS_IS_ITERATOR_HPP */

View File

@ -0,0 +1,110 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_CXX_UTILS_RESIZABLE_STATIC_ARRAY_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_CXX_UTILS_RESIZABLE_STATIC_ARRAY_HPP
#include <cstddef>
#include <array>
#include <cassert>
#include <algorithm>
namespace cv { namespace dnn { namespace cuda4dnn { namespace cxx_utils {
template <class T, std::size_t maxN>
class resizable_static_array {
using container_type = std::array<T, maxN>;
public:
using value_type = typename container_type::value_type;
using size_type = typename container_type::size_type;
using difference_type = typename container_type::difference_type;
using reference = typename container_type::reference;
using const_reference = typename container_type::const_reference;
using pointer = typename container_type::pointer;
using const_pointer = typename container_type::const_pointer;
using iterator = typename container_type::iterator;
using const_iterator = typename container_type::const_iterator;
using reverse_iterator = typename container_type::reverse_iterator;
using const_reverse_iterator = typename container_type::const_reverse_iterator;
resizable_static_array() noexcept : size_{ 0 } { }
explicit resizable_static_array(size_type sz) noexcept : size_{ sz } { }
bool empty() const noexcept { return static_cast<bool>(size_); }
size_type size() const noexcept { return size_; }
size_type capacity() const noexcept { return maxN; }
void resize(size_type sz) noexcept {
assert(sz <= capacity());
size_ = sz;
}
void clear() noexcept { size_ = 0; }
template <class ForwardItr>
void assign(ForwardItr first, ForwardItr last) {
resize(std::distance(first, last));
std::copy(first, last, begin());
}
iterator begin() noexcept { return std::begin(arr); }
iterator end() noexcept { return std::begin(arr) + size(); }
const_iterator begin() const noexcept { return arr.cbegin(); }
const_iterator end() const noexcept { return arr.cbegin() + size(); }
const_iterator cbegin() const noexcept { return arr.cbegin(); }
const_iterator cend() const noexcept { return arr.cbegin() + size(); }
reverse_iterator rbegin() noexcept { return std::begin(arr) + size(); }
reverse_iterator rend() noexcept { return std::begin(arr); }
const_reverse_iterator rbegin() const noexcept { return arr.cbegin()+ size(); }
const_reverse_iterator rend() const noexcept { return arr.cbegin(); }
const_reverse_iterator crbegin() const noexcept { return arr.cbegin() + size(); }
const_reverse_iterator crend() const noexcept { return arr.cbegin(); }
reference operator[](size_type pos) {
assert(pos < size());
return arr[pos];
}
const_reference operator[](size_type pos) const {
assert(pos < size());
return arr[pos];
}
iterator insert(iterator pos, const T& value) {
resize(size() + 1);
std::move_backward(pos, end() - 1, end());
*pos = value;
return pos;
}
iterator insert(iterator pos, T&& value) {
resize(size() + 1);
std::move_backward(pos, end() - 1, end());
*pos = std::move(value);
return pos;
}
iterator erase(iterator pos) {
std::move(pos + 1, end(), pos);
resize(size() - 1);
return pos;
}
pointer data() noexcept { return arr.data(); }
const_pointer data() const noexcept { return arr.data(); }
private:
std::size_t size_;
container_type arr;
};
}}}} /* namespace cv::dnn::cuda4dnn::csl::cxx_utils */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_CXX_UTILS_RESIZABLE_STATIC_ARRAY_HPP */

View File

@ -0,0 +1,86 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_INIT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_INIT_HPP
#include "csl/error.hpp"
#include <cuda_runtime.h>
#include <cudnn.h>
#include <opencv2/core/cuda.hpp>
#include <sstream>
namespace cv { namespace dnn { namespace cuda4dnn {
void checkVersions()
{
// https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#programming-model
// cuDNN API Compatibility
// Beginning in cuDNN 7, the binary compatibility of a patch and minor releases is maintained as follows:
// Any patch release x.y.z is forward or backward-compatible with applications built against another cuDNN patch release x.y.w (meaning, of the same major and minor version number, but having w!=z).
// cuDNN minor releases beginning with cuDNN 7 are binary backward-compatible with applications built against the same or earlier patch release (meaning, an application built against cuDNN 7.x is binary compatible with cuDNN library 7.y, where y>=x).
// Applications compiled with a cuDNN version 7.y are not guaranteed to work with 7.x release when y > x.
auto cudnn_bversion = cudnnGetVersion();
auto cudnn_major_bversion = cudnn_bversion / 1000, cudnn_minor_bversion = cudnn_bversion % 1000 / 100;
if (cudnn_major_bversion != CUDNN_MAJOR || cudnn_minor_bversion < CUDNN_MINOR)
{
std::ostringstream oss;
oss << "cuDNN reports version " << cudnn_major_bversion << "." << cudnn_minor_bversion << " which is not compatible with the version " << CUDNN_MAJOR << "." << CUDNN_MINOR << " with which OpenCV was built";
CV_LOG_WARNING(NULL, oss.str().c_str());
}
}
int getDeviceCount()
{
return cuda::getCudaEnabledDeviceCount();
}
int getDevice()
{
int device_id = -1;
CUDA4DNN_CHECK_CUDA(cudaGetDevice(&device_id));
return device_id;
}
bool isDeviceCompatible()
{
int device_id = getDevice();
if (device_id < 0)
return false;
int major = 0, minor = 0;
CUDA4DNN_CHECK_CUDA(cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, device_id));
CUDA4DNN_CHECK_CUDA(cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, device_id));
if (cv::cuda::TargetArchs::hasEqualOrLessPtx(major, minor))
return true;
for (int i = minor; i >= 0; i--)
if (cv::cuda::TargetArchs::hasBin(major, i))
return true;
return false;
}
bool doesDeviceSupportFP16()
{
int device_id = getDevice();
if (device_id < 0)
return false;
int major = 0, minor = 0;
CUDA4DNN_CHECK_CUDA(cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, device_id));
CUDA4DNN_CHECK_CUDA(cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, device_id));
int version = major * 10 + minor;
if (version < 53)
return false;
return true;
}
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_INIT_HPP */

View File

@ -0,0 +1,40 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ACTIVATION_ELTWISE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ACTIVATION_ELTWISE_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
/* inplace_output = activation(inplace_output) + eltwise */
template <class T>
void relu_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, csl::View<T> eltwise, T slope);
template <class T>
void clipped_relu_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, csl::View<T> eltwise, T floor, T ceiling);
template <class T>
void tanh_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, csl::View<T> eltwise);
template <class T>
void swish_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, csl::View<T> eltwise);
template <class T>
void mish_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, csl::View<T> eltwise);
template <class T>
void sigmoid_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, csl::View<T> eltwise);
template <class T>
void power_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, csl::View<T> eltwise, T exp, T scale, T shift);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ACTIVATION_ELTWISE_HPP */

View File

@ -0,0 +1,53 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ACTIVATIONS_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ACTIVATIONS_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void relu(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, T slope);
template <class T>
void clipped_relu(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, T floor, T ceiling);
template <class T>
void axiswise_relu(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, std::size_t inner_size, csl::View<T> slope);
template <class T>
void tanh(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
template <class T>
void swish(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
template <class T>
void mish(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
template <class T>
void sigmoid(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
template <class T>
void elu(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
template <class T>
void abs(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
template <class T>
void bnll(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
template <class T>
void power(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, T exp, T scale, T shift);
template <class T>
void exp(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, T normScale, T normShift);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ACTIVATIONS_HPP */

View File

@ -0,0 +1,38 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void biasN_relu_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T slope);
template <class T>
void biasN_clipped_relu_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T floor, T ceiling);
template <class T>
void biasN_tanh_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);
template <class T>
void biasN_swish_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);
template <class T>
void biasN_mish_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);
template <class T>
void biasN_sigmoid_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);
template <class T>
void biasN_power_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T exp, T scale, T shift);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_HPP */

View File

@ -0,0 +1,42 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_ELTWISE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_ELTWISE_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
/* inplace_output = activation(inplace_output + bias) + eltwise
* broadcasting on `bias` is allowed but not on `eltwise`
*/
template <class T>
void biasN_relu_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise, T slope);
template <class T>
void biasN_clipped_relu_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise, T floor, T ceiling);
template <class T>
void biasN_tanh_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_sigmoid_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_swish_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_mish_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_power_eltwise_sum_2_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise, T exp, T scale, T shift);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ACTIVATION_ELTWISE_HPP */

View File

@ -0,0 +1,45 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ELTWISE_ACTIVATION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ELTWISE_ACTIVATION_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
/* inplace_output = activation(inplace_output + bias + eltwise)
* broadcasting on `bias` is allowed but not on `eltwise`
*/
template <class T>
void biasN_eltwise_sum_2_identity_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_eltwise_sum_2_relu_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise, T slope);
template <class T>
void biasN_eltwise_sum_2_clipped_relu_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise, T floor, T ceiling);
template <class T>
void biasN_eltwise_sum_2_tanh_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_eltwise_sum_2_swish_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_eltwise_sum_2_mish_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_eltwise_sum_2_sigmoid_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise);
template <class T>
void biasN_eltwise_sum_2_power_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, csl::View<T> eltwise, T exp, T scale, T shift);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_BIAS_ELTWISE_ACTIVATION_HPP */

View File

@ -0,0 +1,27 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CONCAT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CONCAT_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include <cstddef>
#include <vector>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void concat(
const csl::Stream& stream,
csl::TensorSpan<T> output, std::size_t output_axis_offset,
csl::TensorView<T> input, std::size_t axis);
template <class T>
void concat_with_offsets(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, std::vector<std::size_t> axis_offsets);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CONCAT_HPP */

View File

@ -0,0 +1,19 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CROP_AND_RESIZE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CROP_AND_RESIZE_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/span.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void crop_and_resize(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, csl::View<T> boxes);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_CROP_AND_RESIZE_HPP */

View File

@ -0,0 +1,42 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_DETECTION_OUTPUT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_DETECTION_OUTPUT_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include "../csl/tensor.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void decode_bboxes(const csl::Stream& stream, csl::Span<T> output, csl::View<T> locations, csl::View<T> priors,
std::size_t num_loc_classes, bool share_location, std::size_t background_label_id,
bool transpose_location, bool variance_encoded_in_target,
bool corner_true_or_center_false, bool normalized_bbox,
bool clip_box, float clip_width, float clip_height);
template <class T>
void findTopK(const csl::Stream& stream, csl::TensorSpan<int> indices, csl::TensorSpan<int> count, csl::TensorView<T> scores, std::size_t background_label_id, float threshold);
template <class T>
void box_collect(const csl::Stream& stream, csl::TensorSpan<T> collected_bboxes, csl::TensorView<T> decoded_bboxes, csl::TensorView<int> indices, csl::TensorView<int> count, bool share_location, std::size_t background_label_id);
template <class T>
void blockwise_class_nms(const csl::Stream& stream, csl::TensorSpan<int> indices, csl::TensorSpan<int> count, csl::TensorView<T> collected_bboxes,
bool normalized_bbox, std::size_t background_label_id, float nms_threshold);
template <class T>
void nms_collect(const csl::Stream& stream, csl::TensorSpan<int> kept_indices, csl::TensorSpan<int> kept_count,
csl::TensorView<int> indices, csl::TensorView<int> count, csl::TensorView<T> scores, float, std::size_t background_label_id);
template <class T>
void consolidate_detections(const csl::Stream& stream, csl::TensorSpan<T> output,
csl::TensorView<int> kept_indices, csl::TensorView<int> kept_count,
csl::TensorView<T> decoded_bboxes, csl::TensorView<T> scores, bool share_location, csl::DevicePtr<int> num_detections);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_DETECTION_OUTPUT_HPP */

View File

@ -0,0 +1,40 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ELTWISE_ACTIVATION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ELTWISE_ACTIVATION_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
/* output = activation(x + y) */
template <class T>
void eltwise_sum_2_relu(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y, T slope);
template <class T>
void eltwise_sum_2_clipped_relu(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y, T floor, T ceiling);
template <class T>
void eltwise_sum_2_tanh(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
template <class T>
void eltwise_sum_2_swish(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
template <class T>
void eltwise_sum_2_mish(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
template <class T>
void eltwise_sum_2_sigmoid(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
template <class T>
void eltwise_sum_2_power(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y, T exp, T scale, T shift);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ELTWISE_ACTIVATION_HPP */

View File

@ -0,0 +1,35 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ELTWISE_OPS_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ELTWISE_OPS_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void eltwise_max_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
template <class T>
void eltwise_min_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
template <class T>
void eltwise_sum_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
template <class T>
void eltwise_sum_coeff_2(const csl::Stream& stream, csl::TensorSpan<T> output, T coeff_x, csl::TensorView<T> x, T coeff_y, csl::TensorView<T> y);
template <class T>
void eltwise_prod_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
template <class T>
void eltwise_div_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ELTWISE_OPS_HPP */

View File

@ -0,0 +1,21 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_COPY_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_COPY_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void fill(const csl::Stream& stream, csl::Span<T> output, T value);
template <class T>
void copy(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FILL_COPY_HPP */

View File

@ -0,0 +1,18 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FP_CONVERSION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FP_CONVERSION_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
void fp32_to_fp16(const csl::Stream& stream, csl::Span<half> output, csl::View<float> input);
void fp16_to_fp32(const csl::Stream& stream, csl::Span<float> output, csl::View<half> input);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_FP_CONVERSION_HPP */

View File

@ -0,0 +1,21 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_GRID_NMS_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_GRID_NMS_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include "../csl/tensor.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
std::size_t getGridNMSWorkspaceSizePerBatchItem(std::size_t num_classes, std::size_t classwise_topK);
template <class T>
void grid_nms(const csl::Stream& stream, csl::Span<unsigned int> workspace, csl::TensorSpan<int> indices, csl::TensorSpan<int> count, csl::TensorView<T> bboxes, int background_class_id, bool normalized_bbox, float nms_threshold);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_GRID_NMS_HPP */

View File

@ -0,0 +1,32 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_MAX_UNPOOLING_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_MAX_UNPOOLING_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include <cstddef>
#include <vector>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void max_pooling_with_indices(
const csl::Stream& stream,
csl::TensorSpan<T> output, csl::TensorSpan<T> indices, csl::TensorView<T> input,
const std::vector<std::size_t>& kernel_size, const std::vector<std::size_t>& strides,
const std::vector<std::size_t>& padding_left);
template <class T>
void max_unpooling(
const csl::Stream& stream,
csl::TensorSpan<T> output, csl::TensorView<T> input, csl::TensorView<T> indices,
const std::vector<std::size_t>& window_size, const std::vector<std::size_t>& strides,
const std::vector<std::size_t>& padding_left);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_MAX_UNPOOLING_HPP */

View File

@ -0,0 +1,31 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_MVN_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_MVN_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void reduce_mean(const csl::Stream& stream, csl::Span<float> means, csl::View<T> input, std::size_t inner_size);
template <class T>
void reduce_mean_sqr_sum(const csl::Stream& stream, csl::Span<float> means, csl::Span<float> sum_sqrs, csl::View<T> input, std::size_t inner_size);
void compute_normalization_scale(const csl::Stream& stream, csl::Span<float> scale, csl::View<float> means, csl::View<float> sum_sqrs, std::size_t inner_size, float eps);
template <class T>
void normalize_mean(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, csl::View<float> means, std::size_t inner_size);
template <class T>
void normalize_mean_variance(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, csl::View<float> means, csl::View<float> scale, std::size_t inner_size);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_MVN_HPP */

View File

@ -0,0 +1,24 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_NORMALIZE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_NORMALIZE_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void normalize(
const csl::Stream& stream,
csl::Span<T> output, csl::View<T> input,
std::size_t outer_size, std::size_t mid_size, std::size_t inner_size, std::size_t norm, T epsilon,
csl::Span<T> workspace);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_NORMALIZE_HPP */

View File

@ -0,0 +1,25 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PADDING_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PADDING_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void copy_with_reflection101(
const csl::Stream& stream,
csl::TensorSpan<T> output, csl::TensorView<T> input,
std::vector<std::pair<std::size_t, std::size_t>> ranges);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PADDING_HPP */

View File

@ -0,0 +1,24 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PERMUTE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PERMUTE_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include <cstddef>
#include <vector>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void permute(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, std::vector<std::size_t> order);
template <class T>
void transpose(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, std::size_t in_width, std::size_t out_width);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PERMUTE_HPP */

View File

@ -0,0 +1,28 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PRIOR_BOX_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PRIOR_BOX_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void generate_prior_boxes(
const csl::Stream& stream,
csl::Span<T> output,
csl::View<float> boxWidth, csl::View<float> boxHeight, csl::View<float> offsetX, csl::View<float> offsetY, float stepX, float stepY,
std::vector<float> variance,
std::size_t numPriors,
std::size_t layerWidth, std::size_t layerHeight,
std::size_t imageWidth, std::size_t imageHeight,
bool normalize, bool clip);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_PRIOR_BOX_HPP */

View File

@ -0,0 +1,25 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_REGION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_REGION_HPP
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void region(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, csl::View<T> bias,
T object_prob_cutoff, T class_prob_cutoff,
std::size_t boxes_per_cell, std::size_t box_size,
std::size_t rows, std::size_t cols, T scale_x_y,
std::size_t height_norm, std::size_t width_norm,
bool if_true_sigmoid_else_softmax, bool new_coords);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_REGION_HPP */

View File

@ -0,0 +1,21 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_RESIZE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_RESIZE_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void resize_nn(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, float scale_y, float scale_x, bool round, bool half_pixel_centers);
template <class T>
void resize_bilinear(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, float scale_y, float scale_x, bool half_pixel_centers);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_RESIZE_HPP */

View File

@ -0,0 +1,19 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ROI_POOLING_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ROI_POOLING_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/span.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void roi_pooling(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, csl::View<T> rois, float spatial_scale);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ROI_POOLING_HPP */

View File

@ -0,0 +1,39 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SCALE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SCALE_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void biasN(const csl::Stream& stream,
csl::TensorSpan<T> output,
csl::TensorView<T> input, std::size_t inner_size,
csl::TensorView<T> bias);
template <class T>
void scaleN(const csl::Stream& stream,
csl::TensorSpan<T> output,
csl::TensorView<T> input, std::size_t inner_size,
csl::TensorView<T> weights);
template <class T>
void scale1_with_bias1(const csl::Stream& stream, csl::Span<T> output, csl::View<T> input, T alpha, T beta);
template <class T>
void scaleN_with_biasN(
const csl::Stream& stream,
csl::TensorSpan<T> output,
csl::TensorView<T> input, std::size_t inner_size,
csl::TensorView<T> weights, csl::TensorView<T> bias);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SCALE_HPP */

View File

@ -0,0 +1,18 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SHORTCUT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SHORTCUT_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void input_shortcut(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, csl::TensorView<T> from);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SHORTCUT_HPP */

View File

@ -0,0 +1,22 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SLICE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SLICE_HPP
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include <cstddef>
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void slice(const csl::Stream& stream,
csl::TensorSpan<T> output, csl::TensorView<T> input,
std::vector<std::size_t> offsets);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_KERNELS_SLICE_HPP */

View File

@ -0,0 +1,376 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ACTIVATION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ACTIVATION_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../kernels/activations.hpp"
#include <opencv2/core.hpp>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class ReLUOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ReLUOp(csl::Stream stream_, T slope_)
: stream(std::move(stream_)), slope{ slope_ } { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::relu<T>(stream, output, input, slope);
}
}
private:
csl::Stream stream;
const T slope;
};
template <class T>
class ClippedReLUOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ClippedReLUOp(csl::Stream stream_, T min_, T max_)
: stream(std::move(stream_)), min{ min_ }, max{ max_ } { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::clipped_relu<T>(stream, output, input, min, max);
}
}
private:
csl::Stream stream;
const T min, max;
};
template <class T>
class ChannelwiseReLUOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ChannelwiseReLUOp(csl::Stream stream_, const Mat& slope)
: stream(std::move(stream_))
{
CV_Assert(!slope.empty());
slopeTensor = csl::makeTensorHeader<T>(slope);
csl::copyMatToTensor<T>(slope, slopeTensor, stream);
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
CV_Assert(input.get_axis_size(1) == slopeTensor.size());
std::size_t inner_size = input.size_range(2, input.rank());
kernels::axiswise_relu<T>(stream, output, input, inner_size, slopeTensor);
}
}
private:
csl::Stream stream;
csl::Tensor<T> slopeTensor;
};
template <class T>
class TanHOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
TanHOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::tanh<T>(stream, output, input);
}
}
private:
csl::Stream stream;
};
template <class T>
class SwishOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
SwishOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::swish<T>(stream, output, input);
}
}
private:
csl::Stream stream;
};
template <class T>
class MishOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
MishOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::mish<T>(stream, output, input);
}
}
private:
csl::Stream stream;
};
template <class T>
class SigmoidOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
SigmoidOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::sigmoid<T>(stream, output, input);
}
}
private:
csl::Stream stream;
};
template <class T>
class ELUOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ELUOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::elu<T>(stream, output, input);
}
}
private:
csl::Stream stream;
};
template <class T>
class AbsValOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
AbsValOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::abs<T>(stream, output, input);
}
}
private:
csl::Stream stream;
};
template <class T>
class BNLLOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
BNLLOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::bnll<T>(stream, output, input);
}
}
private:
csl::Stream stream;
};
template <class T>
class PowerOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
PowerOp(csl::Stream stream_, T exp_, T scale_, T shift_)
: stream(std::move(stream_)), exp{ exp_ }, scale{ scale_ }, shift{ shift_ } { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::power<T>(stream, output, input, exp, scale, shift);
}
}
private:
csl::Stream stream;
const T exp, scale, shift;
};
template <class T>
class ExpOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ExpOp(csl::Stream stream_, T nScale_, T nShift_)
: stream(std::move(stream_)), normScale{ nScale_ }, normShift{ nShift_ } { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::exp<T>(stream, output, input, normScale, normShift);
}
}
private:
csl::Stream stream;
const T normScale, normShift;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ACTIVATION_HPP */

View File

@ -0,0 +1,58 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_BATCH_NORM_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_BATCH_NORM_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../kernels/scale_shift.hpp"
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class BatchNormOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
BatchNormOp(csl::Stream stream_, const cv::Mat& weights, const cv::Mat& bias)
: stream(std::move(stream_))
{
biasTensor = csl::makeTensorHeader<T>(bias);
csl::copyMatToTensor<T>(bias, biasTensor, stream);
weightsTensor = csl::makeTensorHeader<T>(weights);
csl::copyMatToTensor<T>(weights, weightsTensor, stream);
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
std::size_t inner_size = input.size_range(2, input.rank());
kernels::scaleN_with_biasN<T>(stream, output, input, inner_size, weightsTensor, biasTensor);
}
private:
csl::Stream stream;
csl::Tensor<T> weightsTensor, biasTensor;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_BATCH_NORM_HPP */

View File

@ -0,0 +1,90 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONCAT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONCAT_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/pointer.hpp"
#include "../kernels/fill_copy.hpp"
#include "../kernels/concat.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class ConcatOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ConcatOp(csl::Stream stream_, std::size_t concat_axis, bool zero_padding)
: stream(std::move(stream_)), concat_axis{ concat_axis }, zero_padding{ zero_padding }
{
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(outputs.size() == 1);
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
if(zero_padding)
{
auto output_shape = output_wrapper->getShape();
kernels::fill<T>(stream, output, 0.0);
std::size_t output_concat_axis_offset = 0;
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto input_shape = input_wrapper->getShape();
std::vector<std::size_t> offsets(input_shape.size());
for (int j = 0; j < offsets.size(); j++)
offsets[j] = (output_shape[j] - input_shape[j]) / 2;
offsets[concat_axis] = output_concat_axis_offset;
kernels::concat_with_offsets(stream, output, input, offsets);
output_concat_axis_offset += input.get_axis_size(concat_axis);
}
}
else
{
std::size_t output_axis_offset = 0;
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
kernels::concat(stream, output, output_axis_offset, input, concat_axis);
output_axis_offset += input.get_axis_size(concat_axis);
}
}
}
private:
csl::Stream stream;
std::size_t concat_axis;
bool zero_padding;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONCAT_HPP */

View File

@ -0,0 +1,51 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONST_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONST_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include <opencv2/core.hpp>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class ConstOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ConstOp(csl::Stream stream_, const cv::Mat& data)
: stream(std::move(stream_))
{
constTensor = csl::makeTensorHeader<T>(data);
csl::copyMatToTensor<T>(data, constTensor, stream);
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(outputs.size() == 1 && inputs.size() == 0);
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
csl::tensor_ops::copy<T>(stream, output, constTensor);
}
private:
csl::Stream stream;
csl::Tensor<T> constTensor;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONST_HPP */

View File

@ -0,0 +1,608 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONVOLUTION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONVOLUTION_HPP
#include "../../op_cuda.hpp"
#include "../csl/cudnn.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/scale_shift.hpp"
#include "../kernels/activations.hpp"
#include "../kernels/activation_eltwise.hpp"
#include "../kernels/bias_activation.hpp"
#include "../kernels/bias_eltwise_activation.hpp"
#include "../kernels/bias_activation_eltwise.hpp"
#include "../kernels/activation_eltwise.hpp"
#include "../kernels/eltwise_activation.hpp"
#include "../kernels/eltwise_ops.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <cstdint>
#include <vector>
#include <utility>
#include <algorithm>
namespace cv { namespace dnn { namespace cuda4dnn {
struct ConvolutionConfiguration {
/* the size of the following vectors must be equal to the kernel size */
std::vector<std::size_t> kernel_size;
std::vector<std::size_t> dilations, strides;
enum class PaddingMode {
MANUAL, /* uses explicit padding values provided in `pads_begin` and `pads_end` */
VALID, /* no padding is added */
SAME /* TensorFlow logic is used for same padding */
};
/* explicit paddings are used if and only if padMode is set to manual */
PaddingMode padMode;
std::vector<std::size_t> pads_begin, pads_end;
/* full shape inclusive of channel and batch axis */
std::vector<std::size_t> input_shape;
std::vector<std::size_t> output_shape;
/* group count for grouped convolution */
std::size_t groups;
enum class FusionMode {
NONE,
ACTIVATION, /* act(conv) */
ELTWISE_SUM, /* eltwise + conv */ /* eltwise tensor is passed as second input to forward */
ELTWISE_SUM_THEN_ACTIVATION, /* act(conv + eltwise) */
ACTIVATION_THEN_ELTWISE_SUM, /* act(conv) + eltwise */
};
FusionMode fusion_mode;
enum class ActivationType {
IDENTITY,
RELU, /* uses value provided in `relu_negative_slope` */
CLIPPED_RELU, /* uses values provided in `crelu_floor` and `crelu_ceil` */
POWER,
TANH,
SIGMOID,
SWISH,
MISH
};
ActivationType activation_type;
float relu_negative_slope, crelu_floor, crelu_ceil;
float power_exp, power_scale, power_shift;
};
template <class T>
class ConvolutionOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ConvolutionOp(csl::Stream stream_, csl::cudnn::Handle handle_, const ConvolutionConfiguration& config, const Mat& filters, const Mat& bias)
: stream(std::move(stream_)), cudnnHandle(std::move(handle_))
{
const auto& kernel_size = config.kernel_size;
const auto& dilations = config.dilations;
const auto& strides = config.strides;
const auto convolution_order = kernel_size.size();
CV_Assert(convolution_order == dilations.size());
CV_Assert(convolution_order == strides.size());
const auto& input_shape = config.input_shape;
const auto& output_shape = config.output_shape;
CV_Assert(input_shape.size() == output_shape.size());
CV_Assert(input_shape.size() == convolution_order + 2);
const auto groups = config.groups;
CV_Assert (1 <= convolution_order && convolution_order <= 3);
const auto rank = input_shape.size();
const auto output_feature_maps = output_shape[1];
const auto input_feature_maps = input_shape[1];
const auto input_feature_maps_per_group = input_feature_maps / groups;
CV_Assert(input_feature_maps % groups == 0);
filtersTensor = csl::makeTensorHeader<T>(filters);
csl::copyMatToTensor<T>(filters, filtersTensor, stream);
if (!bias.empty())
{
biasTensor = csl::makeTensorHeader<T>(bias);
csl::copyMatToTensor<T>(bias, biasTensor, stream);
}
/* left and right are misleading as the padding is applicable for any number of dimensions
* but we use those identifiers to avoid confusion with `pads_begin` and `pads_end`
*
* `common_padding` contains the amount of padding that has to be added to both sides
* `padding_left` and `padding_right` contains the amount of padding that needs to be added
* to a particular side in addition to the common padding
*/
std::vector<std::size_t> common_padding(rank, 0);
std::vector<std::size_t> padding_left(rank, 0), padding_right(rank, 0);
if (config.padMode == ConvolutionConfiguration::PaddingMode::MANUAL)
{
const auto& pads_begin = config.pads_begin;
const auto& pads_end = config.pads_end;
CV_Assert(convolution_order == pads_begin.size());
CV_Assert(convolution_order == pads_end.size());
for (int i = 2; i < common_padding.size(); i++)
{
common_padding[i] = std::min(pads_begin[i - 2], pads_end[i - 2]);
padding_left[i] = pads_begin[i - 2] - common_padding[i];
padding_right[i] = pads_end[i - 2] - common_padding[i];
}
}
else if (config.padMode == ConvolutionConfiguration::PaddingMode::VALID)
{
/* nothing to do as the paddings are already preset to zero */
}
else if (config.padMode == ConvolutionConfiguration::PaddingMode::SAME)
{
/* TensorFlow Logic:
* total_padding[i] = (o[i] - 1) * s[i] + effective_k[i] - i[i]
*
* if total padding is odd, the extra is added towards the end
*/
for (int i = 2; i < rank; i++)
{
const auto j = i - 2; /* filter index */
const auto effective_kernel_size = dilations[j] * (kernel_size[j] - 1) + 1;
const auto required_total_padding =
std::max<std::int64_t>(0, (output_shape[i] - 1) * strides[j] + effective_kernel_size - input_shape[i]);
common_padding[i] = required_total_padding / 2;
padding_left[i] = 0;
padding_right[i] = required_total_padding % 2;
}
}
/* in some scenarios, the extra padding at the end may not change the output at all */
for (int i = 2; i < rank; i++) {
const auto j = i - 2; /* filter idx */
const auto total_padding = common_padding[i] * 2 + padding_left[i] + padding_right[i];
const auto effective_kernel_size = dilations[j] * (kernel_size[j] - 1) + 1;
std::int64_t rem = (input_shape[i] + total_padding - effective_kernel_size) % strides[j];
/* the output shape doesn't change if we decrease the total padding by at most `rem`
* provided that we decrease from the right
*/
if (rem && padding_right[i] > 0)
padding_right[i] = std::max<std::int64_t>(0, padding_right[i] - rem);
}
auto is_not_zero = [](std::size_t i) { return i != 0; };
if(std::any_of(std::begin(padding_left), std::end(padding_left), is_not_zero) ||
std::any_of(std::begin(padding_right), std::end(padding_right), is_not_zero))
{
/* csl::Convolution supports symmetric padding only; hence, we deal with asymmetric padding by
* copying the input to a bigger tensor and padding the ends manually
*/
transformed_shape = input_shape;
for (int i = 0; i < rank; i++)
transformed_shape[i] += padding_left[i] + padding_right[i];
inputTransformer = csl::TensorTransform<T>(cudnnHandle, padding_left, padding_right);
}
typename csl::Convolution<T>::params_type params;
if (transformed_shape.empty())
{
params.input_shape.assign(std::begin(input_shape), std::end(input_shape));
}
else
{
/* the convolution operation will be seeing the transformed input */
params.input_shape.assign(std::begin(transformed_shape), std::end(transformed_shape));
}
auto& fshape = params.filter_shape;
fshape.resize(rank);
fshape[0] = output_feature_maps;
fshape[1] = input_feature_maps_per_group;
std::copy(std::begin(kernel_size), std::end(kernel_size), std::begin(fshape) + 2);
CV_Assert(fshape.size() == kernel_size.size() + 2);
params.padding.assign(std::begin(common_padding) + 2, std::end(common_padding));
params.stride = strides;
params.dilation = dilations;
params.groups = config.groups;
fusion_mode = config.fusion_mode;
activation = config.activation_type;
relu_negative_slope = config.relu_negative_slope;
crelu_floor = config.crelu_floor;
crelu_ceil = config.crelu_ceil;
power_exp = config.power_exp;
power_scale = config.power_scale;
power_shift = config.power_shift;
/* we normally use cuDNN for convolution and perform bias, activation and eltwise ops ourselves
* hence, the activation for cuDNN is IDENTITY by default
*/
fusion_location = InternalFusionLocation::NATIVE; /* i.e. we perform bias, act and eltwise */
params.eltwise = false;
params.activation_type = csl::Convolution<T>::ActivationType::IDENTITY;
/* cuDNN can fuse the operations with convolution in some cases; try if it's possible */
if (!biasTensor.empty() && 0 &&
biasTensor.size() == output_feature_maps && /* cuDNN requirement */
activation == ConvolutionConfiguration::ActivationType::RELU && /* cuDNN requirement */
relu_negative_slope == 0.0 && /* cuDNN requirement */
(fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION || /* act(conv + bias) */
fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION) /* act(conv + bias + eltwise) */
)
{
bool do_not_fuse = false;
if(std::is_same<T, half>::value)
{
/* performance degrades if fused with tensor core based convolutions in most cases */
int device;
CUDA4DNN_CHECK_CUDA(cudaGetDevice(&device));
int cc_major;
CUDA4DNN_CHECK_CUDA(cudaDeviceGetAttribute(&cc_major, cudaDevAttrComputeCapabilityMajor, device));
if (cc_major >= 7)
do_not_fuse = true;
}
if (!do_not_fuse)
{
fusion_location = InternalFusionLocation::CUDNN;
auto bias_shape = std::vector<std::size_t>(rank, 1);
bias_shape[1] = output_feature_maps;
params.bias_shape = bias_shape;
if (config.fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION)
params.eltwise = true;
params.activation_type = csl::Convolution<T>::ActivationType::RELU;
}
}
convoluter = csl::Convolution<T>(cudnnHandle, params);
csl::WorkspaceBuilder builder;
if (!transformed_shape.empty())
{
auto& shape = transformed_shape;
auto sz = std::accumulate(std::begin(shape), std::end(shape), 1, std::multiplies<std::size_t>());
builder.require<T>(sz);
}
builder.require(convoluter.get_workspace_size());
scratch_mem_in_bytes = builder.required_workspace_size();
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
/* input[0] = conv input, input[1] = bias (from fused eltwise layer) */
CV_Assert(inputs.size() == 1 || inputs.size() == 2);
CV_Assert(outputs.size() == 1);
csl::WorkspaceAllocator allocator(workspace);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
if (!transformed_shape.empty())
{
auto& shape = transformed_shape;
auto transformed_input = allocator.get_tensor_span<T>(std::begin(shape), std::end(shape));
inputTransformer.transform(input, transformed_input);
input = transformed_input;
}
auto conv_scratchpad = allocator.get_instance();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
if (fusion_location == InternalFusionLocation::CUDNN)
{
try
{
if (fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION)
convoluter.convolve_with_bias_activation(output, input, filtersTensor, biasTensor, conv_scratchpad);
else if (fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION)
{
auto eltwise_wrapper = inputs[1].dynamicCast<wrapper_type>();
auto eltwise = eltwise_wrapper->getView();
CV_Assert(is_shape_same(eltwise, output));
convoluter.convolve_with_bias_eltwise_activation(output, input, filtersTensor, biasTensor, eltwise, conv_scratchpad);
}
}
catch(const csl::cudnn::cuDNNException& ex)
{
if (ex.getCUDNNStatus() == CUDNN_STATUS_NOT_SUPPORTED)
{
/* drop cuDNN fusion and use the native fusion path */
fusion_location = InternalFusionLocation::NATIVE;
}
else
throw;
}
}
if (fusion_location == InternalFusionLocation::NATIVE)
{
convoluter.convolve(output, input, filtersTensor, conv_scratchpad);
if (fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM ||
fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION ||
fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION_THEN_ELTWISE_SUM)
{
CV_Assert(inputs.size() == 2);
}
if (!biasTensor.empty() && inputs.size() == 2)
{
/* bias and eltwise */
CV_Assert(fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM ||
fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION ||
fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION_THEN_ELTWISE_SUM);
auto eltwise_wrapper = inputs[1].dynamicCast<wrapper_type>();
auto eltwise = eltwise_wrapper->getView();
CV_Assert(is_shape_same(eltwise, output));
std::size_t inner_size = output.size_range(2, output.rank());
if (fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM)
{
kernels::biasN_eltwise_sum_2_identity_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
}
else if (fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION)
{
/* activation(conv + bias + eltwise) */
switch (activation)
{
case ConvolutionConfiguration::ActivationType::IDENTITY:
kernels::biasN_eltwise_sum_2_identity_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
case ConvolutionConfiguration::ActivationType::RELU:
kernels::biasN_eltwise_sum_2_relu_inplace<T>(stream, output, inner_size, biasTensor, eltwise, relu_negative_slope);
break;
case ConvolutionConfiguration::ActivationType::CLIPPED_RELU:
kernels::biasN_eltwise_sum_2_clipped_relu_inplace<T>(stream, output, inner_size, biasTensor, eltwise, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::biasN_eltwise_sum_2_power_inplace<T>(stream, output, inner_size, biasTensor, eltwise, power_exp, power_scale, power_shift);
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::biasN_eltwise_sum_2_tanh_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
case ConvolutionConfiguration::ActivationType::SIGMOID:
kernels::biasN_eltwise_sum_2_sigmoid_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
case ConvolutionConfiguration::ActivationType::SWISH:
kernels::biasN_eltwise_sum_2_swish_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
case ConvolutionConfiguration::ActivationType::MISH:
kernels::biasN_eltwise_sum_2_mish_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
}
}
else if (fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION_THEN_ELTWISE_SUM)
{
/* activation(conv + bias) + eltwise */
switch (activation)
{
case ConvolutionConfiguration::ActivationType::IDENTITY:
kernels::biasN_eltwise_sum_2_identity_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
case ConvolutionConfiguration::ActivationType::RELU:
kernels::biasN_relu_eltwise_sum_2_inplace<T>(stream, output, inner_size, biasTensor, eltwise, relu_negative_slope);
break;
case ConvolutionConfiguration::ActivationType::CLIPPED_RELU:
kernels::biasN_clipped_relu_eltwise_sum_2_inplace<T>(stream, output, inner_size, biasTensor, eltwise, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::biasN_power_eltwise_sum_2_inplace<T>(stream, output, inner_size, biasTensor, eltwise, power_exp, power_scale, power_shift);
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::biasN_tanh_eltwise_sum_2_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
case ConvolutionConfiguration::ActivationType::SIGMOID:
kernels::biasN_sigmoid_eltwise_sum_2_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
case ConvolutionConfiguration::ActivationType::SWISH:
kernels::biasN_swish_eltwise_sum_2_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
case ConvolutionConfiguration::ActivationType::MISH:
kernels::biasN_mish_eltwise_sum_2_inplace<T>(stream, output, inner_size, biasTensor, eltwise);
break;
}
}
}
else if (!biasTensor.empty() && inputs.size() == 1)
{
/* bias but no eltwise */
CV_Assert(fusion_mode == ConvolutionConfiguration::FusionMode::NONE ||
fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION);
std::size_t inner_size = output.size_range(2, output.rank());
switch(activation)
{
case ConvolutionConfiguration::ActivationType::IDENTITY:
kernels::biasN<T>(stream, output, output, inner_size, biasTensor);
break;
case ConvolutionConfiguration::ActivationType::RELU:
kernels::biasN_relu_inplace<T>(stream, output, inner_size, biasTensor, relu_negative_slope);
break;
case ConvolutionConfiguration::ActivationType::CLIPPED_RELU:
kernels::biasN_clipped_relu_inplace<T>(stream, output, inner_size, biasTensor, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::biasN_power_inplace<T>(stream, output, inner_size, biasTensor, power_exp, power_scale, power_shift);
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::biasN_tanh_inplace<T>(stream, output, inner_size, biasTensor);
break;
case ConvolutionConfiguration::ActivationType::SIGMOID:
kernels::biasN_sigmoid_inplace<T>(stream, output, inner_size, biasTensor);
break;
case ConvolutionConfiguration::ActivationType::SWISH:
kernels::biasN_swish_inplace<T>(stream, output, inner_size, biasTensor);
break;
case ConvolutionConfiguration::ActivationType::MISH:
kernels::biasN_mish_inplace<T>(stream, output, inner_size, biasTensor);
break;
}
}
else if (biasTensor.empty() && inputs.size() == 2)
{
/* no bias but eltwise */
CV_Assert(fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM ||
fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION ||
fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION_THEN_ELTWISE_SUM);
auto eltwise_wrapper = inputs[1].dynamicCast<wrapper_type>();
auto eltwise = eltwise_wrapper->getView();
CV_Assert(is_shape_same(eltwise, output));
/* we pass `eltwise` as `bias` (with `inner_size` as one) to bias-activation kernels */
if (fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM)
{
kernels::eltwise_sum_2<T>(stream, output, output, eltwise);
}
else if (fusion_mode == ConvolutionConfiguration::FusionMode::ELTWISE_SUM_THEN_ACTIVATION)
{
switch (activation)
{
case ConvolutionConfiguration::ActivationType::IDENTITY:
kernels::eltwise_sum_2<T>(stream, output, output, eltwise);
break;
case ConvolutionConfiguration::ActivationType::RELU:
kernels::eltwise_sum_2_relu<T>(stream, output, output, eltwise, relu_negative_slope);
break;
case ConvolutionConfiguration::ActivationType::CLIPPED_RELU:
kernels::eltwise_sum_2_clipped_relu<T>(stream, output, output, eltwise, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::eltwise_sum_2_power<T>(stream, output, output, eltwise, power_exp, power_scale, power_shift);
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::eltwise_sum_2_tanh<T>(stream, output, output, eltwise);
break;
case ConvolutionConfiguration::ActivationType::SIGMOID:
kernels::eltwise_sum_2_sigmoid<T>(stream, output, output, eltwise);
break;
case ConvolutionConfiguration::ActivationType::SWISH:
kernels::eltwise_sum_2_swish<T>(stream, output, output, eltwise);
break;
case ConvolutionConfiguration::ActivationType::MISH:
kernels::eltwise_sum_2_mish<T>(stream, output, output, eltwise);
break;
}
}
else if (fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION_THEN_ELTWISE_SUM)
{
switch (activation)
{
case ConvolutionConfiguration::ActivationType::IDENTITY:
kernels::eltwise_sum_2<T>(stream, output, output, eltwise);
break;
case ConvolutionConfiguration::ActivationType::RELU:
kernels::relu_eltwise_sum_2_inplace<T>(stream, output, eltwise, relu_negative_slope);
break;
case ConvolutionConfiguration::ActivationType::CLIPPED_RELU:
kernels::clipped_relu_eltwise_sum_2_inplace<T>(stream, output, eltwise, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::power_eltwise_sum_2_inplace<T>(stream, output, eltwise, power_exp, power_scale, power_shift);
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::tanh_eltwise_sum_2_inplace<T>(stream, output, eltwise);
break;
case ConvolutionConfiguration::ActivationType::SIGMOID:
kernels::sigmoid_eltwise_sum_2_inplace<T>(stream, output, eltwise);
break;
case ConvolutionConfiguration::ActivationType::SWISH:
kernels::swish_eltwise_sum_2_inplace<T>(stream, output, eltwise);
break;
case ConvolutionConfiguration::ActivationType::MISH:
kernels::mish_eltwise_sum_2_inplace<T>(stream, output, eltwise);
break;
}
}
}
else if(biasTensor.empty() && inputs.size() == 1)
{
/* no bias and no eltwise */
CV_Assert(fusion_mode == ConvolutionConfiguration::FusionMode::NONE ||
fusion_mode == ConvolutionConfiguration::FusionMode::ACTIVATION);
switch(activation)
{
case ConvolutionConfiguration::ActivationType::IDENTITY:
break;
case ConvolutionConfiguration::ActivationType::RELU:
kernels::relu<T>(stream, output, output, relu_negative_slope);
break;
case ConvolutionConfiguration::ActivationType::CLIPPED_RELU:
kernels::clipped_relu<T>(stream, output, output, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::power<T>(stream, output, output, power_exp, power_scale, power_shift);
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::tanh<T>(stream, output, output);
break;
case ConvolutionConfiguration::ActivationType::SIGMOID:
kernels::sigmoid<T>(stream, output, output);
break;
case ConvolutionConfiguration::ActivationType::SWISH:
kernels::swish<T>(stream, output, output);
break;
case ConvolutionConfiguration::ActivationType::MISH:
kernels::mish<T>(stream, output, output);
break;
}
}
}
}
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; }
private:
csl::Stream stream;
csl::cudnn::Handle cudnnHandle;
csl::Tensor<T> filtersTensor, biasTensor;
csl::Convolution<T> convoluter;
std::vector<std::size_t> transformed_shape;
csl::TensorTransform<T> inputTransformer;
std::size_t scratch_mem_in_bytes;
ConvolutionConfiguration::FusionMode fusion_mode;
ConvolutionConfiguration::ActivationType activation;
float relu_negative_slope, crelu_floor, crelu_ceil;
float power_exp, power_scale, power_shift;
enum class InternalFusionLocation {
CUDNN,
NATIVE
} fusion_location;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CONVOLUTION_HPP */

View File

@ -0,0 +1,51 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CROP_AND_RESIZE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CROP_AND_RESIZE_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include "../kernels/crop_and_resize.hpp"
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class CropAndResizeOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
CropAndResizeOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 2 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto box_wrapper = inputs[1].dynamicCast<wrapper_type>();
auto boxes = box_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::crop_and_resize(stream, output, input, static_cast<csl::View<T>>(boxes));
}
private:
csl::Stream stream;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_CROP_AND_RESIZE_HPP */

View File

@ -0,0 +1,282 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_DETECTION_OUTPUT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_DETECTION_OUTPUT_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../kernels/fill_copy.hpp"
#include "../kernels/permute.hpp"
#include "../kernels/detection_output.hpp"
#include "../kernels/grid_nms.hpp"
#include <cstddef>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
struct DetectionOutputConfiguration {
std::size_t batch_size;
enum class CodeType {
CORNER,
CENTER_SIZE
};
CodeType code_type;
bool share_location;
std::size_t num_priors;
std::size_t num_classes;
std::size_t background_class_id;
bool transpose_location;
bool variance_encoded_in_target;
bool normalized_bbox;
bool clip_box;
std::size_t classwise_topK;
float confidence_threshold;
float nms_threshold;
int keepTopK;
};
template <class T>
class DetectionOutputOp final : public CUDABackendNode {
private:
/* We have block level NMS kernel where each block handles one class of one batch item.
* If the number of classes and batch size together is very low, the blockwise NMS kernel
* won't able to fully saturate the GPU with work.
*
* We also have a grid level NMS kernel where multiple blocks handle each class of every batch item.
* This performs better in the worst case and utilizes resources better when block level kernel isn't
* able to saturate the GPU with enough work. However, this is not efficient in the average case where
* the block level kernel is able to saturate the GPU. It does better when the blockwise NMS barely
* saturates the GPU.
*
* `GRID_NMS_CUTOFF` is the cutoff for `num_classes * batch_size` above which we will switch from grid
* level NMS to block level NMS.
*/
static constexpr int GRID_NMS_CUTOFF = 32;
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
DetectionOutputOp(csl::Stream stream_, const DetectionOutputConfiguration& config)
: stream(std::move(stream_))
{
corner_true_or_center_false = (config.code_type == DetectionOutputConfiguration::CodeType::CORNER);
share_location = config.share_location;
num_priors = config.num_priors;
num_classes = config.num_classes;
background_class_id = config.background_class_id;
transpose_location = config.transpose_location;
variance_encoded_in_target = config.variance_encoded_in_target;
normalized_bbox = config.normalized_bbox;
clip_box = config.clip_box;
classwise_topK = config.classwise_topK;
confidence_threshold = config.confidence_threshold;
nms_threshold = config.nms_threshold;
keepTopK = config.keepTopK;
CV_Assert(keepTopK > 0);
if (classwise_topK == -1)
{
classwise_topK = num_priors;
if (keepTopK > 0 && keepTopK < num_priors)
classwise_topK = keepTopK;
}
auto batch_size = config.batch_size;
auto num_loc_classes = (share_location ? 1 : num_classes);
csl::WorkspaceBuilder builder;
builder.require<T>(batch_size * num_priors * num_loc_classes * 4); /* decoded boxes */
builder.require<T>(batch_size * num_classes * num_priors); /* transposed scores */
builder.require<int>(batch_size * num_classes * classwise_topK); /* indices */
builder.require<int>(batch_size * num_classes); /* classwise topK count */
builder.require<T>(batch_size * num_classes * classwise_topK * 4); /* topK decoded boxes */
if (batch_size * num_classes <= GRID_NMS_CUTOFF)
{
auto workspace_per_batch_item = kernels::getGridNMSWorkspaceSizePerBatchItem(num_classes, classwise_topK);
builder.require(batch_size * workspace_per_batch_item);
}
builder.require<int>(batch_size * keepTopK); /* final kept indices */
builder.require<int>(batch_size); /* kept indices count */
builder.require<int>(1); /* total number of detections */
scratch_mem_in_bytes = builder.required_workspace_size();
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
/* locations, scores and priors make the first three inputs in order */
/* the 4th input is used to obtain the shape for clipping */
CV_Assert((inputs.size() == 3 || inputs.size() == 4) && outputs.size() == 1);
// locations: [batch_size, num_priors, num_loc_classes, 4]
auto locations_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto locations = locations_wrapper->getView();
// scores: [batch_size, num_priors, num_classes]
auto scores_wrapper = inputs[1].dynamicCast<wrapper_type>();
auto scores = scores_wrapper->getView();
scores.unsqueeze();
scores.reshape(-1, num_priors, num_classes);
// priors: [1, 2, num_priors, 4]
auto priors_wrapper = inputs[2].dynamicCast<wrapper_type>();
auto priors = priors_wrapper->getView();
// output: [1, 1, batch_size * keepTopK, 7]
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
auto batch_size = locations.get_axis_size(0);
auto num_loc_classes = (share_location ? 1 : num_classes);
while(locations.rank() < 4)
locations.unsqueeze();
locations.reshape(batch_size, num_priors, num_loc_classes, 4);
float clip_width = 0.0, clip_height = 0.0;
if (clip_box)
{
if (normalized_bbox)
{
clip_width = clip_height = 1.0f;
}
else
{
auto image_wrapper = inputs[3].dynamicCast<wrapper_type>();
auto image_shape = image_wrapper->getShape();
CV_Assert(image_shape.size() == 4);
clip_width = image_shape[3] - 1;
clip_height = image_shape[2] - 1;
}
}
csl::WorkspaceAllocator allocator(workspace);
// decoded_boxes: [batch_size, num_priors, num_loc_classes, 4]
csl::TensorSpan<T> decoded_boxes;
{
auto shape = std::vector<std::size_t>{batch_size, num_priors, num_loc_classes, 4};
decoded_boxes = allocator.get_tensor_span<T>(std::begin(shape), std::end(shape));
CV_Assert(is_shape_same(decoded_boxes, locations));
}
kernels::decode_bboxes<T>(stream, decoded_boxes, locations, priors,
num_loc_classes, share_location, background_class_id,
transpose_location, variance_encoded_in_target,
corner_true_or_center_false, normalized_bbox,
clip_box, clip_width, clip_height);
// scores_permuted: [batch_size, num_classes, num_priors]
csl::TensorSpan<T> scores_permuted;
{
auto shape = std::vector<std::size_t>{batch_size, num_classes, num_priors};
scores_permuted = allocator.get_tensor_span<T>(std::begin(shape), std::end(shape));
}
kernels::permute<T>(stream, scores_permuted, scores, {0, 2, 1});
// indices: [batch_size, num_classes, classwise_topK]
csl::TensorSpan<int> indices;
{
auto shape = std::vector<std::size_t>{batch_size, num_classes, classwise_topK};
indices = allocator.get_tensor_span<int>(std::begin(shape), std::end(shape));
}
// count: [batch_size, num_classes]
csl::TensorSpan<int> count;
{
auto shape = std::vector<std::size_t>{batch_size, num_classes};
count = allocator.get_tensor_span<int>(std::begin(shape), std::end(shape));
}
kernels::findTopK<T>(stream, indices, count, scores_permuted, background_class_id, confidence_threshold);
// collected_bboxes: [batch_size, num_classes, classwise_topK, 4]
csl::TensorSpan<T> collected_bboxes;
{
auto shape = std::vector<std::size_t>{batch_size, num_classes, classwise_topK, 4};
collected_bboxes = allocator.get_tensor_span<T>(std::begin(shape), std::end(shape));
}
kernels::box_collect<T>(stream, collected_bboxes, decoded_boxes, indices, count, share_location, background_class_id);
if (batch_size * num_classes <= GRID_NMS_CUTOFF)
{
auto workspace_per_batch_item = kernels::getGridNMSWorkspaceSizePerBatchItem(num_classes, classwise_topK);
auto workspace = allocator.get_span<unsigned int>(batch_size * workspace_per_batch_item / sizeof(unsigned int));
kernels::grid_nms<T>(stream, workspace, indices, count, collected_bboxes, background_class_id, normalized_bbox, nms_threshold);
}
else
{
kernels::blockwise_class_nms<T>(stream, indices, count, collected_bboxes, normalized_bbox, background_class_id, nms_threshold);
}
// kept_indices: [batch_size, keepTopK]
csl::TensorSpan<int> kept_indices;
{
auto shape = std::vector<std::size_t>{batch_size, static_cast<std::size_t>(keepTopK)};
kept_indices = allocator.get_tensor_span<int>(std::begin(shape), std::end(shape));
}
// kept_count: [batch_size]
csl::TensorSpan<int> kept_count;
{
auto shape = std::vector<std::size_t>{batch_size};
kept_count = allocator.get_tensor_span<int>(std::begin(shape), std::end(shape));
}
kernels::nms_collect<T>(stream, kept_indices, kept_count, indices, count, scores_permuted, confidence_threshold, background_class_id);
auto num_detections = allocator.get_span<int>(1);
kernels::fill<int>(stream, num_detections, 0);
kernels::fill<T>(stream, output, 0.0);
kernels::consolidate_detections<T>(stream, output, kept_indices, kept_count, decoded_boxes, scores_permuted, share_location, num_detections.data());
}
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; }
private:
csl::Stream stream;
std::size_t scratch_mem_in_bytes;
bool share_location;
std::size_t num_priors;
std::size_t num_classes;
std::size_t background_class_id;
bool transpose_location;
bool variance_encoded_in_target;
bool corner_true_or_center_false;
bool normalized_bbox;
bool clip_box;
std::size_t classwise_topK;
float confidence_threshold;
float nms_threshold;
int keepTopK;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_DETECTION_OUTPUT_HPP */

View File

@ -0,0 +1,130 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ELTWISE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ELTWISE_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/eltwise_ops.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
enum class EltwiseOpType {
MAX,
SUM,
PRODUCT,
DIV,
MIN,
};
class EltwiseOpBase : public CUDABackendNode {
public:
EltwiseOpBase(csl::Stream stream_, EltwiseOpType op_, std::vector<float> coeffs_)
: stream(std::move(stream_)), op(op_), coeffs(std::move(coeffs_))
{
}
protected:
csl::Stream stream;
public:
EltwiseOpType op;
std::vector<float> coeffs;
};
template <class T>
class EltwiseOp final : public EltwiseOpBase {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
EltwiseOp(csl::Stream stream_, EltwiseOpType op_, std::vector<float> coeffs_)
: EltwiseOpBase(std::move(stream_), op_, std::move(coeffs_))
{
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() >= 2);
CV_Assert(outputs.size() == 1);
CV_Assert(coeffs.size() == 0 || op == EltwiseOpType::SUM);
CV_Assert(coeffs.size() == 0 || inputs.size() == coeffs.size());
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
if (inputs.size() == 2)
{
auto input_wrapper_x = inputs[0].dynamicCast<wrapper_type>();
auto input_x = input_wrapper_x->getView();
auto input_wrapper_y = inputs[1].dynamicCast<wrapper_type>();
auto input_y = input_wrapper_y->getView();
switch (op)
{
case EltwiseOpType::MAX: kernels::eltwise_max_2<T>(stream, output, input_x, input_y); break;
case EltwiseOpType::MIN: kernels::eltwise_min_2<T>(stream, output, input_x, input_y); break;
case EltwiseOpType::PRODUCT: kernels::eltwise_prod_2<T>(stream, output, input_x, input_y); break;
case EltwiseOpType::DIV: kernels::eltwise_div_2<T>(stream, output, input_x, input_y); break;
case EltwiseOpType::SUM:
if (coeffs.empty() || (coeffs[0] == 1 && coeffs[1] == 1))
kernels::eltwise_sum_2<T>(stream, output, input_x, input_y);
else
kernels::eltwise_sum_coeff_2<T>(stream, output, coeffs[0], input_x, coeffs[1], input_y);
break;
}
}
else
{
auto input_wrapper_0 = inputs[0].dynamicCast<wrapper_type>();
auto input_0 = input_wrapper_0->getView();
/* we first make a copy and then apply EltwiseOp cumulatively */
csl::tensor_ops::copy(stream, output, input_0);
for (int i = 1; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
switch (op)
{
case EltwiseOpType::MAX: kernels::eltwise_max_2<T>(stream, output, output, input); break;
case EltwiseOpType::MIN: kernels::eltwise_min_2<T>(stream, output, output, input); break;
case EltwiseOpType::PRODUCT: kernels::eltwise_prod_2<T>(stream, output, output, input); break;
case EltwiseOpType::DIV: kernels::eltwise_div_2<T>(stream, output, output, input); break;
case EltwiseOpType::SUM:
if (coeffs.empty() || coeffs[i] == 1)
kernels::eltwise_sum_2<T>(stream, output, output, input);
else
{
/* if this is the first op, we must scale output too */
T coeff_x = (i == 1) ? coeffs[0] : 1.0;
kernels::eltwise_sum_coeff_2<T>(stream, output, coeff_x, output, coeffs[i], input);
}
break;
}
}
}
}
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ELTWISE_HPP */

View File

@ -0,0 +1,92 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_INNER_PRODUCT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_INNER_PRODUCT_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/cublas.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/scale_shift.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class InnerProductOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
InnerProductOp(csl::Stream stream_, csl::cublas::Handle handle, std::size_t axis, const Mat& weights, const Mat& bias)
: stream(std::move(stream_)), cublasHandle(std::move(handle)), axis{ axis }
{
weightsTensor = csl::makeTensorHeader<T>(weights);
CV_Assert(get_effective_rank(weightsTensor) <= 2);
csl::copyMatToTensor<T>(weights, weightsTensor, stream);
if (!bias.empty())
{
biasTensor = csl::makeTensorHeader<T>(bias);
csl::copyMatToTensor<T>(bias, biasTensor, stream);
CV_Assert(weightsTensor.get_axis_size(-2) == biasTensor.size());
}
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
std::size_t batch_size = input.size_range(0, axis);
auto input_size = input.size() / batch_size;
CV_Assert(input_size == weightsTensor.get_axis_size(-1));
auto output_size = output.size() / batch_size;
CV_Assert(output_size == weightsTensor.get_axis_size(-2));
/* we treat the input and output as a matrix with dimensions (batch_size, input_size)
* and (batch_size, output_size) respectively
*
* weight matrix dimensions: (output_size, input_size)
*
* I(W^T) = O
* (batch_size, input_size) * (input_size, output_size) = (batch_size, output_size)
*/
input.reshape(batch_size, input_size);
output.reshape(batch_size, output_size);
csl::tensor_ops::gemm<T>(cublasHandle, 0.0, output, 1.0, false, input, true, weightsTensor);
if (!biasTensor.empty())
kernels::biasN<T>(stream, output, output, 1, biasTensor);
}
}
private:
csl::Stream stream;
csl::cublas::Handle cublasHandle;
csl::Tensor<T> weightsTensor, biasTensor;
std::size_t axis;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_INNER_PRODUCT_HPP */

View File

@ -0,0 +1,75 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_LRN_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_LRN_HPP
#include "../../op_cuda.hpp"
#include "../csl/cudnn.hpp"
#include "../csl/tensor_ops.hpp"
#include <cstddef>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
enum class LRNType {
ACROSS_CHANNELS,
WITHIN_CHANNEL
};
template <class T>
class LRNOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
LRNOp(csl::cudnn::Handle handle, LRNType type_, std::size_t local_size, T alpha, T beta, T bias, std::size_t largestInputSize)
: scratch_mem_in_bytes { 0 }
{
typename csl::LRN<T>::LRNType type{};
switch (type_) {
case LRNType::ACROSS_CHANNELS: type = csl::LRN<T>::LRNType::ACROSS_CHANNELS; break;
case LRNType::WITHIN_CHANNEL: type = csl::LRN<T>::LRNType::WITHIN_CHANNEL; break;
}
lrn = csl::LRN<T>(std::move(handle), local_size, alpha, beta, bias, type);
csl::WorkspaceBuilder builder;
if (type_ == LRNType::WITHIN_CHANNEL) {
/* this is not a bug; we require two of these */
builder.require<T>(largestInputSize);
builder.require<T>(largestInputSize);
}
scratch_mem_in_bytes = builder.required_workspace_size();
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
csl::WorkspaceAllocator allocator(workspace);
lrn.normalize(input, output, allocator.get_instance());
}
}
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; }
private:
csl::LRN<T> lrn;
std::size_t scratch_mem_in_bytes;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_LRN_HPP */

View File

@ -0,0 +1,95 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/cublas.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include <opencv2/core.hpp>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class MatMulOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
MatMulOp(csl::Stream stream_, csl::cublas::Handle handle)
: stream(std::move(stream_)), cublasHandle(std::move(handle))
{
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 2 && outputs.size() == 1);
auto input1_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input1 = input1_wrapper->getView();
auto input2_wrapper = inputs[1].dynamicCast<wrapper_type>();
auto input2 = input2_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
auto rank = output.rank();
CV_Assert(rank == input1.rank());
CV_Assert(rank == input2.rank());
CV_Assert(rank >= 2); // 1D MatMul not supported
for (int i = 0; i < rank - 2; i++)
{
// broadcasting not supported
auto size = output.get_axis_size(i);
CV_Assert(input1.get_axis_size(i) == size);
CV_Assert(input2.get_axis_size(i) == size);
}
auto m = input1.get_axis_size(-2);
auto n = input1.get_axis_size(-1);
auto k = input2.get_axis_size(-1);
auto b = input1.size() / m / n;
CV_Assert(input2.get_axis_size(-2) == n);
CV_Assert(output.get_axis_size(-2) == m);
CV_Assert(output.get_axis_size(-1) == k);
if (get_effective_rank(output) <= 2)
{
CV_Assert(b == 1);
CV_Assert(get_effective_rank(input1) <= 2);
CV_Assert(get_effective_rank(input2) <= 2);
csl::tensor_ops::gemm<T>(cublasHandle, 0.0, output, 1.0, false, input1, false, input2);
}
else
{
CV_Assert(rank >= 3);
input1.reshape(b, m, n);
input2.reshape(b, n, k);
output.reshape(b, m, k);
input1.squeeze_to(3);
input2.squeeze_to(3);
output.squeeze_to(3);
csl::tensor_ops::gemmStridedBatched<T>(cublasHandle, 0.0, output, 1.0, false, input1, false, input2);
}
}
private:
csl::Stream stream;
csl::cublas::Handle cublasHandle;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MATMUL_HPP */

View File

@ -0,0 +1,181 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MAX_UNPOOLING_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MAX_UNPOOLING_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../kernels/max_unpooling.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
struct MaxPoolingConfiguration {
/* the size of the following vectors must be equal to the pooling order */
std::vector<std::size_t> window_size;
std::vector<std::size_t> strides;
enum class PaddingMode {
MANUAL, /* uses explicit padding values provided in `pads_begin` and `pads_end` */
VALID, /* no padding is added */
SAME /* TensorFlow logic is used for same padding */
};
PaddingMode padMode;
/* explicit paddings are used if and only if padMode is set to manual */
std::vector<std::size_t> pads_begin;
/* full shape inclusive of channel and batch axis */
std::vector<std::size_t> input_shape;
};
template <class T>
class MaxPoolingOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
MaxPoolingOp(csl::Stream stream_, const MaxPoolingConfiguration& config)
: stream(std::move(stream_))
{
window_size = config.window_size;
const auto pooling_order = window_size.size();
strides = config.strides;
CV_Assert(pooling_order == strides.size());
if (pooling_order < 1 || pooling_order > 3)
CV_Error(Error::StsNotImplemented, "Only 1D/2D/3D max-pooling are supported.");
padding_left.resize(pooling_order);
if (config.padMode == MaxPoolingConfiguration::PaddingMode::MANUAL)
{
const auto& pads_begin = config.pads_begin;
CV_Assert(pooling_order == pads_begin.size());
padding_left.assign(std::begin(pads_begin), std::end(pads_begin));
}
else if (config.padMode == MaxPoolingConfiguration::PaddingMode::VALID)
{
/* nothing to do as the paddings are already preset to zero */
}
else if (config.padMode == MaxPoolingConfiguration::PaddingMode::SAME)
{
/* TensorFlow Logic:
* total_padding[i] = (o[i] - 1) * s[i] + effective_k[i] - i[i]
*
* if total padding is odd, the extra is added towards the end
*/
const auto& input_shape = config.input_shape;
CV_Assert(input_shape.size() == pooling_order + 2);
for (int i = 0; i < pooling_order; i++)
{
const auto output_dim = (input_shape[i + 2] - 1 + strides[i]) / strides[i];
const auto required_total_padding =
std::max<std::int64_t>(0, (output_dim - 1) * strides[i] + window_size[i] - input_shape[i + 2]);
padding_left[i] = required_total_padding / 2;
}
}
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1 && outputs.size() == 2);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input_data = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output_data = output_wrapper->getSpan();
auto indices_wrapper = outputs[1].dynamicCast<wrapper_type>();
auto output_indices = indices_wrapper->getSpan();
kernels::max_pooling_with_indices<T>(
stream, output_data, output_indices, input_data, window_size, strides, padding_left
);
}
private:
csl::Stream stream;
std::vector<std::size_t> window_size, strides, padding_left;
};
struct MaxUnpoolingConfiguration {
/* the size of the following vectors must be equal to the unpooling order */
std::vector<std::size_t> window_size;
std::vector<std::size_t> strides;
std::vector<std::size_t> pads_begin;
};
template <class T>
class MaxUnpoolingOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
MaxUnpoolingOp(csl::Stream stream_, const MaxUnpoolingConfiguration& config)
: stream(std::move(stream_))
{
window_size = config.window_size;
const auto pooling_order = window_size.size();
CV_Assert(pooling_order >= 1);
strides = config.strides;
padding_left = config.pads_begin;
CV_Assert(strides.size() == pooling_order);
CV_Assert(padding_left.size() == pooling_order);
if (pooling_order != 2 && pooling_order != 3)
CV_Error(Error::StsNotImplemented, "Only 2D/3D max-unpooling are supported.");
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
/* sometimes a third input is passed to provide the output shape; we won't need it */
CV_Assert(inputs.size() == 2 || inputs.size() == 3);
CV_Assert(outputs.size() >= 1);
for(int i = 0; i < outputs.size(); i++)
{
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input_data = input_wrapper->getView();
auto indices_wrapper = inputs[1].dynamicCast<wrapper_type>();
auto input_indices = indices_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output_data = output_wrapper->getSpan();
kernels::max_unpooling<T>(stream, output_data, input_data, input_indices, window_size, strides, padding_left);
}
}
private:
csl::Stream stream;
std::vector<std::size_t> window_size, strides, padding_left;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MAX_UNPOOLING_HPP */

View File

@ -0,0 +1,134 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MVN_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MVN_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include "../csl/tensor.hpp"
#include "../csl/workspace.hpp"
#include "../kernels/fill_copy.hpp"
#include "../kernels/mvn.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
struct MVNConfiguration {
std::vector<std::vector<std::size_t>> input_shapes;
/*
* [0, split_axis) = outer range
* [split_axis, -1] = inner range
*
* for each location in the outer range, all the values in the inner range are normalized as a group
*/
std::size_t split_axis;
/* The group (described above) is centered always. The following parameter controls whether the variance
* is also normalized.
*/
bool normalize_variance;
float epsilon;
};
template <class T>
class MVNOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
MVNOp(csl::Stream stream_, const MVNConfiguration& config)
: stream(std::move(stream_))
{
split_axis = config.split_axis;
normalize_variance = config.normalize_variance;
epsilon = config.epsilon;
std::size_t max_outer_size = 0;
const auto& input_shapes = config.input_shapes;
for (int i = 0; i < input_shapes.size(); i++)
{
std::size_t outer_size = 1;
for (int j = 0; j < split_axis; j++)
outer_size *= input_shapes[i][j];
max_outer_size = std::max(max_outer_size, outer_size);
}
csl::WorkspaceBuilder builder;
builder.require<float>(max_outer_size);
if (normalize_variance)
builder.require<float>(max_outer_size);
scratch_mem_in_bytes = builder.required_workspace_size();
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == outputs.size());
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
auto outer_size = input.size_range(0, split_axis);
auto inner_size = input.size_range(split_axis, input.rank());
if (inner_size == 1)
{
kernels::fill<T>(stream, output, 0.0f);
return;
}
else
{
auto ws_allocator = csl::WorkspaceAllocator(workspace);
auto means = ws_allocator.get_span<float>(outer_size);
kernels::fill<float>(stream, means, 0);
if (normalize_variance)
{
auto scales = ws_allocator.get_span<float>(outer_size);
kernels::fill<float>(stream, scales, 0);
kernels::reduce_mean_sqr_sum<T>(stream, means, scales, input, inner_size);
kernels::compute_normalization_scale(stream, scales, means, scales, inner_size, epsilon);
kernels::normalize_mean_variance<T>(stream, output, input, means, scales, inner_size);
}
else
{
kernels::reduce_mean<T>(stream, means, input, inner_size);
kernels::normalize_mean<T>(stream, output, input, means, inner_size);
}
}
}
}
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; }
private:
csl::Stream stream;
bool normalize_variance;
float epsilon;
std::size_t split_axis;
std::size_t scratch_mem_in_bytes;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_MVN_HPP */

View File

@ -0,0 +1,142 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_NORMALIZE_BBOX_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_NORMALIZE_BBOX_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include "../csl/tensor.hpp"
#include "../csl/workspace.hpp"
#include "../kernels/scale_shift.hpp"
#include "../kernels/normalize.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
struct NormalizeConfiguration {
std::vector<std::size_t> input_shape;
/* axis range across which values are normalized
*
* [0, axis_start) = outer range
* [axis_start, axis_end) = mid range
* [axis_end + 1, -1) = inner range
*
* for each location in the outer and inner range, all the values in the mid range are
* normalized together
*/
std::size_t axis_start, axis_end;
/* 1 for L1 norm, 2 for L2 norm */
std::size_t norm;
/* epsilon to use to avoid division by zero */
T eps;
};
template <class T>
class NormalizeOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
template <class V>
NormalizeOp(csl::Stream stream_, const Mat& weights, const NormalizeConfiguration<V>& config)
: stream(std::move(stream_)), weight{ 1.0 }
{
norm_order = config.norm;
epsilon = config.eps;
axis_start = config.axis_start;
axis_end = config.axis_end;
if (!weights.empty())
{
if (weights.total() == 1)
{
CV_Assert(weights.type() == CV_32F);
weight = weights.at<float>(0, 0);
}
else
{
weightsTensor = csl::makeTensorHeader<T>(weights);
csl::copyMatToTensor<T>(weights, weightsTensor, stream);
}
}
std::size_t outer_size = 1;
for (int i = 0; i < axis_start; i++)
outer_size *= config.input_shape[i];
std::size_t inner_size = 1;
for (int i = axis_end; i < config.input_shape.size(); i++)
inner_size *= config.input_shape[i];
csl::WorkspaceBuilder builder;
builder.require<T>(outer_size * inner_size);
scratch_mem_in_bytes = builder.required_workspace_size();
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
std::size_t outer_size = input.size_range(0, axis_start);
std::size_t mid_size = input.size_range(axis_start, axis_end);
std::size_t inner_size = input.size_range(axis_end, input.rank());
auto ws_allocator = csl::WorkspaceAllocator(workspace);
auto scratch = ws_allocator.get_span<T>();
kernels::normalize<T>(stream, output, input, outer_size, mid_size, inner_size, norm_order, epsilon, scratch);
/* there might be a single weight in which case `weight` will be not equal to 1.0
* or there might be several weights
* or we don't have to scale
*/
if (weight != 1.0)
{
kernels::scale1_with_bias1<T>(stream, output, input, weight, 1.0);
}
else if (!weightsTensor.empty())
{
CV_Assert(weightsTensor.size() != 1); /* constructor should have set up to use `weight` */
CV_Assert(weightsTensor.size() == mid_size);
kernels::scaleN<T>(stream, output, input, inner_size, weightsTensor);
}
}
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; }
private:
csl::Stream stream;
csl::Tensor<T> weightsTensor;
T weight; /* if there is only one weight, we use this */
T epsilon;
std::size_t norm_order;
std::size_t axis_start, axis_end;
std::size_t scratch_mem_in_bytes;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_NORMALIZE_BBOX_HPP */

View File

@ -0,0 +1,118 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PADDING_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PADDING_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../kernels/fill_copy.hpp"
#include "../kernels/concat.hpp"
#include "../kernels/padding.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <algorithm>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
enum class PaddingType {
CONSTANT,
REFLECTION101
};
template <class T>
class PaddingOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
/* `ranges` is indexed by axis and contains the range in the output where the input is copied to */
PaddingOp(csl::Stream stream_, PaddingType type_, T value_, std::vector<cv::Range> ranges)
: stream(std::move(stream_)), type{ type_ }, value{ value_ }, dstRanges(std::move(ranges))
{
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
/* suppose we require padding for the first spatial axis (H in NCHW or D in NCDHW)
*
* there could be a case where the batch axis, channel axis, and the first spatial axis are all one
* this would result in effective rank being less than the number of axes requiring padding
*/
/* the effective rank of the input may be smaller than the effective rank of the output but the converse is never true
* input: [1, 1, 1, 3]; effective rank = 1
* output: [1, 1, 3, 3]; effective rank = 2
*
* hence, we use the effective rank of the output tensor for the padding operation
*/
auto effective_rank = get_effective_rank(output);
CV_Assert(get_effective_rank(input) <= effective_rank);
effective_rank = std::max(effective_rank, dstRanges.size());
for (int i = effective_rank - dstRanges.size(); i < effective_rank; i++)
{
if (dstRanges[i] == Range::all())
CV_Assert(input.get_axis_size(i) == output.get_axis_size(i));
else
CV_Assert(input.get_axis_size(i) == dstRanges[i].size());
}
if (type == PaddingType::CONSTANT)
{
kernels::fill<T>(stream, output, value);
std::vector<std::size_t> offsets(effective_rank, 0);
for (int i = 0; i < dstRanges.size(); i++)
{
const auto delta = effective_rank - dstRanges.size();
if (dstRanges[i] != Range::all())
offsets[delta + i] = dstRanges[i].start;
}
kernels::concat_with_offsets<T>(stream, output, input, offsets);
}
else if (type == PaddingType::REFLECTION101)
{
std::vector<std::pair<std::size_t, std::size_t>> ranges(effective_rank);
for (int i = 0; i < effective_rank; i++)
{
const auto delta = effective_rank - dstRanges.size();
if (i < delta || dstRanges[i - delta] == Range::all())
ranges[i] = { 0, input.get_axis_size(i) };
else
ranges[i] = { dstRanges[i].start, dstRanges[i].end };
}
kernels::copy_with_reflection101<T>(stream, output, input, ranges);
}
}
private:
csl::Stream stream;
PaddingType type;
T value;
std::vector<cv::Range> dstRanges;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PADDING_HPP */

View File

@ -0,0 +1,70 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PERMUTE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PERMUTE_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/permute.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class PermuteOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
PermuteOp(csl::Stream stream_, std::vector<std::size_t> order_)
: stream(std::move(stream_)), order(std::move(order_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
auto needsPermute = [&] {
for (int i = 0; i < order.size(); i++)
if (order[i] != i)
return true;
return false;
}();
if (needsPermute)
{
kernels::permute(stream, output, input, order);
}
else
{
if (input.get() != output.get())
csl::tensor_ops::copy(stream, output, input);
}
}
}
private:
csl::Stream stream;
std::vector<std::size_t> order;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PERMUTE_HPP */

View File

@ -0,0 +1,258 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_POOLING_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_POOLING_HPP
#include "../../op_cuda.hpp"
#include "../csl/cudnn.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <cstdint>
#include <vector>
#include <utility>
#include <algorithm>
namespace cv { namespace dnn { namespace cuda4dnn {
struct PoolingConfiguration {
enum class PoolingMode {
MAX,
AVERAGE_INCLUDE_PADDING, /* include padding while calculating average */
AVERAGE_EXCLUDE_PADDING /* exclude padding while calculating average */
};
PoolingMode poolMode;
/* the size of the following vectors must be equal to the window size */
std::vector<std::size_t> window_size;
std::vector<std::size_t> strides;
enum class PaddingMode {
MANUAL, /* uses explicit padding values provided in `pads_begin` and `pads_end` */
VALID, /* no padding is added */
SAME /* TensorFlow logic is used for same padding */
};
PaddingMode padMode;
/* explicit paddings are used if and only if padMode is set to manual */
std::vector<std::size_t> pads_begin, pads_end;
/* the output shape is calculated using the following formula:
* output_dim = func[(input_dim + padding_left + padding_right - kernel_dim)/stride] + 1
*
* rounding mode decides what is used as `func`
*/
enum class RoundingMode {
CEIL, /* uses ceil */
FLOOR
};
RoundingMode roundMode;
/* full shape inclusive of channel and batch axis */
std::vector<std::size_t> input_shape;
};
template <class T>
class PoolingOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
PoolingOp(csl::cudnn::Handle handle, const PoolingConfiguration& config)
: cudnnHandle(std::move(handle))
{
const auto& window_size = config.window_size;
const auto pooling_order = window_size.size();
CV_Assert(pooling_order >= 1);
const auto& strides = config.strides;
CV_Assert(pooling_order == strides.size());
const auto& input_shape = config.input_shape;
CV_Assert(input_shape.size() == pooling_order + 2);
if (pooling_order > 3)
CV_Error(Error::StsNotImplemented, "Only 1D/2D/3D pooling are supported.");
const auto rank = input_shape.size();
/* left and right are misleading as the padding is applicable for any number of dimensions
* but we use those identifiers to avoid confusion with `pads_begin` and `pads_end`
*
* `common_padding` contains the amount of padding that has to be added to both sides
* `padding_left` and `padding_right` contains the amount of padding that needs to be added
* to a particular side in addition to the common padding
*/
std::vector<std::size_t> common_padding(rank, 0);
std::vector<std::size_t> padding_left(rank, 0), padding_right(rank, 0);
if (config.padMode == PoolingConfiguration::PaddingMode::MANUAL)
{
const auto& pads_begin = config.pads_begin;
const auto& pads_end = config.pads_end;
CV_Assert(pooling_order == pads_begin.size());
CV_Assert(pooling_order == pads_end.size());
/* cuDNN rounds down by default; hence, if ceilMode is false, we do nothing
* otherwise, we add extra padding towards the end so that the convolution arithmetic yields
* the correct output size without having to deal with fancy fractional sizes
*/
auto pads_end_modified = pads_end;
if (config.roundMode == PoolingConfiguration::RoundingMode::CEIL)
{
for (int i = 0; i < window_size.size(); i++) {
auto rem = (input_shape[i + 2] + pads_begin[i] + pads_end[i] - window_size[i]) % strides[i];
if (rem)
pads_end_modified[i] += strides[i] - rem;
}
}
for (int i = 2; i < common_padding.size(); i++)
{
common_padding[i] = std::min(pads_begin[i - 2], pads_end_modified[i - 2]);
padding_left[i] = pads_begin[i - 2] - common_padding[i];
padding_right[i] = pads_end_modified[i - 2] - common_padding[i];
}
}
else if (config.padMode == PoolingConfiguration::PaddingMode::VALID)
{
/* nothing to do as the paddings are already preset to zero */
}
else if (config.padMode == PoolingConfiguration::PaddingMode::SAME)
{
/* TensorFlow Logic:
* total_padding[i] = (o[i] - 1) * s[i] + effective_k[i] - i[i]
*
* if total padding is odd, the extra is added towards the end
*/
for (int i = 2; i < rank; i++)
{
const auto j = i - 2; /* filter index */
const auto output_dim = (input_shape[i] - 1 + strides[j]) / strides[j];
const auto required_total_padding =
std::max<std::int64_t>(0, (output_dim - 1) * strides[j] + window_size[j] - input_shape[i]);
common_padding[i] = required_total_padding / 2;
padding_left[i] = 0;
padding_right[i] = required_total_padding % 2;
}
}
/* in some scenarios, the extra padding at the end may not change the output at all */
for (int i = 2; i < rank; i++) {
const auto j = i - 2; /* filter idx */
const auto total_padding = common_padding[i] * 2 + padding_left[i] + padding_right[i];
std::int64_t rem = (input_shape[i] + total_padding - window_size[j]) % strides[j];
/* the output shape doesn't change if we decrease the total padding by at most `rem`
* provided that we decrease from the right
*/
if (rem && padding_right[i] > 0)
padding_right[i] = std::max<std::int64_t>(0, padding_right[i] - rem);
}
auto is_not_zero = [](std::size_t i) { return i != 0; };
if (std::any_of(std::begin(padding_left), std::end(padding_left), is_not_zero) ||
std::any_of(std::begin(padding_right), std::end(padding_right), is_not_zero))
{
/* csl::Pooling does not fully support asymmetric padding; hence, we deal with asymmetric padding by
* copying the input to a bigger tensor and padding the ends manually
*
* But we first try to avoid the transformation using cuDNN's flexibility. cuDNN can accept a smaller or
* a bigger output shape. This effectively allows us to have arbitrary padding at the right.
*/
if (std::any_of(std::begin(padding_left), std::end(padding_left), is_not_zero))
{
/* there is padding on the left and we are forced to transform */
auto transformed_input_shape = input_shape;
for (int i = 0; i < rank; i++)
transformed_input_shape[i] += padding_left[i] + padding_right[i];
transformedInput.resize(std::begin(transformed_input_shape), std::end(transformed_input_shape));
inputTransformer = csl::TensorTransform<T>(cudnnHandle, padding_left, padding_right);
}
}
typename csl::Pooling<T>::params_type params;
if (transformedInput.empty())
{
/* no transform => use original input shape */
params.input_shape.assign(std::begin(input_shape), std::end(input_shape));
}
else
{
/* the pooling operation will be seeing the transformed input */
auto transformed_input_shape = transformedInput.shape_as_vector();
params.input_shape.assign(std::begin(transformed_input_shape), std::end(transformed_input_shape));
}
auto output_shape = input_shape;
for (int i = 2; i < rank; i++)
{
auto total_padding = common_padding[i] * 2 + padding_left[i] + padding_right[i];
output_shape[i] = (params.input_shape[i] + total_padding - window_size[i - 2]) / strides[i - 2] + 1;
}
params.output_shape.assign(std::begin(output_shape), std::end(output_shape));
params.window_size = window_size;
params.padding.assign(std::begin(common_padding) + 2, std::end(common_padding));
params.stride = strides;
if (config.poolMode == PoolingConfiguration::PoolingMode::MAX)
{
params.type = csl::Pooling<T>::PoolingType::MAX;
}
else if (config.poolMode == PoolingConfiguration::PoolingMode::AVERAGE_INCLUDE_PADDING)
{
params.type = csl::Pooling<T>::PoolingType::AVERAGE_INCLUDE_PADDING;
}
else if (config.poolMode == PoolingConfiguration::PoolingMode::AVERAGE_EXCLUDE_PADDING)
{
params.type = csl::Pooling<T>::PoolingType::AVERAGE_EXCLUDE_PADDING;
}
pooler = csl::Pooling<T>(cudnnHandle, params);
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
if (!transformedInput.empty())
{
inputTransformer.transform(input, transformedInput);
input = csl::TensorView<T>(transformedInput);
}
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
pooler.pool(input, output);
}
private:
csl::cudnn::Handle cudnnHandle;
csl::Pooling<T> pooler;
csl::Tensor<T> transformedInput;
csl::TensorTransform<T> inputTransformer;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_POOLING_HPP */

View File

@ -0,0 +1,136 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PRIOR_BOX_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PRIOR_BOX_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/span.hpp"
#include "../csl/tensor.hpp"
#include "../kernels/prior_box.hpp"
#include <cstddef>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
struct PriorBoxConfiguration {
std::size_t feature_map_width, feature_map_height;
std::size_t image_width, image_height;
/* parameters for prior boxes for each feature point */
std::vector<float> box_widths, box_heights;
std::vector<float> offsets_x, offsets_y;
float stepX, stepY;
std::vector<float> variance;
/* number of priors per feature point */
std::size_t num_priors;
/* clamps the box coordinates to [0, 1] range */
bool clip;
/* normalizes the box coordinates using the image dimensions */
bool normalize;
};
template <class T>
class PriorBoxOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
PriorBoxOp(csl::Stream stream_, const PriorBoxConfiguration& config)
: stream(std::move(stream_))
{
feature_map_width = config.feature_map_width;
feature_map_height = config.feature_map_height;
image_width = config.image_width;
image_height = config.image_height;
const auto& box_widths = config.box_widths;
const auto& box_heights = config.box_heights;
CV_Assert(box_widths.size() == box_heights.size());
box_size = box_widths.size();
const auto& offsets_x = config.offsets_x;
const auto& offsets_y = config.offsets_y;
CV_Assert(offsets_x.size() == offsets_y.size());
offset_size = offsets_x.size();
/* for better memory utilization and preassumably better cache performance, we merge
* the four vectors and put them in a single tensor
*/
auto total = box_widths.size() * 2 + offsets_x.size() * 2;
std::vector<float> merged_params;
merged_params.insert(std::end(merged_params), std::begin(box_widths), std::end(box_widths));
merged_params.insert(std::end(merged_params), std::begin(box_heights), std::end(box_heights));
merged_params.insert(std::end(merged_params), std::begin(offsets_x), std::end(offsets_x));
merged_params.insert(std::end(merged_params), std::begin(offsets_y), std::end(offsets_y));
CV_Assert(merged_params.size() == total);
paramsTensor.resize(total);
csl::memcpy(paramsTensor.get(), merged_params.data(), total, stream); /* synchronous copy */
const auto& variance_ = config.variance;
variance.assign(std::begin(variance_), std::end(variance_));
num_priors = config.num_priors;
stepX = config.stepX;
stepY = config.stepY;
clip = config.clip;
normalize = config.normalize;
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 2); /* we don't need the inputs but we are given */
CV_Assert(outputs.size() == 1);
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
/* we had stored all the parameters in a single tensor; now we create appropriate views
* for each of the parameter arrays from the single tensor
*/
auto boxWidths = csl::View<float>(paramsTensor.get(), box_size);
auto boxHeights = csl::View<float>(paramsTensor.get() + box_size, box_size);
auto offsetsX = csl::View<float>(paramsTensor.get() + 2 * box_size, offset_size);
auto offsetsY = csl::View<float>(paramsTensor.get() + 2 * box_size + offset_size, offset_size);
kernels::generate_prior_boxes<T>(stream, output,
boxWidths, boxHeights, offsetsX, offsetsY, stepX, stepY,
variance, num_priors, feature_map_width, feature_map_height, image_width, image_height, normalize, clip);
}
private:
csl::Stream stream;
csl::Tensor<float> paramsTensor; /* widths, heights, offsetsX, offsetsY */
std::size_t feature_map_width, feature_map_height;
std::size_t image_width, image_height;
std::size_t box_size, offset_size;
float stepX, stepY;
std::vector<float> variance;
std::size_t num_priors;
bool clip, normalize;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_PRIOR_BOX_HPP */

View File

@ -0,0 +1,187 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_REGION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_REGION_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/cudnn.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/region.hpp"
#include "../../nms.inl.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <utility>
#include <vector>
namespace cv { namespace dnn { namespace cuda4dnn {
enum class SquashMethod {
SOFTMAX,
SIGMOID
};
template <class T>
struct RegionConfiguration {
/* The image is divided into (H, W) cells.
*
* Each cell is interested in exactly one object and predicts `boxes_per_cell` bounding boxes
* for that object.
*
* Each bounding box contains:
* - 4 box coordinates
* - objectness confidence score
* - `classes` number of class scores
*
* The object score is reduced to a probability using sigmoid and the class scores are reduced to
* probabilities by either applying sigmoid or softmax (which is a configuration option).
*
* object_prob = sigmoid(object_score)
* conditional_class_prob = sigmoid, softmax across all classes
*
* actual class probability = conditional_class_prob * object_prob
*/
std::size_t classes, boxes_per_cell;
std::size_t width_norm, height_norm;
T scale_x_y;
/* method for reducing class scores to probabilities */
SquashMethod squash_method;
/* prob cutoffs below which the prediction is nulled */
T object_prob_cutoff;
T class_prob_cutoff;
T nms_iou_threshold;
bool new_coords;
};
template <class T>
class RegionOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
template <class V>
RegionOp(csl::Stream stream_, const cv::Mat& bias, const RegionConfiguration<V>& config)
: stream(std::move(stream_))
{
biasTensor = csl::makeTensorHeader<T>(bias);
csl::copyMatToTensor<T>(bias, biasTensor, stream);
classes = config.classes;
boxes_per_cell = config.boxes_per_cell;
width_norm = config.width_norm;
height_norm = config.height_norm;
scale_x_y = config.scale_x_y;
squash_type = config.squash_method;
object_prob_cutoff = config.object_prob_cutoff;
class_prob_cutoff = config.class_prob_cutoff;
nms_iou_threshold = config.nms_iou_threshold;
new_coords = config.new_coords;
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
auto rows = input.get_axis_size(1);
auto cols = input.get_axis_size(2);
auto cell_box_size = classes + 4 + 1;
/* we squash class scores into probabilities using softmax or sigmoid */
bool if_true_sigmoid_else_softmax = (squash_type == SquashMethod::SIGMOID);
kernels::region<T>(stream, output, input, biasTensor,
object_prob_cutoff, class_prob_cutoff,
boxes_per_cell, cell_box_size,
rows, cols, scale_x_y,
height_norm, width_norm,
if_true_sigmoid_else_softmax,
new_coords
);
if (nms_iou_threshold > 0) {
auto output_mat = output_wrapper->getMutableHostMat();
CV_Assert(output_mat.type() == CV_32F);
for (int i = 0; i < input.get_axis_size(0); i++) {
auto sample_size = rows * cols * boxes_per_cell * cell_box_size;
do_nms_sort(reinterpret_cast<float*>(output_mat.data) + i * sample_size, rows * cols * boxes_per_cell, class_prob_cutoff, nms_iou_threshold);
}
}
}
private:
void do_nms_sort(float *detections, int total, float score_thresh, float nms_thresh)
{
std::vector<Rect2d> boxes(total);
std::vector<float> scores(total);
for (int i = 0; i < total; ++i)
{
Rect2d &b = boxes[i];
int box_index = i * (classes + 4 + 1);
b.width = detections[box_index + 2];
b.height = detections[box_index + 3];
b.x = detections[box_index + 0] - b.width / 2;
b.y = detections[box_index + 1] - b.height / 2;
}
std::vector<int> indices;
for (int k = 0; k < classes; ++k)
{
for (int i = 0; i < total; ++i)
{
int box_index = i * (classes + 4 + 1);
int class_index = box_index + 5;
scores[i] = detections[class_index + k];
detections[class_index + k] = 0;
}
NMSBoxes(boxes, scores, score_thresh, nms_thresh, indices);
for (int i = 0, n = indices.size(); i < n; ++i)
{
int box_index = indices[i] * (classes + 4 + 1);
int class_index = box_index + 5;
detections[class_index + k] = scores[indices[i]];
}
}
}
private:
csl::Stream stream;
csl::Tensor<T> biasTensor;
std::size_t classes, boxes_per_cell;
std::size_t width_norm, height_norm;
T scale_x_y;
SquashMethod squash_type;
T object_prob_cutoff, class_prob_cutoff;
T nms_iou_threshold;
bool new_coords;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_REGION_HPP */

View File

@ -0,0 +1,75 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_REORG_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_REORG_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../kernels/permute.hpp"
#include <opencv2/core.hpp>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class ReorgOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ReorgOp(csl::Stream stream_, std::size_t stride_)
: stream(std::move(stream_)), stride{ stride_ } { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
const std::size_t permute_input_shape[] = {
input.get_axis_size(0),
input.get_axis_size(1) * input.get_axis_size(2) / (stride * stride),
stride,
input.get_axis_size(3),
stride
};
constexpr std::size_t order[] = { 0, 2, 4, 1, 3 };
const std::size_t permute_output_shape[] = {
permute_input_shape[order[0]],
permute_input_shape[order[1]],
permute_input_shape[order[2]],
permute_input_shape[order[3]],
permute_input_shape[order[4]]
};
input.unsqueeze();
input.reshape(std::begin(permute_input_shape), std::end(permute_input_shape));
output.unsqueeze();
output.reshape(std::begin(permute_output_shape), std::end(permute_output_shape));
kernels::permute(stream, output, input, { std::begin(order), std::end(order) });
}
private:
csl::Stream stream;
std::size_t stride;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_REORG_HPP */

View File

@ -0,0 +1,61 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESHAPE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESHAPE_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class ReshapeOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ReshapeOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
/* sometimes the output shape is passed as extra inputs; hence, >= instead of == */
CV_Assert(inputs.size() >= outputs.size());
for (int i = 0; i < outputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
if (input.get() != output.get())
{
while (input.rank() < output.rank())
input.unsqueeze();
while (output.rank() < input.rank())
output.unsqueeze();
input.reshape_as(output);
csl::tensor_ops::copy(stream, output, input);
}
}
}
private:
csl::Stream stream;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESHAPE_HPP */

View File

@ -0,0 +1,81 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESIZE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESIZE_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../kernels/resize.hpp"
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
enum class InterpolationType {
NEAREST_NEIGHBOUR,
BILINEAR
};
struct ResizeConfiguration {
InterpolationType type;
bool align_corners;
bool half_pixel_centers;
};
template <class T>
class ResizeOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ResizeOp(csl::Stream stream_, const ResizeConfiguration& config)
: stream(std::move(stream_))
{
type = config.type;
align_corners = config.align_corners;
half_pixel_centers = config.half_pixel_centers;
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
// sometimes the target shape is taken from the second input; we don't use it however
CV_Assert((inputs.size() == 1 || inputs.size() == 2) && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
const auto compute_scale = [this](std::size_t input_size, std::size_t output_size) {
return (align_corners && output_size > 1) ?
static_cast<float>(input_size - 1) / (output_size - 1) :
static_cast<float>(input_size) / output_size;
};
auto out_height = output.get_axis_size(-2), out_width = output.get_axis_size(-1);
auto in_height = input.get_axis_size(-2), in_width = input.get_axis_size(-1);
float scale_height = compute_scale(in_height, out_height),
scale_width = compute_scale(in_width, out_width);
if (type == InterpolationType::NEAREST_NEIGHBOUR)
kernels::resize_nn<T>(stream, output, input, scale_height, scale_width, align_corners, half_pixel_centers);
else if (type == InterpolationType::BILINEAR)
kernels::resize_bilinear<T>(stream, output, input, scale_height, scale_width, half_pixel_centers);
}
private:
csl::Stream stream;
InterpolationType type;
bool align_corners, half_pixel_centers;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_RESIZE_HPP */

View File

@ -0,0 +1,52 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ROI_POOLING_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ROI_POOLING_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../kernels/roi_pooling.hpp"
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class ROIPoolingOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ROIPoolingOp(csl::Stream stream_, float spatial_scale)
: stream(std::move(stream_)), spatial_scale{spatial_scale} { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 2 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto rois_wrapper = inputs[1].dynamicCast<wrapper_type>();
auto rois = rois_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::roi_pooling<T>(stream, output, input, rois, spatial_scale);
}
private:
csl::Stream stream;
float spatial_scale;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_ROI_POOLING_HPP */

View File

@ -0,0 +1,158 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SCALE_SHIFT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SCALE_SHIFT_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../kernels/scale_shift.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
struct ScaleShiftConfiguration {
enum class OpMode {
NONE,
TRAINABLE, /* use a pretrained blob */
UNTRAINABLE /* use another input */
};
OpMode scaleMode;
OpMode shiftMode;
std::size_t axis;
};
template <class T>
class ScaleShiftOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ScaleShiftOp(csl::Stream stream_, const ScaleShiftConfiguration& config, const cv::Mat& weights, const cv::Mat& bias)
: stream(std::move(stream_)), axis{ config.axis }
{
scaleMode = config.scaleMode;
if (scaleMode == ScaleShiftConfiguration::OpMode::TRAINABLE)
{
CV_Assert(!weights.empty());
weightsTensor = csl::makeTensorHeader<T>(weights);
csl::copyMatToTensor<T>(weights, weightsTensor, stream);
}
shiftMode = config.shiftMode;
if (shiftMode == ScaleShiftConfiguration::OpMode::TRAINABLE)
{
CV_Assert(!bias.empty());
biasTensor = csl::makeTensorHeader<T>(bias);
csl::copyMatToTensor<T>(bias, biasTensor, stream);
}
CV_Assert(scaleMode != ScaleShiftConfiguration::OpMode::NONE ||
shiftMode != ScaleShiftConfiguration::OpMode::NONE);
if (scaleMode == ScaleShiftConfiguration::OpMode::UNTRAINABLE &&
shiftMode == ScaleShiftConfiguration::OpMode::UNTRAINABLE)
{
CV_Error(cv::Error::StsNotImplemented, "scale and shift both in untrainable mode is not supported");
}
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
/* number of batches in the weights/bias
* trainable mode: same for all batches
* untrainable mode: could be different for different batch samples
*/
std::size_t parameter_batch_size = 1;
csl::TensorView<T> weights;
if (scaleMode == ScaleShiftConfiguration::OpMode::TRAINABLE)
{
CV_Assert(!weightsTensor.empty());
weights = csl::TensorView<T>(weightsTensor);
}
else if (scaleMode == ScaleShiftConfiguration::OpMode::UNTRAINABLE)
{
CV_Assert(inputs.size() == 2);
auto wrapper = inputs[1].dynamicCast<wrapper_type>();
weights = wrapper->getView();
parameter_batch_size = weights.get_axis_size(0);
CV_Assert(parameter_batch_size == input.get_axis_size(0));
}
csl::TensorView<T> bias;
if (shiftMode == ScaleShiftConfiguration::OpMode::TRAINABLE)
{
CV_Assert(!biasTensor.empty());
bias = csl::TensorView<T>(biasTensor);
}
else if (shiftMode == ScaleShiftConfiguration::OpMode::UNTRAINABLE)
{
CV_Assert(inputs.size() == 2);
auto wrapper = inputs[1].dynamicCast<wrapper_type>();
bias = wrapper->getView();
parameter_batch_size = bias.get_axis_size(0);
CV_Assert(parameter_batch_size == input.get_axis_size(0));
}
CV_Assert(!weights.empty() || !bias.empty());
if (!weights.empty() && !bias.empty())
{
CV_CheckEQ(weights.size(), bias.size(), "different broadcasting options for weights and bias is not supported");
}
const auto num_parameters = !weights.empty() ? weights.size() : bias.size();
const auto mid_size = num_parameters / parameter_batch_size;
/* the scale shift operation might require broadcasting */
const int end_axis = [&] {
for (int endAxis = axis + 1; endAxis <= input.rank(); endAxis++) {
if (input.size_range(axis, endAxis) == mid_size)
return endAxis;
}
CV_Assert(0 /* failed to find a broadcast config */);
}();
std::size_t inner_size = input.size_range(end_axis, input.rank());
if (!weights.empty() && !bias.empty())
kernels::scaleN_with_biasN<T>(stream, output, input, inner_size, weights, bias);
else if (!weights.empty())
kernels::scaleN<T>(stream, output, input, inner_size, weights);
else
kernels::biasN<T>(stream, output, input, inner_size, bias);
}
private:
csl::Stream stream;
csl::Tensor<T> weightsTensor, biasTensor;
std::size_t axis;
ScaleShiftConfiguration::OpMode scaleMode, shiftMode;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SCALE_SHIFT_HPP */

View File

@ -0,0 +1,76 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHORTCUT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHORTCUT_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/shortcut.hpp"
#include <opencv2/core.hpp>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class ShortcutOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ShortcutOp(csl::Stream stream_) : stream(std::move(stream_)) { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(outputs.size() == 1);
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
/* output shape is determined by the input shape */
CV_Assert(is_shape_same(output, input));
for (int i = 1; i < inputs.size(); i++)
{
auto from_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto from = from_wrapper->getView();
CV_Assert(output.rank() == from.rank());
for (int i = 0; i < output.rank(); i++) {
if (i != 1) {
CV_Assert(from.get_axis_size(i) == output.get_axis_size(i));
}
}
if (i == 1)
{
/* optimized path for first two inputs */
kernels::input_shortcut<T>(stream, output, input, from);
}
else
{
kernels::input_shortcut<T>(stream, output, output, from);
}
}
}
private:
csl::Stream stream;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHORTCUT_HPP */

View File

@ -0,0 +1,79 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHUFFLE_CHANNEL_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHUFFLE_CHANNEL_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/permute.hpp"
#include <opencv2/core.hpp>
#include <vector>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class ShuffleChannelOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
ShuffleChannelOp(csl::Stream stream_, std::size_t group_)
: stream(std::move(stream_)), group{ group_ } { }
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
if (group == 1) {
/* permute is redundant; check else branch to know why */
if (input.get() != output.get()) {
input.reshape_as(output);
csl::tensor_ops::copy(stream, output, input);
}
} else {
const std::size_t permute_input_shape[] = {
input.get_axis_size(0),
group,
input.get_axis_size(1) / group,
input.get_axis_size(2) * input.get_axis_size(3)
};
constexpr std::size_t order[] = { 0, 2, 1, 3 };
const std::size_t permute_output_shape[] = {
permute_input_shape[order[0]],
permute_input_shape[order[1]],
permute_input_shape[order[2]],
permute_input_shape[order[3]],
};
input.reshape(std::begin(permute_input_shape), std::end(permute_input_shape));
output.reshape(std::begin(permute_output_shape), std::end(permute_output_shape));
kernels::permute(stream, output, input, { std::begin(order), std::end(order) });
}
}
private:
csl::Stream stream;
std::size_t group;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SHUFFLE_CHANNEL_HPP */

View File

@ -0,0 +1,66 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SLICE_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SLICE_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../kernels/slice.hpp"
#include "../kernels/fill_copy.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <vector>
#include <algorithm>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class SliceOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
/* offsets is indexed by output number and each subvector is indexed by axis number */
SliceOp(csl::Stream stream_, std::vector<std::vector<std::size_t>> offsets)
: stream(std::move(stream_)), offsets(std::move(offsets))
{
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
/* sometimes the output shape is passed in the form of a second input tensor
* it's only required for initialization and not here
*/
CV_Assert(inputs.size() == 1 || inputs.size() == 2);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
CV_Assert(offsets.size() == outputs.size());
for (int i = 0; i < outputs.size(); ++i)
{
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
kernels::slice<T>(stream, output, input, offsets[i]);
}
}
private:
csl::Stream stream;
std::vector<std::vector<std::size_t>> offsets;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SLICE_HPP */

View File

@ -0,0 +1,53 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SOFTMAX_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SOFTMAX_HPP
#include "../../op_cuda.hpp"
#include "../csl/cudnn.hpp"
#include "../csl/tensor_ops.hpp"
#include <cstddef>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class SoftmaxOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
SoftmaxOp(csl::cudnn::Handle handle, std::size_t axis_, bool log_)
: cudnnHandle(std::move(handle)), channel_axis{ axis_ }, log{ log_ }
{
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
for (int i = 0; i < inputs.size(); i++)
{
auto input_wrapper = inputs[i].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
csl::tensor_ops::softmax<T>(cudnnHandle, output, input, channel_axis, log);
}
}
private:
csl::cudnn::Handle cudnnHandle;
std::size_t channel_axis;
bool log;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SOFTMAX_HPP */

View File

@ -0,0 +1,54 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SPLIT_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SPLIT_HPP
#include "../../op_cuda.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor_ops.hpp"
#include <opencv2/core.hpp>
#include <utility>
namespace cv { namespace dnn { namespace cuda4dnn {
template <class T>
class SplitOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
SplitOp(csl::Stream stream_)
: stream(std::move(stream_))
{
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
for (int i = 0; i < outputs.size(); i++)
{
auto output_wrapper = outputs[i].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
csl::tensor_ops::copy<T>(stream, output, input);
}
}
private:
csl::Stream stream;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_SPLIT_HPP */

View File

@ -0,0 +1,230 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_TRANSPOSE_CONVOLUTION_HPP
#define OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_TRANSPOSE_CONVOLUTION_HPP
#include "../../op_cuda.hpp"
#include "../csl/cudnn.hpp"
#include "../csl/stream.hpp"
#include "../csl/tensor.hpp"
#include "../csl/tensor_ops.hpp"
#include "../kernels/scale_shift.hpp"
#include <opencv2/core.hpp>
#include <cstddef>
#include <cstdint>
#include <vector>
#include <utility>
#include <algorithm>
namespace cv { namespace dnn { namespace cuda4dnn {
struct TransposeConvolutionConfiguration {
/* other than `input_shape` and `output_shape`, all the configuration values must be provided
* for the corresponding convolution operation (not transpose convolution)
*/
/* the size of the following vectors must be equal to the kernel size */
std::vector<std::size_t> kernel_size;
std::vector<std::size_t> dilations, strides;
enum class PaddingMode {
MANUAL, /* uses explicit padding values provided in `pads_begin` and `pads_end` */
VALID, /* no padding is added */
SAME /* TensorFlow logic is used for same padding */
};
/* explicit paddings are used if and only if padMode is set to manual */
PaddingMode padMode;
std::vector<std::size_t> pads_begin, pads_end;
/* full shape inclusive of channel and batch axis */
std::vector<std::size_t> input_shape;
std::vector<std::size_t> output_shape;
/* group count for grouped convolution */
std::size_t groups;
};
template <class T>
class TransposeConvolutionOp final : public CUDABackendNode {
public:
using wrapper_type = GetCUDABackendWrapperType<T>;
TransposeConvolutionOp(csl::Stream stream_, csl::cudnn::Handle handle, const TransposeConvolutionConfiguration& config, const Mat& filters, const Mat& bias)
: stream(std::move(stream_)), cudnnHandle(std::move(handle))
{
/* we make use of backward pass of convolution to perform forward pass of transpose convolution
* hence, we must setup configuration for the convolution operation and perform backward pass
*/
const auto& kernel_size = config.kernel_size;
const auto& dilations = config.dilations;
const auto& strides = config.strides;
const auto convolution_order = kernel_size.size();
CV_Assert(convolution_order >= 1);
CV_Assert(convolution_order == dilations.size());
CV_Assert(convolution_order == strides.size());
const auto& input_shape = config.input_shape;
const auto& output_shape = config.output_shape;
CV_Assert(input_shape.size() == output_shape.size());
CV_Assert(input_shape.size() == convolution_order + 2);
const auto groups = config.groups;
if (convolution_order > 3)
CV_Error(Error::StsNotImplemented, "Only 1D/2D/3D transpose convolution is supported.");
const auto rank = input_shape.size();
const auto input_feature_maps = input_shape[1];
const auto output_feature_maps = output_shape[1];
const auto output_feature_maps_per_group = output_feature_maps / groups;
CV_Assert(output_feature_maps % groups == 0);
filtersTensor = csl::makeTensorHeader<T>(filters);
csl::copyMatToTensor<T>(filters, filtersTensor, stream);
if (!bias.empty())
{
CV_Assert(bias.total() == output_feature_maps);
biasTensor = csl::makeTensorHeader<T>(bias);
csl::copyMatToTensor<T>(bias, biasTensor, stream);
}
/* left and right are misleading as the padding is applicable for any number of dimensions
* but we use those identifiers to avoid confusion with `pads_begin` and `pads_end`
*
* `common_padding` contains the amount of padding that has to be added to both sides
* `padding_left` and `padding_right` contains the amount of padding that needs to be added
* to a particular side in addition to the common padding
*
* note that we compute the padding for the convolution operation
*/
std::vector<std::size_t> common_padding(rank, 0);
std::vector<std::size_t> padding_left(rank, 0), padding_right(rank, 0);
if (config.padMode == TransposeConvolutionConfiguration::PaddingMode::MANUAL)
{
const auto& pads_begin = config.pads_begin;
const auto& pads_end = config.pads_end;
CV_Assert(convolution_order == pads_begin.size());
CV_Assert(convolution_order == pads_end.size());
for (int i = 2; i < common_padding.size(); i++)
{
common_padding[i] = std::min(pads_begin[i - 2], pads_end[i - 2]);
padding_left[i] = pads_begin[i - 2] - common_padding[i];
padding_right[i] = pads_end[i - 2] - common_padding[i];
}
}
else if (config.padMode == TransposeConvolutionConfiguration::PaddingMode::VALID)
{
/* nothing to do as the paddings are already preset to zero */
}
else if (config.padMode == TransposeConvolutionConfiguration::PaddingMode::SAME)
{
/* TensorFlow Logic:
* total_padding[i] = (o[i] - 1) * s[i] + effective_k[i] - i[i]
*
* if total padding is odd, the extra is added towards the end
*/
for (int i = 2; i < rank; i++)
{
const auto j = i - 2; /* filter index */
const auto effective_kernel_size = dilations[j] * (kernel_size[j] - 1) + 1;
const auto required_total_padding =
std::max<std::int64_t>(0, (input_shape[i] - 1) * strides[j] + effective_kernel_size - output_shape[i]);
common_padding[i] = required_total_padding / 2;
padding_left[i] = 0;
padding_right[i] = required_total_padding % 2;
}
}
/* in some scenarios, the extra padding at the end may not change the output at all */
for (int i = 2; i < rank; i++) {
const auto j = i - 2; /* filter idx */
const auto total_padding = common_padding[i] * 2 + padding_left[i] + padding_right[i];
const auto effective_kernel_size = dilations[j] * (kernel_size[j] - 1) + 1;
std::int64_t rem = (input_shape[i] + total_padding - effective_kernel_size) % strides[j];
/* the output shape doesn't change if we decrease the total padding by at most `rem`
* provided that we decrease from the right
*/
if (rem && padding_right[i] > 0)
padding_right[i] = std::max<std::int64_t>(0, padding_right[i] - rem);
}
auto is_not_zero = [](std::size_t i) { return i != 0; };
if(std::any_of(std::begin(padding_left), std::end(padding_left), is_not_zero) ||
std::any_of(std::begin(padding_right), std::end(padding_right), is_not_zero))
{
CV_Error(Error::StsNotImplemented, "Padding configuration requires asymmetric padding and hence is not supported.");
}
typename csl::TransposeConvolution<T>::params_type params;
params.input_shape.assign(std::begin(input_shape), std::end(input_shape));
params.output_shape.assign(std::begin(output_shape), std::end(output_shape));
auto& fshape = params.filter_shape;
fshape.resize(rank);
fshape[0] = input_feature_maps;
fshape[1] = output_feature_maps_per_group;
std::copy(std::begin(kernel_size), std::end(kernel_size), std::begin(fshape) + 2);
CV_Assert(fshape.size() == kernel_size.size() + 2);
params.padding.assign(std::begin(common_padding) + 2, std::end(common_padding));
params.stride = strides;
params.dilation = dilations;
params.groups = config.groups;
convoluter = csl::TransposeConvolution<T>(cudnnHandle, params);
csl::WorkspaceBuilder builder;
builder.require(convoluter.get_workspace_size());
scratch_mem_in_bytes = builder.required_workspace_size();
}
void forward(
const std::vector<cv::Ptr<BackendWrapper>>& inputs,
const std::vector<cv::Ptr<BackendWrapper>>& outputs,
csl::Workspace& workspace) override
{
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
auto input_wrapper = inputs[0].dynamicCast<wrapper_type>();
auto input = input_wrapper->getView();
auto output_wrapper = outputs[0].dynamicCast<wrapper_type>();
auto output = output_wrapper->getSpan();
csl::WorkspaceAllocator allocator(workspace);
convoluter.transpose_convolve(output, input, filtersTensor, allocator.get_instance());
if (!biasTensor.empty())
{
std::size_t inner_size = total(output_wrapper->getShape(), 2, -1);
kernels::biasN<T>(stream, output, output, inner_size, biasTensor);
}
}
std::size_t get_workspace_memory_in_bytes() const noexcept override { return scratch_mem_in_bytes; }
private:
csl::Stream stream;
csl::cudnn::Handle cudnnHandle;
csl::Tensor<T> filtersTensor, biasTensor;
csl::TransposeConvolution<T> convoluter;
std::size_t scratch_mem_in_bytes;
};
}}} /* namespace cv::dnn::cuda4dnn */
#endif /* OPENCV_DNN_SRC_CUDA4DNN_PRIMITIVES_TRANSPOSE_CONVOLUTION_HPP */