feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
234
3rdparty/opencv-4.5.4/modules/dnn/test/test_common.hpp
vendored
Normal file
234
3rdparty/opencv-4.5.4/modules/dnn/test/test_common.hpp
vendored
Normal file
@ -0,0 +1,234 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef __OPENCV_TEST_COMMON_HPP__
|
||||
#define __OPENCV_TEST_COMMON_HPP__
|
||||
|
||||
#include "opencv2/dnn/utils/inference_engine.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
#include "opencv2/core/ocl.hpp"
|
||||
#endif
|
||||
|
||||
// src/op_inf_engine.hpp
|
||||
#define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
|
||||
#define INF_ENGINE_VER_MAJOR_GE(ver) (((INF_ENGINE_RELEASE) / 10000) >= ((ver) / 10000))
|
||||
#define INF_ENGINE_VER_MAJOR_LT(ver) (((INF_ENGINE_RELEASE) / 10000) < ((ver) / 10000))
|
||||
#define INF_ENGINE_VER_MAJOR_LE(ver) (((INF_ENGINE_RELEASE) / 10000) <= ((ver) / 10000))
|
||||
#define INF_ENGINE_VER_MAJOR_EQ(ver) (((INF_ENGINE_RELEASE) / 10000) == ((ver) / 10000))
|
||||
|
||||
|
||||
#define CV_TEST_TAG_DNN_SKIP_HALIDE "dnn_skip_halide"
|
||||
#define CV_TEST_TAG_DNN_SKIP_OPENCL "dnn_skip_ocl"
|
||||
#define CV_TEST_TAG_DNN_SKIP_OPENCL_FP16 "dnn_skip_ocl_fp16"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER "dnn_skip_ie_nn_builder"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_NGRAPH "dnn_skip_ie_ngraph"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE "dnn_skip_ie"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_2018R5 "dnn_skip_ie_2018r5"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_2019R1 "dnn_skip_ie_2019r1"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_2019R1_1 "dnn_skip_ie_2019r1_1"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_2019R2 "dnn_skip_ie_2019r2"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_2019R3 "dnn_skip_ie_2019r3"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_CPU "dnn_skip_ie_cpu"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_OPENCL "dnn_skip_ie_ocl"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16 "dnn_skip_ie_ocl_fp16"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2 "dnn_skip_ie_myriad2"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X "dnn_skip_ie_myriadx"
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X
|
||||
#define CV_TEST_TAG_DNN_SKIP_IE_ARM_CPU "dnn_skip_ie_arm_cpu"
|
||||
|
||||
#define CV_TEST_TAG_DNN_SKIP_VULKAN "dnn_skip_vulkan"
|
||||
|
||||
#define CV_TEST_TAG_DNN_SKIP_CUDA "dnn_skip_cuda"
|
||||
#define CV_TEST_TAG_DNN_SKIP_CUDA_FP16 "dnn_skip_cuda_fp16"
|
||||
#define CV_TEST_TAG_DNN_SKIP_CUDA_FP32 "dnn_skip_cuda_fp32"
|
||||
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
#if INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
||||
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2018R5
|
||||
#elif INF_ENGINE_VER_MAJOR_EQ(2019010000)
|
||||
# if INF_ENGINE_RELEASE < 2019010100
|
||||
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1
|
||||
# else
|
||||
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1
|
||||
# endif
|
||||
#elif INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
||||
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R2
|
||||
#elif INF_ENGINE_VER_MAJOR_EQ(2019030000)
|
||||
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R3
|
||||
#endif
|
||||
#endif // HAVE_INF_ENGINE
|
||||
|
||||
#ifndef CV_TEST_TAG_DNN_SKIP_IE_VERSION
|
||||
# define CV_TEST_TAG_DNN_SKIP_IE_VERSION CV_TEST_TAG_DNN_SKIP_IE
|
||||
#endif
|
||||
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
CV__DNN_INLINE_NS_BEGIN
|
||||
|
||||
void PrintTo(const cv::dnn::Backend& v, std::ostream* os);
|
||||
void PrintTo(const cv::dnn::Target& v, std::ostream* os);
|
||||
using opencv_test::tuple;
|
||||
using opencv_test::get;
|
||||
void PrintTo(const tuple<cv::dnn::Backend, cv::dnn::Target> v, std::ostream* os);
|
||||
|
||||
CV__DNN_INLINE_NS_END
|
||||
}} // namespace cv::dnn
|
||||
|
||||
|
||||
|
||||
namespace opencv_test {
|
||||
|
||||
void initDNNTests();
|
||||
|
||||
using namespace cv::dnn;
|
||||
|
||||
static inline const std::string &getOpenCVExtraDir()
|
||||
{
|
||||
return cvtest::TS::ptr()->get_data_path();
|
||||
}
|
||||
|
||||
void normAssert(
|
||||
cv::InputArray ref, cv::InputArray test, const char *comment = "",
|
||||
double l1 = 0.00001, double lInf = 0.0001);
|
||||
|
||||
std::vector<cv::Rect2d> matToBoxes(const cv::Mat& m);
|
||||
|
||||
void normAssertDetections(
|
||||
const std::vector<int>& refClassIds,
|
||||
const std::vector<float>& refScores,
|
||||
const std::vector<cv::Rect2d>& refBoxes,
|
||||
const std::vector<int>& testClassIds,
|
||||
const std::vector<float>& testScores,
|
||||
const std::vector<cv::Rect2d>& testBoxes,
|
||||
const char *comment = "", double confThreshold = 0.0,
|
||||
double scores_diff = 1e-5, double boxes_iou_diff = 1e-4);
|
||||
|
||||
// For SSD-based object detection networks which produce output of shape 1x1xNx7
|
||||
// where N is a number of detections and an every detection is represented by
|
||||
// a vector [batchId, classId, confidence, left, top, right, bottom].
|
||||
void normAssertDetections(
|
||||
cv::Mat ref, cv::Mat out, const char *comment = "",
|
||||
double confThreshold = 0.0, double scores_diff = 1e-5,
|
||||
double boxes_iou_diff = 1e-4);
|
||||
|
||||
// For text detection networks
|
||||
// Curved text polygon is not supported in the current version.
|
||||
// (concave polygon is invalid input to intersectConvexConvex)
|
||||
void normAssertTextDetections(
|
||||
const std::vector<std::vector<Point>>& gtPolys,
|
||||
const std::vector<std::vector<Point>>& testPolys,
|
||||
const char *comment = "", double boxes_iou_diff = 1e-4);
|
||||
|
||||
void readFileContent(const std::string& filename, CV_OUT std::vector<char>& content);
|
||||
|
||||
#ifdef HAVE_INF_ENGINE
|
||||
bool validateVPUType();
|
||||
#endif
|
||||
|
||||
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargets(
|
||||
bool withInferenceEngine = true,
|
||||
bool withHalide = false,
|
||||
bool withCpuOCV = true,
|
||||
bool withVkCom = true,
|
||||
bool withCUDA = true,
|
||||
bool withNgraph = true
|
||||
);
|
||||
|
||||
testing::internal::ParamGenerator< tuple<Backend, Target> > dnnBackendsAndTargetsIE();
|
||||
|
||||
|
||||
class DNNTestLayer : public TestWithParam<tuple<Backend, Target> >
|
||||
{
|
||||
public:
|
||||
dnn::Backend backend;
|
||||
dnn::Target target;
|
||||
double default_l1, default_lInf;
|
||||
|
||||
DNNTestLayer()
|
||||
{
|
||||
backend = (dnn::Backend)(int)get<0>(GetParam());
|
||||
target = (dnn::Target)(int)get<1>(GetParam());
|
||||
getDefaultThresholds(backend, target, &default_l1, &default_lInf);
|
||||
}
|
||||
|
||||
static void getDefaultThresholds(int backend, int target, double* l1, double* lInf)
|
||||
{
|
||||
if (target == DNN_TARGET_CUDA_FP16 || target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD)
|
||||
{
|
||||
*l1 = 4e-3;
|
||||
*lInf = 2e-2;
|
||||
}
|
||||
else
|
||||
{
|
||||
*l1 = 1e-5;
|
||||
*lInf = 1e-4;
|
||||
}
|
||||
}
|
||||
|
||||
static void checkBackend(int backend, int target, Mat* inp = 0, Mat* ref = 0)
|
||||
{
|
||||
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
&& target == DNN_TARGET_MYRIAD)
|
||||
{
|
||||
if (inp && ref && inp->dims == 4 && ref->dims == 4 &&
|
||||
inp->size[0] != 1 && inp->size[0] != ref->size[0])
|
||||
{
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
|
||||
throw SkipTestException("Inconsistent batch size of input and output blobs for Myriad plugin");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void expectNoFallbacks(Net& net, bool raiseError = true)
|
||||
{
|
||||
// Check if all the layers are supported with current backend and target.
|
||||
// Some layers might be fused so their timings equal to zero.
|
||||
std::vector<double> timings;
|
||||
net.getPerfProfile(timings);
|
||||
std::vector<String> names = net.getLayerNames();
|
||||
CV_Assert(names.size() == timings.size());
|
||||
|
||||
bool hasFallbacks = false;
|
||||
for (int i = 0; i < names.size(); ++i)
|
||||
{
|
||||
Ptr<dnn::Layer> l = net.getLayer(net.getLayerId(names[i]));
|
||||
bool fused = !timings[i];
|
||||
if ((!l->supportBackend(backend) || l->preferableTarget != target) && !fused)
|
||||
{
|
||||
hasFallbacks = true;
|
||||
std::cout << "FALLBACK: Layer [" << l->type << "]:[" << l->name << "] is expected to has backend implementation" << endl;
|
||||
}
|
||||
}
|
||||
if (hasFallbacks && raiseError)
|
||||
CV_Error(Error::StsNotImplemented, "Implementation fallbacks are not expected in this test");
|
||||
}
|
||||
|
||||
void expectNoFallbacksFromIE(Net& net)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
expectNoFallbacks(net);
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
expectNoFallbacks(net, false);
|
||||
}
|
||||
|
||||
void expectNoFallbacksFromCUDA(Net& net)
|
||||
{
|
||||
if (backend == DNN_BACKEND_CUDA)
|
||||
expectNoFallbacks(net);
|
||||
}
|
||||
|
||||
protected:
|
||||
void checkBackend(Mat* inp = 0, Mat* ref = 0)
|
||||
{
|
||||
checkBackend(backend, target, inp, ref);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user