feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
		
							
								
								
									
										129
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/opencl/perf_brute_force_matcher.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										129
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/opencl/perf_brute_force_matcher.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,129 @@
 | 
			
		||||
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
			
		||||
//
 | 
			
		||||
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
			
		||||
//
 | 
			
		||||
//  By downloading, copying, installing or using the software you agree to this license.
 | 
			
		||||
//  If you do not agree to this license, do not download, install,
 | 
			
		||||
//  copy or use the software.
 | 
			
		||||
//
 | 
			
		||||
//
 | 
			
		||||
//                           License Agreement
 | 
			
		||||
//                For Open Source Computer Vision Library
 | 
			
		||||
//
 | 
			
		||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | 
			
		||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | 
			
		||||
// Third party copyrights are property of their respective owners.
 | 
			
		||||
//
 | 
			
		||||
// @Authors
 | 
			
		||||
//    Fangfang Bai, fangfang@multicorewareinc.com
 | 
			
		||||
//    Jin Ma,       jin@multicorewareinc.com
 | 
			
		||||
//
 | 
			
		||||
// Redistribution and use in source and binary forms, with or without modification,
 | 
			
		||||
// are permitted provided that the following conditions are met:
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's of source code must retain the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer.
 | 
			
		||||
//
 | 
			
		||||
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
			
		||||
//     this list of conditions and the following disclaimer in the documentation
 | 
			
		||||
//     and/or other materials provided with the distribution.
 | 
			
		||||
//
 | 
			
		||||
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
			
		||||
//     derived from this software without specific prior written permission.
 | 
			
		||||
//
 | 
			
		||||
// This software is provided by the copyright holders and contributors as is and
 | 
			
		||||
// any express or implied warranties, including, but not limited to, the implied
 | 
			
		||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
			
		||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
			
		||||
// indirect, incidental, special, exemplary, or consequential damages
 | 
			
		||||
// (including, but not limited to, procurement of substitute goods or services;
 | 
			
		||||
// loss of use, data, or profits; or business interruption) however caused
 | 
			
		||||
// and on any theory of liability, whether in contract, strict liability,
 | 
			
		||||
// or tort (including negligence or otherwise) arising in any way out of
 | 
			
		||||
// the use of this software, even if advised of the possibility of such damage.
 | 
			
		||||
//
 | 
			
		||||
//M*/
 | 
			
		||||
#include "../perf_precomp.hpp"
 | 
			
		||||
#include "opencv2/ts/ocl_perf.hpp"
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_OPENCL
 | 
			
		||||
 | 
			
		||||
namespace opencv_test {
 | 
			
		||||
namespace ocl {
 | 
			
		||||
 | 
			
		||||
//////////////////// BruteForceMatch /////////////////
 | 
			
		||||
 | 
			
		||||
typedef Size_MatType BruteForceMatcherFixture;
 | 
			
		||||
 | 
			
		||||
OCL_PERF_TEST_P(BruteForceMatcherFixture, Match, ::testing::Combine(OCL_PERF_ENUM(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3), OCL_PERF_ENUM((MatType)CV_32FC1) ) )
 | 
			
		||||
{
 | 
			
		||||
    const Size_MatType_t params = GetParam();
 | 
			
		||||
    const Size srcSize = get<0>(params);
 | 
			
		||||
    const int type = get<1>(params);
 | 
			
		||||
 | 
			
		||||
    checkDeviceMaxMemoryAllocSize(srcSize, type);
 | 
			
		||||
 | 
			
		||||
    vector<DMatch> matches;
 | 
			
		||||
    UMat uquery(srcSize, type), utrain(srcSize, type);
 | 
			
		||||
 | 
			
		||||
    declare.in(uquery, utrain, WARMUP_RNG);
 | 
			
		||||
 | 
			
		||||
    BFMatcher matcher(NORM_L2);
 | 
			
		||||
 | 
			
		||||
    OCL_TEST_CYCLE()
 | 
			
		||||
        matcher.match(uquery, utrain, matches);
 | 
			
		||||
 | 
			
		||||
    SANITY_CHECK_MATCHES(matches, 1e-3);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
OCL_PERF_TEST_P(BruteForceMatcherFixture, KnnMatch, ::testing::Combine(OCL_PERF_ENUM(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3), OCL_PERF_ENUM((MatType)CV_32FC1) ) )
 | 
			
		||||
{
 | 
			
		||||
    const Size_MatType_t params = GetParam();
 | 
			
		||||
    const Size srcSize = get<0>(params);
 | 
			
		||||
    const int type = get<1>(params);
 | 
			
		||||
 | 
			
		||||
    checkDeviceMaxMemoryAllocSize(srcSize, type);
 | 
			
		||||
 | 
			
		||||
    vector< vector<DMatch> > matches;
 | 
			
		||||
    UMat uquery(srcSize, type), utrain(srcSize, type);
 | 
			
		||||
 | 
			
		||||
    declare.in(uquery, utrain, WARMUP_RNG);
 | 
			
		||||
 | 
			
		||||
    BFMatcher matcher(NORM_L2);
 | 
			
		||||
 | 
			
		||||
    OCL_TEST_CYCLE()
 | 
			
		||||
        matcher.knnMatch(uquery, utrain, matches, 2);
 | 
			
		||||
 | 
			
		||||
    vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
 | 
			
		||||
    SANITY_CHECK_MATCHES(matches0, 1e-3);
 | 
			
		||||
    SANITY_CHECK_MATCHES(matches1, 1e-3);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
OCL_PERF_TEST_P(BruteForceMatcherFixture, RadiusMatch, ::testing::Combine(OCL_PERF_ENUM(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3), OCL_PERF_ENUM((MatType)CV_32FC1) ) )
 | 
			
		||||
{
 | 
			
		||||
    const Size_MatType_t params = GetParam();
 | 
			
		||||
    const Size srcSize = get<0>(params);
 | 
			
		||||
    const int type = get<1>(params);
 | 
			
		||||
 | 
			
		||||
    checkDeviceMaxMemoryAllocSize(srcSize, type);
 | 
			
		||||
 | 
			
		||||
    vector< vector<DMatch> > matches;
 | 
			
		||||
    UMat uquery(srcSize, type), utrain(srcSize, type);
 | 
			
		||||
 | 
			
		||||
    declare.in(uquery, utrain, WARMUP_RNG);
 | 
			
		||||
 | 
			
		||||
    BFMatcher matcher(NORM_L2);
 | 
			
		||||
 | 
			
		||||
    OCL_TEST_CYCLE()
 | 
			
		||||
        matcher.radiusMatch(uquery, utrain, matches, 2.0f);
 | 
			
		||||
 | 
			
		||||
    vector<DMatch> & matches0 = matches[0], & matches1 = matches[1];
 | 
			
		||||
    SANITY_CHECK_MATCHES(matches0, 1e-3);
 | 
			
		||||
    SANITY_CHECK_MATCHES(matches1, 1e-3);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // ocl
 | 
			
		||||
} // cvtest
 | 
			
		||||
 | 
			
		||||
#endif // HAVE_OPENCL
 | 
			
		||||
							
								
								
									
										81
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/opencl/perf_feature2d.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										81
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/opencl/perf_feature2d.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,81 @@
 | 
			
		||||
#include "../perf_precomp.hpp"
 | 
			
		||||
#include "opencv2/ts/ocl_perf.hpp"
 | 
			
		||||
#include "../perf_feature2d.hpp"
 | 
			
		||||
 | 
			
		||||
#ifdef HAVE_OPENCL
 | 
			
		||||
 | 
			
		||||
namespace opencv_test {
 | 
			
		||||
namespace ocl {
 | 
			
		||||
 | 
			
		||||
OCL_PERF_TEST_P(feature2d, detect, testing::Combine(Feature2DType::all(), TEST_IMAGES))
 | 
			
		||||
{
 | 
			
		||||
    Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam()));
 | 
			
		||||
    std::string filename = getDataPath(get<1>(GetParam()));
 | 
			
		||||
    Mat mimg = imread(filename, IMREAD_GRAYSCALE);
 | 
			
		||||
 | 
			
		||||
    ASSERT_FALSE(mimg.empty());
 | 
			
		||||
    ASSERT_TRUE(detector);
 | 
			
		||||
 | 
			
		||||
    UMat img, mask;
 | 
			
		||||
    mimg.copyTo(img);
 | 
			
		||||
    declare.in(img);
 | 
			
		||||
    vector<KeyPoint> points;
 | 
			
		||||
 | 
			
		||||
    OCL_TEST_CYCLE() detector->detect(img, points, mask);
 | 
			
		||||
 | 
			
		||||
    EXPECT_GT(points.size(), 20u);
 | 
			
		||||
    SANITY_CHECK_NOTHING();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
OCL_PERF_TEST_P(feature2d, extract, testing::Combine(testing::Values(DETECTORS_EXTRACTORS), TEST_IMAGES))
 | 
			
		||||
{
 | 
			
		||||
    Ptr<Feature2D> detector = AKAZE::create();
 | 
			
		||||
    Ptr<Feature2D> extractor = getFeature2D(get<0>(GetParam()));
 | 
			
		||||
    std::string filename = getDataPath(get<1>(GetParam()));
 | 
			
		||||
    Mat mimg = imread(filename, IMREAD_GRAYSCALE);
 | 
			
		||||
 | 
			
		||||
    ASSERT_FALSE(mimg.empty());
 | 
			
		||||
    ASSERT_TRUE(extractor);
 | 
			
		||||
 | 
			
		||||
    UMat img, mask;
 | 
			
		||||
    mimg.copyTo(img);
 | 
			
		||||
    declare.in(img);
 | 
			
		||||
    vector<KeyPoint> points;
 | 
			
		||||
    detector->detect(img, points, mask);
 | 
			
		||||
 | 
			
		||||
    EXPECT_GT(points.size(), 20u);
 | 
			
		||||
 | 
			
		||||
    UMat descriptors;
 | 
			
		||||
 | 
			
		||||
    OCL_TEST_CYCLE() extractor->compute(img, points, descriptors);
 | 
			
		||||
 | 
			
		||||
    EXPECT_EQ((size_t)descriptors.rows, points.size());
 | 
			
		||||
    SANITY_CHECK_NOTHING();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
OCL_PERF_TEST_P(feature2d, detectAndExtract, testing::Combine(testing::Values(DETECTORS_EXTRACTORS), TEST_IMAGES))
 | 
			
		||||
{
 | 
			
		||||
    Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam()));
 | 
			
		||||
    std::string filename = getDataPath(get<1>(GetParam()));
 | 
			
		||||
    Mat mimg = imread(filename, IMREAD_GRAYSCALE);
 | 
			
		||||
 | 
			
		||||
    ASSERT_FALSE(mimg.empty());
 | 
			
		||||
    ASSERT_TRUE(detector);
 | 
			
		||||
 | 
			
		||||
    UMat img, mask;
 | 
			
		||||
    mimg.copyTo(img);
 | 
			
		||||
    declare.in(img);
 | 
			
		||||
    vector<KeyPoint> points;
 | 
			
		||||
    UMat descriptors;
 | 
			
		||||
 | 
			
		||||
    OCL_TEST_CYCLE() detector->detectAndCompute(img, mask, points, descriptors, false);
 | 
			
		||||
 | 
			
		||||
    EXPECT_GT(points.size(), 20u);
 | 
			
		||||
    EXPECT_EQ((size_t)descriptors.rows, points.size());
 | 
			
		||||
    SANITY_CHECK_NOTHING();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // ocl
 | 
			
		||||
} // cvtest
 | 
			
		||||
 | 
			
		||||
#endif // HAVE_OPENCL
 | 
			
		||||
							
								
								
									
										167
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_batchDistance.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										167
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_batchDistance.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,167 @@
 | 
			
		||||
#include "perf_precomp.hpp"
 | 
			
		||||
 | 
			
		||||
namespace opencv_test
 | 
			
		||||
{
 | 
			
		||||
using namespace perf;
 | 
			
		||||
 | 
			
		||||
CV_ENUM(NormType, NORM_L1, NORM_L2, NORM_L2SQR, NORM_HAMMING, NORM_HAMMING2)
 | 
			
		||||
 | 
			
		||||
typedef tuple<NormType, MatType, bool> Norm_Destination_CrossCheck_t;
 | 
			
		||||
typedef perf::TestBaseWithParam<Norm_Destination_CrossCheck_t> Norm_Destination_CrossCheck;
 | 
			
		||||
 | 
			
		||||
typedef tuple<NormType, bool> Norm_CrossCheck_t;
 | 
			
		||||
typedef perf::TestBaseWithParam<Norm_CrossCheck_t> Norm_CrossCheck;
 | 
			
		||||
 | 
			
		||||
typedef tuple<MatType, bool> Source_CrossCheck_t;
 | 
			
		||||
typedef perf::TestBaseWithParam<Source_CrossCheck_t> Source_CrossCheck;
 | 
			
		||||
 | 
			
		||||
void generateData( Mat& query, Mat& train, const int sourceType );
 | 
			
		||||
 | 
			
		||||
PERF_TEST_P(Norm_Destination_CrossCheck, batchDistance_8U,
 | 
			
		||||
            testing::Combine(testing::Values((int)NORM_L1, (int)NORM_L2SQR),
 | 
			
		||||
                             testing::Values(CV_32S, CV_32F),
 | 
			
		||||
                             testing::Bool()
 | 
			
		||||
                             )
 | 
			
		||||
            )
 | 
			
		||||
{
 | 
			
		||||
    NormType normType = get<0>(GetParam());
 | 
			
		||||
    int destinationType = get<1>(GetParam());
 | 
			
		||||
    bool isCrossCheck = get<2>(GetParam());
 | 
			
		||||
    int knn = isCrossCheck ? 1 : 0;
 | 
			
		||||
 | 
			
		||||
    Mat queryDescriptors;
 | 
			
		||||
    Mat trainDescriptors;
 | 
			
		||||
    Mat dist;
 | 
			
		||||
    Mat ndix;
 | 
			
		||||
 | 
			
		||||
    generateData(queryDescriptors, trainDescriptors, CV_8U);
 | 
			
		||||
 | 
			
		||||
    TEST_CYCLE()
 | 
			
		||||
    {
 | 
			
		||||
        batchDistance(queryDescriptors, trainDescriptors, dist, destinationType, (isCrossCheck) ? ndix : noArray(),
 | 
			
		||||
                      normType, knn, Mat(), 0, isCrossCheck);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    SANITY_CHECK(dist);
 | 
			
		||||
    if (isCrossCheck) SANITY_CHECK(ndix);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
PERF_TEST_P(Norm_CrossCheck, batchDistance_Dest_32S,
 | 
			
		||||
            testing::Combine(testing::Values((int)NORM_HAMMING, (int)NORM_HAMMING2),
 | 
			
		||||
                             testing::Bool()
 | 
			
		||||
                             )
 | 
			
		||||
            )
 | 
			
		||||
{
 | 
			
		||||
    NormType normType = get<0>(GetParam());
 | 
			
		||||
    bool isCrossCheck = get<1>(GetParam());
 | 
			
		||||
    int knn = isCrossCheck ? 1 : 0;
 | 
			
		||||
 | 
			
		||||
    Mat queryDescriptors;
 | 
			
		||||
    Mat trainDescriptors;
 | 
			
		||||
    Mat dist;
 | 
			
		||||
    Mat ndix;
 | 
			
		||||
 | 
			
		||||
    generateData(queryDescriptors, trainDescriptors, CV_8U);
 | 
			
		||||
 | 
			
		||||
    TEST_CYCLE()
 | 
			
		||||
    {
 | 
			
		||||
        batchDistance(queryDescriptors, trainDescriptors, dist, CV_32S, (isCrossCheck) ? ndix : noArray(),
 | 
			
		||||
                      normType, knn, Mat(), 0, isCrossCheck);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    SANITY_CHECK(dist);
 | 
			
		||||
    if (isCrossCheck) SANITY_CHECK(ndix);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
PERF_TEST_P(Source_CrossCheck, batchDistance_L2,
 | 
			
		||||
            testing::Combine(testing::Values(CV_8U, CV_32F),
 | 
			
		||||
                             testing::Bool()
 | 
			
		||||
                             )
 | 
			
		||||
            )
 | 
			
		||||
{
 | 
			
		||||
    int sourceType = get<0>(GetParam());
 | 
			
		||||
    bool isCrossCheck = get<1>(GetParam());
 | 
			
		||||
    int knn = isCrossCheck ? 1 : 0;
 | 
			
		||||
 | 
			
		||||
    Mat queryDescriptors;
 | 
			
		||||
    Mat trainDescriptors;
 | 
			
		||||
    Mat dist;
 | 
			
		||||
    Mat ndix;
 | 
			
		||||
 | 
			
		||||
    generateData(queryDescriptors, trainDescriptors, sourceType);
 | 
			
		||||
 | 
			
		||||
    declare.time(50);
 | 
			
		||||
    TEST_CYCLE()
 | 
			
		||||
    {
 | 
			
		||||
        batchDistance(queryDescriptors, trainDescriptors, dist, CV_32F, (isCrossCheck) ? ndix : noArray(),
 | 
			
		||||
                      NORM_L2, knn, Mat(), 0, isCrossCheck);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    SANITY_CHECK(dist);
 | 
			
		||||
    if (isCrossCheck) SANITY_CHECK(ndix);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
PERF_TEST_P(Norm_CrossCheck, batchDistance_32F,
 | 
			
		||||
            testing::Combine(testing::Values((int)NORM_L1, (int)NORM_L2SQR),
 | 
			
		||||
                             testing::Bool()
 | 
			
		||||
                             )
 | 
			
		||||
            )
 | 
			
		||||
{
 | 
			
		||||
    NormType normType = get<0>(GetParam());
 | 
			
		||||
    bool isCrossCheck = get<1>(GetParam());
 | 
			
		||||
    int knn = isCrossCheck ? 1 : 0;
 | 
			
		||||
 | 
			
		||||
    Mat queryDescriptors;
 | 
			
		||||
    Mat trainDescriptors;
 | 
			
		||||
    Mat dist;
 | 
			
		||||
    Mat ndix;
 | 
			
		||||
 | 
			
		||||
    generateData(queryDescriptors, trainDescriptors, CV_32F);
 | 
			
		||||
    declare.time(100);
 | 
			
		||||
 | 
			
		||||
    TEST_CYCLE()
 | 
			
		||||
    {
 | 
			
		||||
        batchDistance(queryDescriptors, trainDescriptors, dist, CV_32F, (isCrossCheck) ? ndix : noArray(),
 | 
			
		||||
                      normType, knn, Mat(), 0, isCrossCheck);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    SANITY_CHECK(dist, 1e-4);
 | 
			
		||||
    if (isCrossCheck) SANITY_CHECK(ndix);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void generateData( Mat& query, Mat& train, const int sourceType )
 | 
			
		||||
{
 | 
			
		||||
    const int dim = 500;
 | 
			
		||||
    const int queryDescCount = 300; // must be even number because we split train data in some cases in two
 | 
			
		||||
    const int countFactor = 4; // do not change it
 | 
			
		||||
    RNG& rng = theRNG();
 | 
			
		||||
 | 
			
		||||
    // Generate query descriptors randomly.
 | 
			
		||||
    // Descriptor vector elements are integer values.
 | 
			
		||||
    Mat buf( queryDescCount, dim, CV_32SC1 );
 | 
			
		||||
    rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
 | 
			
		||||
    buf.convertTo( query, sourceType );
 | 
			
		||||
 | 
			
		||||
    // Generate train descriptors as follows:
 | 
			
		||||
    // copy each query descriptor to train set countFactor times
 | 
			
		||||
    // and perturb some one element of the copied descriptors in
 | 
			
		||||
    // in ascending order. General boundaries of the perturbation
 | 
			
		||||
    // are (0.f, 1.f).
 | 
			
		||||
    train.create( query.rows*countFactor, query.cols, sourceType );
 | 
			
		||||
    float step = (sourceType == CV_8U ? 256.f : 1.f) / countFactor;
 | 
			
		||||
    for( int qIdx = 0; qIdx < query.rows; qIdx++ )
 | 
			
		||||
    {
 | 
			
		||||
        Mat queryDescriptor = query.row(qIdx);
 | 
			
		||||
        for( int c = 0; c < countFactor; c++ )
 | 
			
		||||
        {
 | 
			
		||||
            int tIdx = qIdx * countFactor + c;
 | 
			
		||||
            Mat trainDescriptor = train.row(tIdx);
 | 
			
		||||
            queryDescriptor.copyTo( trainDescriptor );
 | 
			
		||||
            int elem = rng(dim);
 | 
			
		||||
            float diff = rng.uniform( step*c, step*(c+1) );
 | 
			
		||||
            trainDescriptor.col(elem) += diff;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace
 | 
			
		||||
							
								
								
									
										72
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_feature2d.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_feature2d.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,72 @@
 | 
			
		||||
#include "perf_feature2d.hpp"
 | 
			
		||||
 | 
			
		||||
namespace opencv_test
 | 
			
		||||
{
 | 
			
		||||
using namespace perf;
 | 
			
		||||
 | 
			
		||||
PERF_TEST_P(feature2d, detect, testing::Combine(Feature2DType::all(), TEST_IMAGES))
 | 
			
		||||
{
 | 
			
		||||
    Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam()));
 | 
			
		||||
    std::string filename = getDataPath(get<1>(GetParam()));
 | 
			
		||||
    Mat img = imread(filename, IMREAD_GRAYSCALE);
 | 
			
		||||
 | 
			
		||||
    ASSERT_FALSE(img.empty());
 | 
			
		||||
    ASSERT_TRUE(detector);
 | 
			
		||||
 | 
			
		||||
    declare.in(img);
 | 
			
		||||
    Mat mask;
 | 
			
		||||
    vector<KeyPoint> points;
 | 
			
		||||
 | 
			
		||||
    TEST_CYCLE() detector->detect(img, points, mask);
 | 
			
		||||
 | 
			
		||||
    EXPECT_GT(points.size(), 20u);
 | 
			
		||||
    SANITY_CHECK_NOTHING();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
PERF_TEST_P(feature2d, extract, testing::Combine(testing::Values(DETECTORS_EXTRACTORS), TEST_IMAGES))
 | 
			
		||||
{
 | 
			
		||||
    Ptr<Feature2D> detector = AKAZE::create();
 | 
			
		||||
    Ptr<Feature2D> extractor = getFeature2D(get<0>(GetParam()));
 | 
			
		||||
    std::string filename = getDataPath(get<1>(GetParam()));
 | 
			
		||||
    Mat img = imread(filename, IMREAD_GRAYSCALE);
 | 
			
		||||
 | 
			
		||||
    ASSERT_FALSE(img.empty());
 | 
			
		||||
    ASSERT_TRUE(extractor);
 | 
			
		||||
 | 
			
		||||
    declare.in(img);
 | 
			
		||||
    Mat mask;
 | 
			
		||||
    vector<KeyPoint> points;
 | 
			
		||||
    detector->detect(img, points, mask);
 | 
			
		||||
 | 
			
		||||
    EXPECT_GT(points.size(), 20u);
 | 
			
		||||
 | 
			
		||||
    Mat descriptors;
 | 
			
		||||
 | 
			
		||||
    TEST_CYCLE() extractor->compute(img, points, descriptors);
 | 
			
		||||
 | 
			
		||||
    EXPECT_EQ((size_t)descriptors.rows, points.size());
 | 
			
		||||
    SANITY_CHECK_NOTHING();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
PERF_TEST_P(feature2d, detectAndExtract, testing::Combine(testing::Values(DETECTORS_EXTRACTORS), TEST_IMAGES))
 | 
			
		||||
{
 | 
			
		||||
    Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam()));
 | 
			
		||||
    std::string filename = getDataPath(get<1>(GetParam()));
 | 
			
		||||
    Mat img = imread(filename, IMREAD_GRAYSCALE);
 | 
			
		||||
 | 
			
		||||
    ASSERT_FALSE(img.empty());
 | 
			
		||||
    ASSERT_TRUE(detector);
 | 
			
		||||
 | 
			
		||||
    declare.in(img);
 | 
			
		||||
    Mat mask;
 | 
			
		||||
    vector<KeyPoint> points;
 | 
			
		||||
    Mat descriptors;
 | 
			
		||||
 | 
			
		||||
    TEST_CYCLE() detector->detectAndCompute(img, mask, points, descriptors, false);
 | 
			
		||||
 | 
			
		||||
    EXPECT_GT(points.size(), 20u);
 | 
			
		||||
    EXPECT_EQ((size_t)descriptors.rows, points.size());
 | 
			
		||||
    SANITY_CHECK_NOTHING();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace
 | 
			
		||||
							
								
								
									
										90
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_feature2d.hpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										90
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_feature2d.hpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,90 @@
 | 
			
		||||
#ifndef __OPENCV_PERF_FEATURE2D_HPP__
 | 
			
		||||
#define __OPENCV_PERF_FEATURE2D_HPP__
 | 
			
		||||
 | 
			
		||||
#include "perf_precomp.hpp"
 | 
			
		||||
 | 
			
		||||
namespace opencv_test
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
/* configuration for tests of detectors/descriptors. shared between ocl and cpu tests. */
 | 
			
		||||
 | 
			
		||||
// detectors/descriptors configurations to test
 | 
			
		||||
#define DETECTORS_ONLY                                                                  \
 | 
			
		||||
    FAST_DEFAULT, FAST_20_TRUE_TYPE5_8, FAST_20_TRUE_TYPE7_12, FAST_20_TRUE_TYPE9_16,   \
 | 
			
		||||
    FAST_20_FALSE_TYPE5_8, FAST_20_FALSE_TYPE7_12, FAST_20_FALSE_TYPE9_16,              \
 | 
			
		||||
                                                                                        \
 | 
			
		||||
    AGAST_DEFAULT, AGAST_5_8, AGAST_7_12d, AGAST_7_12s, AGAST_OAST_9_16,                \
 | 
			
		||||
                                                                                        \
 | 
			
		||||
    MSER_DEFAULT
 | 
			
		||||
 | 
			
		||||
#define DETECTORS_EXTRACTORS                                                            \
 | 
			
		||||
    ORB_DEFAULT, ORB_1500_13_1,                                                         \
 | 
			
		||||
    AKAZE_DEFAULT, AKAZE_DESCRIPTOR_KAZE,                                               \
 | 
			
		||||
    BRISK_DEFAULT,                                                                      \
 | 
			
		||||
    KAZE_DEFAULT,                                                                       \
 | 
			
		||||
    SIFT_DEFAULT
 | 
			
		||||
 | 
			
		||||
#define CV_ENUM_EXPAND(name, ...) CV_ENUM(name, __VA_ARGS__)
 | 
			
		||||
 | 
			
		||||
enum Feature2DVals { DETECTORS_ONLY, DETECTORS_EXTRACTORS };
 | 
			
		||||
CV_ENUM_EXPAND(Feature2DType, DETECTORS_ONLY, DETECTORS_EXTRACTORS)
 | 
			
		||||
 | 
			
		||||
typedef tuple<Feature2DType, string> Feature2DType_String_t;
 | 
			
		||||
typedef perf::TestBaseWithParam<Feature2DType_String_t> feature2d;
 | 
			
		||||
 | 
			
		||||
#define TEST_IMAGES testing::Values(\
 | 
			
		||||
    "cv/detectors_descriptors_evaluation/images_datasets/leuven/img1.png",\
 | 
			
		||||
    "stitching/a3.png", \
 | 
			
		||||
    "stitching/s2.jpg")
 | 
			
		||||
 | 
			
		||||
static inline Ptr<Feature2D> getFeature2D(Feature2DType type)
 | 
			
		||||
{
 | 
			
		||||
    switch(type) {
 | 
			
		||||
    case ORB_DEFAULT:
 | 
			
		||||
        return ORB::create();
 | 
			
		||||
    case ORB_1500_13_1:
 | 
			
		||||
        return ORB::create(1500, 1.3f, 1);
 | 
			
		||||
    case FAST_DEFAULT:
 | 
			
		||||
        return FastFeatureDetector::create();
 | 
			
		||||
    case FAST_20_TRUE_TYPE5_8:
 | 
			
		||||
        return FastFeatureDetector::create(20, true, FastFeatureDetector::TYPE_5_8);
 | 
			
		||||
    case FAST_20_TRUE_TYPE7_12:
 | 
			
		||||
        return FastFeatureDetector::create(20, true, FastFeatureDetector::TYPE_7_12);
 | 
			
		||||
    case FAST_20_TRUE_TYPE9_16:
 | 
			
		||||
        return FastFeatureDetector::create(20, true, FastFeatureDetector::TYPE_9_16);
 | 
			
		||||
    case FAST_20_FALSE_TYPE5_8:
 | 
			
		||||
        return FastFeatureDetector::create(20, false, FastFeatureDetector::TYPE_5_8);
 | 
			
		||||
    case FAST_20_FALSE_TYPE7_12:
 | 
			
		||||
        return FastFeatureDetector::create(20, false, FastFeatureDetector::TYPE_7_12);
 | 
			
		||||
    case FAST_20_FALSE_TYPE9_16:
 | 
			
		||||
        return FastFeatureDetector::create(20, false, FastFeatureDetector::TYPE_9_16);
 | 
			
		||||
    case AGAST_DEFAULT:
 | 
			
		||||
        return AgastFeatureDetector::create();
 | 
			
		||||
    case AGAST_5_8:
 | 
			
		||||
        return AgastFeatureDetector::create(70, true, AgastFeatureDetector::AGAST_5_8);
 | 
			
		||||
    case AGAST_7_12d:
 | 
			
		||||
        return AgastFeatureDetector::create(70, true, AgastFeatureDetector::AGAST_7_12d);
 | 
			
		||||
    case AGAST_7_12s:
 | 
			
		||||
        return AgastFeatureDetector::create(70, true, AgastFeatureDetector::AGAST_7_12s);
 | 
			
		||||
    case AGAST_OAST_9_16:
 | 
			
		||||
        return AgastFeatureDetector::create(70, true, AgastFeatureDetector::OAST_9_16);
 | 
			
		||||
    case AKAZE_DEFAULT:
 | 
			
		||||
        return AKAZE::create();
 | 
			
		||||
    case AKAZE_DESCRIPTOR_KAZE:
 | 
			
		||||
        return AKAZE::create(AKAZE::DESCRIPTOR_KAZE);
 | 
			
		||||
    case BRISK_DEFAULT:
 | 
			
		||||
        return BRISK::create();
 | 
			
		||||
    case KAZE_DEFAULT:
 | 
			
		||||
        return KAZE::create();
 | 
			
		||||
    case MSER_DEFAULT:
 | 
			
		||||
        return MSER::create();
 | 
			
		||||
    case SIFT_DEFAULT:
 | 
			
		||||
        return SIFT::create();
 | 
			
		||||
    default:
 | 
			
		||||
        return Ptr<Feature2D>();
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
} // namespace
 | 
			
		||||
 | 
			
		||||
#endif // __OPENCV_PERF_FEATURE2D_HPP__
 | 
			
		||||
							
								
								
									
										7
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_main.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_main.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,7 @@
 | 
			
		||||
#include "perf_precomp.hpp"
 | 
			
		||||
 | 
			
		||||
#if defined(HAVE_HPX)
 | 
			
		||||
    #include <hpx/hpx_main.hpp>
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
CV_PERF_TEST_MAIN(features2d)
 | 
			
		||||
							
								
								
									
										7
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_precomp.hpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								3rdparty/opencv-4.5.4/modules/features2d/perf/perf_precomp.hpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,7 @@
 | 
			
		||||
#ifndef __OPENCV_PERF_PRECOMP_HPP__
 | 
			
		||||
#define __OPENCV_PERF_PRECOMP_HPP__
 | 
			
		||||
 | 
			
		||||
#include "opencv2/ts.hpp"
 | 
			
		||||
#include "opencv2/features2d.hpp"
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
		Reference in New Issue
	
	Block a user