feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,2 @@
set(the_description "Clustering and Search in Multi-Dimensional Spaces")
ocv_define_module(flann opencv_core WRAP python)

View File

@ -0,0 +1,629 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_FLANN_HPP
#define OPENCV_FLANN_HPP
#include "opencv2/core.hpp"
#include "opencv2/flann/miniflann.hpp"
#include "opencv2/flann/flann_base.hpp"
/**
@defgroup flann Clustering and Search in Multi-Dimensional Spaces
This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate
Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest
neighbor search in large datasets and for high dimensional features. More information about FLANN
can be found in @cite Muja2009 .
*/
namespace cvflann
{
CV_EXPORTS flann_distance_t flann_distance_type();
CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
}
namespace cv
{
namespace flann
{
//! @addtogroup flann
//! @{
template <typename T> struct CvType {};
template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
template <> struct CvType<char> { static int type() { return CV_8S; } };
template <> struct CvType<unsigned short> { static int type() { return CV_16U; } };
template <> struct CvType<short> { static int type() { return CV_16S; } };
template <> struct CvType<int> { static int type() { return CV_32S; } };
template <> struct CvType<float> { static int type() { return CV_32F; } };
template <> struct CvType<double> { static int type() { return CV_64F; } };
// bring the flann parameters into this namespace
using ::cvflann::get_param;
using ::cvflann::print_params;
// bring the flann distances into this namespace
using ::cvflann::L2_Simple;
using ::cvflann::L2;
using ::cvflann::L1;
using ::cvflann::MinkowskiDistance;
using ::cvflann::MaxDistance;
using ::cvflann::HammingLUT;
using ::cvflann::Hamming;
using ::cvflann::Hamming2;
using ::cvflann::DNAmmingLUT;
using ::cvflann::DNAmming2;
using ::cvflann::HistIntersectionDistance;
using ::cvflann::HellingerDistance;
using ::cvflann::ChiSquareDistance;
using ::cvflann::KL_Divergence;
/** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which
the index is built.
`Distance` functor specifies the metric to be used to calculate the distance between two points.
There are several `Distance` functors that are readily available:
cv::cvflann::L2_Simple - Squared Euclidean distance functor.
This is the simpler, unrolled version. This is preferable for very low dimensionality data (eg 3D points)
cv::flann::L2 - Squared Euclidean distance functor, optimized version.
cv::flann::L1 - Manhattan distance functor, optimized version.
cv::flann::MinkowskiDistance - The Minkowsky distance functor.
This is highly optimised with loop unrolling.
The computation of squared root at the end is omitted for efficiency.
cv::flann::MaxDistance - The max distance functor. It computes the
maximum distance between two vectors. This distance is not a valid kdtree distance, it's not
dimensionwise additive.
cv::flann::HammingLUT - %Hamming distance functor. It counts the bit
differences between two strings using a lookup table implementation.
cv::flann::Hamming - %Hamming distance functor. Population count is
performed using library calls, if available. Lookup table implementation is used as a fallback.
cv::flann::Hamming2 - %Hamming distance functor. Population count is
implemented in 12 arithmetic operations (one of which is multiplication).
cv::flann::DNAmmingLUT - %Adaptation of the Hamming distance functor to DNA comparison.
As the four bases A, C, G, T of the DNA (or A, G, C, U for RNA) can be coded on 2 bits,
it counts the bits pairs differences between two sequences using a lookup table implementation.
cv::flann::DNAmming2 - %Adaptation of the Hamming distance functor to DNA comparison.
Bases differences count are vectorised thanks to arithmetic operations using standard
registers (AVX2 and AVX-512 should come in a near future).
cv::flann::HistIntersectionDistance - The histogram
intersection distance functor.
cv::flann::HellingerDistance - The Hellinger distance functor.
cv::flann::ChiSquareDistance - The chi-square distance functor.
cv::flann::KL_Divergence - The Kullback-Leibler divergence functor.
Although the provided implementations cover a vast range of cases, it is also possible to use
a custom implementation. The distance functor is a class whose `operator()` computes the distance
between two features. If the distance is also a kd-tree compatible distance, it should also provide an
`accum_dist()` method that computes the distance between individual feature dimensions.
In addition to `operator()` and `accum_dist()`, a distance functor should also define the
`ElementType` and the `ResultType` as the types of the elements it operates on and the type of the
result it computes. If a distance functor can be used as a kd-tree distance (meaning that the full
distance between a pair of features can be accumulated from the partial distances between the
individual dimensions) a typedef `is_kdtree_distance` should be present inside the distance functor.
If the distance is not a kd-tree distance, but it's a distance in a vector space (the individual
dimensions of the elements it operates on can be accessed independently) a typedef
`is_vector_space_distance` should be defined inside the functor. If neither typedef is defined, the
distance is assumed to be a metric distance and will only be used with indexes operating on
generic metric distances.
*/
template <typename Distance>
class GenericIndex
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
/** @brief Constructs a nearest neighbor search index for a given dataset.
@param features Matrix of containing the features(points) to index. The size of the matrix is
num_features x feature_dimensionality and the data type of the elements in the matrix must
coincide with the type of the index.
@param params Structure containing the index parameters. The type of index that will be
constructed depends on the type of this parameter. See the description.
@param distance
The method constructs a fast search structure from a set of features using the specified algorithm
with specified parameters, as defined by params. params is a reference to one of the following class
IndexParams descendants:
- **LinearIndexParams** When passing an object of this type, the index will perform a linear,
brute-force search. :
@code
struct LinearIndexParams : public IndexParams
{
};
@endcode
- **KDTreeIndexParams** When passing an object of this type the index constructed will consist of
a set of randomized kd-trees which will be searched in parallel. :
@code
struct KDTreeIndexParams : public IndexParams
{
KDTreeIndexParams( int trees = 4 );
};
@endcode
- **HierarchicalClusteringIndexParams** When passing an object of this type the index constructed
will be a hierarchical tree of clusters, dividing each set of points into n clusters whose centers
are picked among the points without further refinement of their position.
This algorithm fits both floating, integer and binary vectors. :
@code
struct HierarchicalClusteringIndexParams : public IndexParams
{
HierarchicalClusteringIndexParams(
int branching = 32,
flann_centers_init_t centers_init = CENTERS_RANDOM,
int trees = 4,
int leaf_size = 100);
};
@endcode
- **KMeansIndexParams** When passing an object of this type the index constructed will be a
hierarchical k-means tree (one tree by default), dividing each set of points into n clusters
whose barycenters are refined iteratively.
Note that this algorithm has been extended to the support of binary vectors as an alternative
to LSH when knn search speed is the criterium. It will also outperform LSH when processing
directly (i.e. without the use of MCA/PCA) datasets whose points share mostly the same values
for most of the dimensions. It is recommended to set more than one tree with binary data. :
@code
struct KMeansIndexParams : public IndexParams
{
KMeansIndexParams(
int branching = 32,
int iterations = 11,
flann_centers_init_t centers_init = CENTERS_RANDOM,
float cb_index = 0.2,
int trees = 1);
};
@endcode
- **CompositeIndexParams** When using a parameters object of this type the index created
combines the randomized kd-trees and the hierarchical k-means tree. :
@code
struct CompositeIndexParams : public IndexParams
{
CompositeIndexParams(
int trees = 4,
int branching = 32,
int iterations = 11,
flann_centers_init_t centers_init = CENTERS_RANDOM,
float cb_index = 0.2 );
};
@endcode
- **LshIndexParams** When using a parameters object of this type the index created uses
multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd
International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007).
This algorithm is designed for binary vectors. :
@code
struct LshIndexParams : public IndexParams
{
LshIndexParams(
int table_number,
int key_size,
int multi_probe_level );
};
@endcode
- **AutotunedIndexParams** When passing an object of this type the index created is
automatically tuned to offer the best performance, by choosing the optimal index type
(randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :
@code
struct AutotunedIndexParams : public IndexParams
{
AutotunedIndexParams(
float target_precision = 0.9,
float build_weight = 0.01,
float memory_weight = 0,
float sample_fraction = 0.1 );
};
@endcode
- **SavedIndexParams** This object type is used for loading a previously saved index from the
disk. :
@code
struct SavedIndexParams : public IndexParams
{
SavedIndexParams( String filename );
};
@endcode
*/
GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
~GenericIndex();
/** @brief Performs a K-nearest neighbor search for a given query point using the index.
@param query The query point
@param indices Vector that will contain the indices of the K-nearest neighbors found. It must have
at least knn size.
@param dists Vector that will contain the distances to the K-nearest neighbors found. It must have
at least knn size.
@param knn Number of nearest neighbors to search for.
@param params SearchParams
*/
void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
/** @brief Performs a radius nearest neighbor search for a given query point using the index.
@param query The query point.
@param indices Vector that will contain the indices of the nearest neighbors found.
@param dists Vector that will contain the distances to the nearest neighbors found. It has the same
number of elements as indices.
@param radius The search radius.
@param params SearchParams
This function returns the number of nearest neighbors found.
*/
int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
DistanceType radius, const ::cvflann::SearchParams& params);
void save(String filename) { nnIndex->save(filename); }
int veclen() const { return nnIndex->veclen(); }
int size() const { return (int)nnIndex->size(); }
::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
private:
::cvflann::Index<Distance>* nnIndex;
Mat _dataset;
};
//! @cond IGNORED
#define FLANN_DISTANCE_CHECK \
if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
"the distance using cvflann::set_distance_type. This is no longer working as expected "\
"(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
"for example for L1 distance use: GenericIndex< L1<float> > \n"); \
}
template <typename Distance>
GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
: _dataset(dataset)
{
CV_Assert(dataset.type() == CvType<ElementType>::type());
CV_Assert(dataset.isContinuous());
::cvflann::Matrix<ElementType> m_dataset((ElementType*)_dataset.ptr<ElementType>(0), _dataset.rows, _dataset.cols);
nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
FLANN_DISTANCE_CHECK
nnIndex->buildIndex();
}
template <typename Distance>
GenericIndex<Distance>::~GenericIndex()
{
delete nnIndex;
}
template <typename Distance>
void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
FLANN_DISTANCE_CHECK
nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
}
template <typename Distance>
void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(queries.type() == CvType<ElementType>::type());
CV_Assert(queries.isContinuous());
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
FLANN_DISTANCE_CHECK
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
}
template <typename Distance>
int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
FLANN_DISTANCE_CHECK
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
template <typename Distance>
int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(query.type() == CvType<ElementType>::type());
CV_Assert(query.isContinuous());
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
FLANN_DISTANCE_CHECK
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
/**
* @deprecated Use GenericIndex class instead
*/
template <typename T>
class Index_
{
public:
typedef typename L2<T>::ElementType ElementType;
typedef typename L2<T>::ResultType DistanceType;
CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
{
printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
CV_Assert(dataset.type() == CvType<ElementType>::type());
CV_Assert(dataset.isContinuous());
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
nnIndex_L1 = NULL;
nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
}
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
nnIndex_L2 = NULL;
}
else {
printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
"For other distance types you must use cv::flann::GenericIndex<Distance>\n");
CV_Assert(0);
}
if (nnIndex_L1) nnIndex_L1->buildIndex();
if (nnIndex_L2) nnIndex_L2->buildIndex();
}
CV_DEPRECATED ~Index_()
{
if (nnIndex_L1) delete nnIndex_L1;
if (nnIndex_L2) delete nnIndex_L2;
}
CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
}
CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(queries.type() == CvType<ElementType>::type());
CV_Assert(queries.isContinuous());
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
}
CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
{
CV_Assert(query.type() == CvType<ElementType>::type());
CV_Assert(query.isContinuous());
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
CV_Assert(indices.type() == CV_32S);
CV_Assert(indices.isContinuous());
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
CV_Assert(dists.type() == CvType<DistanceType>::type());
CV_Assert(dists.isContinuous());
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
}
CV_DEPRECATED void save(String filename)
{
if (nnIndex_L1) nnIndex_L1->save(filename);
if (nnIndex_L2) nnIndex_L2->save(filename);
}
CV_DEPRECATED int veclen() const
{
if (nnIndex_L1) return nnIndex_L1->veclen();
if (nnIndex_L2) return nnIndex_L2->veclen();
}
CV_DEPRECATED int size() const
{
if (nnIndex_L1) return nnIndex_L1->size();
if (nnIndex_L2) return nnIndex_L2->size();
}
CV_DEPRECATED ::cvflann::IndexParams getParameters()
{
if (nnIndex_L1) return nnIndex_L1->getParameters();
if (nnIndex_L2) return nnIndex_L2->getParameters();
}
CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
{
if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
}
private:
// providing backwards compatibility for L2 and L1 distances (most common)
::cvflann::Index< L2<ElementType> >* nnIndex_L2;
::cvflann::Index< L1<ElementType> >* nnIndex_L1;
};
//! @endcond
/** @brief Clusters features using hierarchical k-means algorithm.
@param features The points to be clustered. The matrix must have elements of type
Distance::ElementType.
@param centers The centers of the clusters obtained. The matrix must have type
Distance::CentersType. The number of rows in this matrix represents the number of clusters desired,
however, because of the way the cut in the hierarchical tree is chosen, the number of clusters
computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of
clusters desired, where branching is the tree's branching factor (see description of the
KMeansIndexParams).
@param params Parameters used in the construction of the hierarchical k-means tree.
@param d Distance to be used for clustering.
The method clusters the given feature vectors by constructing a hierarchical k-means tree and
choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters
found.
*/
template <typename Distance>
int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
Distance d = Distance())
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::CentersType CentersType;
CV_Assert(features.type() == CvType<ElementType>::type());
CV_Assert(features.isContinuous());
::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
CV_Assert(centers.type() == CvType<CentersType>::type());
CV_Assert(centers.isContinuous());
::cvflann::Matrix<CentersType> m_centers((CentersType*)centers.ptr<CentersType>(0), centers.rows, centers.cols);
return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
}
//! @cond IGNORED
template <typename ELEM_TYPE, typename DIST_TYPE>
CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
{
printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
"cv::flann::hierarchicalClustering<Distance> instead\n");
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
}
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
}
else {
printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
"compatibility for the L1 and L2 distances. "
"For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
CV_Assert(0);
}
}
//! @endcond
//! @} flann
} } // namespace cv::flann
#endif

View File

@ -0,0 +1,162 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_ALL_INDICES_H_
#define OPENCV_FLANN_ALL_INDICES_H_
//! @cond IGNORED
#include "general.h"
#include "nn_index.h"
#include "kdtree_index.h"
#include "kdtree_single_index.h"
#include "kmeans_index.h"
#include "composite_index.h"
#include "linear_index.h"
#include "hierarchical_clustering_index.h"
#include "lsh_index.h"
#include "autotuned_index.h"
namespace cvflann
{
template<typename KDTreeCapability, typename VectorSpace, typename Distance>
struct index_creator
{
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
NNIndex<Distance>* nnIndex;
switch (index_type) {
case FLANN_INDEX_LINEAR:
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KDTREE_SINGLE:
nnIndex = new KDTreeSingleIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KDTREE:
nnIndex = new KDTreeIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KMEANS:
nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_COMPOSITE:
nnIndex = new CompositeIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_AUTOTUNED:
nnIndex = new AutotunedIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_HIERARCHICAL:
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_LSH:
nnIndex = new LshIndex<Distance>(dataset, params, distance);
break;
default:
FLANN_THROW(cv::Error::StsBadArg, "Unknown index type");
}
return nnIndex;
}
};
template<typename VectorSpace, typename Distance>
struct index_creator<False,VectorSpace,Distance>
{
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
NNIndex<Distance>* nnIndex;
switch (index_type) {
case FLANN_INDEX_LINEAR:
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KMEANS:
nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_HIERARCHICAL:
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_LSH:
nnIndex = new LshIndex<Distance>(dataset, params, distance);
break;
default:
FLANN_THROW(cv::Error::StsBadArg, "Unknown index type");
}
return nnIndex;
}
};
template<typename Distance>
struct index_creator<False,False,Distance>
{
static NNIndex<Distance>* create(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params, "algorithm");
NNIndex<Distance>* nnIndex;
switch (index_type) {
case FLANN_INDEX_LINEAR:
nnIndex = new LinearIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_KMEANS:
nnIndex = new KMeansIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_HIERARCHICAL:
nnIndex = new HierarchicalClusteringIndex<Distance>(dataset, params, distance);
break;
case FLANN_INDEX_LSH:
nnIndex = new LshIndex<Distance>(dataset, params, distance);
break;
default:
FLANN_THROW(cv::Error::StsBadArg, "Unknown index type");
}
return nnIndex;
}
};
template<typename Distance>
NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance)
{
return index_creator<typename Distance::is_kdtree_distance,
typename Distance::is_vector_space_distance,
Distance>::create(dataset, params,distance);
}
}
//! @endcond
#endif /* OPENCV_FLANN_ALL_INDICES_H_ */

View File

@ -0,0 +1,196 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_ALLOCATOR_H_
#define OPENCV_FLANN_ALLOCATOR_H_
//! @cond IGNORED
#include <stdlib.h>
#include <stdio.h>
namespace cvflann
{
/**
* Allocates (using C's malloc) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T>
T* allocate(size_t count = 1)
{
T* mem = (T*) ::malloc(sizeof(T)*count);
return mem;
}
/**
* Pooled storage allocator
*
* The following routines allow for the efficient allocation of storage in
* small chunks from a specified pool. Rather than allowing each structure
* to be freed individually, an entire pool of storage is freed at once.
* This method has two advantages over just using malloc() and free(). First,
* it is far more efficient for allocating small objects, as there is
* no overhead for remembering all the information needed to free each
* object or consolidating fragmented memory. Second, the decision about
* how long to keep an object is made at the time of allocation, and there
* is no need to track down all the objects to free them.
*
*/
const size_t WORDSIZE=16;
const size_t BLOCKSIZE=8192;
class PooledAllocator
{
/* We maintain memory alignment to word boundaries by requiring that all
allocations be in multiples of the machine wordsize. */
/* Size of machine word in bytes. Must be power of 2. */
/* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */
int remaining; /* Number of bytes left in current block of storage. */
void* base; /* Pointer to base of current block of storage. */
void* loc; /* Current location in block to next allocate memory. */
int blocksize;
public:
int usedMemory;
int wastedMemory;
/**
Default constructor. Initializes a new pool.
*/
PooledAllocator(int blockSize = BLOCKSIZE)
{
blocksize = blockSize;
remaining = 0;
base = NULL;
loc = NULL;
usedMemory = 0;
wastedMemory = 0;
}
/**
* Destructor. Frees all the memory allocated in this pool.
*/
~PooledAllocator()
{
void* prev;
while (base != NULL) {
prev = *((void**) base); /* Get pointer to prev block. */
::free(base);
base = prev;
}
}
/**
* Returns a pointer to a piece of new memory of the given size in bytes
* allocated from the pool.
*/
void* allocateMemory(int size)
{
int blockSize;
/* Round size up to a multiple of wordsize. The following expression
only works for WORDSIZE that is a power of 2, by masking last bits of
incremented size to zero.
*/
size = (size + (WORDSIZE - 1)) & ~(WORDSIZE - 1);
/* Check whether a new block must be allocated. Note that the first word
of a block is reserved for a pointer to the previous block.
*/
if (size > remaining) {
wastedMemory += remaining;
/* Allocate new storage. */
blockSize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ?
size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE;
// use the standard C malloc to allocate memory
void* m = ::malloc(blockSize);
if (!m) {
fprintf(stderr,"Failed to allocate memory.\n");
return NULL;
}
/* Fill first word of new block with pointer to previous block. */
((void**) m)[0] = base;
base = m;
int shift = 0;
//int shift = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1);
remaining = blockSize - sizeof(void*) - shift;
loc = ((char*)m + sizeof(void*) + shift);
}
void* rloc = loc;
loc = (char*)loc + size;
remaining -= size;
usedMemory += size;
return rloc;
}
/**
* Allocates (using this pool) a generic type T.
*
* Params:
* count = number of instances to allocate.
* Returns: pointer (of type T*) to memory buffer
*/
template <typename T>
T* allocate(size_t count = 1)
{
T* mem = (T*) this->allocateMemory((int)(sizeof(T)*count));
return mem;
}
private:
PooledAllocator(const PooledAllocator &); // copy disabled
PooledAllocator& operator=(const PooledAllocator &); // assign disabled
};
}
//! @endcond
#endif //OPENCV_FLANN_ALLOCATOR_H_

View File

@ -0,0 +1,332 @@
#ifndef OPENCV_FLANN_ANY_H_
#define OPENCV_FLANN_ANY_H_
/*
* (C) Copyright Christopher Diggins 2005-2011
* (C) Copyright Pablo Aguilar 2005
* (C) Copyright Kevlin Henney 2001
*
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt
*
* Adapted for FLANN by Marius Muja
*/
//! @cond IGNORED
#include "defines.h"
#include <stdexcept>
#include <ostream>
#include <typeinfo>
namespace cvflann
{
namespace anyimpl
{
struct bad_any_cast
{
};
struct empty_any
{
};
inline std::ostream& operator <<(std::ostream& out, const empty_any&)
{
out << "[empty_any]";
return out;
}
struct base_any_policy
{
virtual void static_delete(void** x) = 0;
virtual void copy_from_value(void const* src, void** dest) = 0;
virtual void clone(void* const* src, void** dest) = 0;
virtual void move(void* const* src, void** dest) = 0;
virtual void* get_value(void** src) = 0;
virtual const void* get_value(void* const * src) = 0;
virtual ::size_t get_size() = 0;
virtual const std::type_info& type() = 0;
virtual void print(std::ostream& out, void* const* src) = 0;
virtual ~base_any_policy() {}
};
template<typename T>
struct typed_base_any_policy : base_any_policy
{
virtual ::size_t get_size() CV_OVERRIDE { return sizeof(T); }
virtual const std::type_info& type() CV_OVERRIDE { return typeid(T); }
};
template<typename T>
struct small_any_policy CV_FINAL : typed_base_any_policy<T>
{
virtual void static_delete(void**) CV_OVERRIDE { }
virtual void copy_from_value(void const* src, void** dest) CV_OVERRIDE
{
new (dest) T(* reinterpret_cast<T const*>(src));
}
virtual void clone(void* const* src, void** dest) CV_OVERRIDE { *dest = *src; }
virtual void move(void* const* src, void** dest) CV_OVERRIDE { *dest = *src; }
virtual void* get_value(void** src) CV_OVERRIDE { return reinterpret_cast<void*>(src); }
virtual const void* get_value(void* const * src) CV_OVERRIDE { return reinterpret_cast<const void*>(src); }
virtual void print(std::ostream& out, void* const* src) CV_OVERRIDE { out << *reinterpret_cast<T const*>(src); }
};
template<typename T>
struct big_any_policy CV_FINAL : typed_base_any_policy<T>
{
virtual void static_delete(void** x) CV_OVERRIDE
{
if (* x) delete (* reinterpret_cast<T**>(x));
*x = NULL;
}
virtual void copy_from_value(void const* src, void** dest) CV_OVERRIDE
{
*dest = new T(*reinterpret_cast<T const*>(src));
}
virtual void clone(void* const* src, void** dest) CV_OVERRIDE
{
*dest = new T(**reinterpret_cast<T* const*>(src));
}
virtual void move(void* const* src, void** dest) CV_OVERRIDE
{
(*reinterpret_cast<T**>(dest))->~T();
**reinterpret_cast<T**>(dest) = **reinterpret_cast<T* const*>(src);
}
virtual void* get_value(void** src) CV_OVERRIDE { return *src; }
virtual const void* get_value(void* const * src) CV_OVERRIDE { return *src; }
virtual void print(std::ostream& out, void* const* src) CV_OVERRIDE { out << *reinterpret_cast<T const*>(*src); }
};
template<> inline void big_any_policy<flann_centers_init_t>::print(std::ostream& out, void* const* src)
{
out << int(*reinterpret_cast<flann_centers_init_t const*>(*src));
}
template<> inline void big_any_policy<flann_algorithm_t>::print(std::ostream& out, void* const* src)
{
out << int(*reinterpret_cast<flann_algorithm_t const*>(*src));
}
template<> inline void big_any_policy<cv::String>::print(std::ostream& out, void* const* src)
{
out << (*reinterpret_cast<cv::String const*>(*src)).c_str();
}
template<typename T>
struct choose_policy
{
typedef big_any_policy<T> type;
};
template<typename T>
struct choose_policy<T*>
{
typedef small_any_policy<T*> type;
};
struct any;
/// Choosing the policy for an any type is illegal, but should never happen.
/// This is designed to throw a compiler error.
template<>
struct choose_policy<any>
{
typedef void type;
};
/// Specializations for small types.
#define SMALL_POLICY(TYPE) \
template<> \
struct choose_policy<TYPE> { typedef small_any_policy<TYPE> type; \
}
SMALL_POLICY(signed char);
SMALL_POLICY(unsigned char);
SMALL_POLICY(signed short);
SMALL_POLICY(unsigned short);
SMALL_POLICY(signed int);
SMALL_POLICY(unsigned int);
SMALL_POLICY(signed long);
SMALL_POLICY(unsigned long);
SMALL_POLICY(float);
SMALL_POLICY(bool);
#undef SMALL_POLICY
template <typename T>
class SinglePolicy
{
SinglePolicy();
SinglePolicy(const SinglePolicy& other);
SinglePolicy& operator=(const SinglePolicy& other);
public:
static base_any_policy* get_policy();
};
/// This function will return a different policy for each type.
template <typename T>
inline base_any_policy* SinglePolicy<T>::get_policy()
{
static typename choose_policy<T>::type policy;
return &policy;
}
} // namespace anyimpl
struct any
{
private:
// fields
anyimpl::base_any_policy* policy;
void* object;
public:
/// Initializing constructor.
template <typename T>
any(const T& x)
: policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL)
{
assign(x);
}
/// Empty constructor.
any()
: policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL)
{ }
/// Special initializing constructor for string literals.
any(const char* x)
: policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL)
{
assign(x);
}
/// Copy constructor.
any(const any& x)
: policy(anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy()), object(NULL)
{
assign(x);
}
/// Destructor.
~any()
{
policy->static_delete(&object);
}
/// Assignment function from another any.
any& assign(const any& x)
{
reset();
policy = x.policy;
policy->clone(&x.object, &object);
return *this;
}
/// Assignment function.
template <typename T>
any& assign(const T& x)
{
reset();
policy = anyimpl::SinglePolicy<T>::get_policy();
policy->copy_from_value(&x, &object);
return *this;
}
/// Assignment operator.
template<typename T>
any& operator=(const T& x)
{
return assign(x);
}
/// Assignment operator. Template-based version above doesn't work as expected. We need regular assignment operator here.
any& operator=(const any& x)
{
return assign(x);
}
/// Assignment operator, specialed for literal strings.
/// They have types like const char [6] which don't work as expected.
any& operator=(const char* x)
{
return assign(x);
}
/// Utility functions
any& swap(any& x)
{
std::swap(policy, x.policy);
std::swap(object, x.object);
return *this;
}
/// Cast operator. You can only cast to the original type.
template<typename T>
T& cast()
{
if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast();
T* r = reinterpret_cast<T*>(policy->get_value(&object));
return *r;
}
/// Cast operator. You can only cast to the original type.
template<typename T>
const T& cast() const
{
if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast();
const T* r = reinterpret_cast<const T*>(policy->get_value(&object));
return *r;
}
/// Returns true if the any contains no value.
bool empty() const
{
return policy->type() == typeid(anyimpl::empty_any);
}
/// Frees any allocated memory, and sets the value to NULL.
void reset()
{
policy->static_delete(&object);
policy = anyimpl::SinglePolicy<anyimpl::empty_any>::get_policy();
}
/// Returns true if the two types are the same.
bool compatible(const any& x) const
{
return policy->type() == x.policy->type();
}
/// Returns if the type is compatible with the policy
template<typename T>
bool has_type()
{
return policy->type() == typeid(T);
}
const std::type_info& type() const
{
return policy->type();
}
friend std::ostream& operator <<(std::ostream& out, const any& any_val);
};
inline std::ostream& operator <<(std::ostream& out, const any& any_val)
{
any_val.policy->print(out,&any_val.object);
return out;
}
}
//! @endcond
#endif // OPENCV_FLANN_ANY_H_

View File

@ -0,0 +1,594 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_
#define OPENCV_FLANN_AUTOTUNED_INDEX_H_
//! @cond IGNORED
#include <sstream>
#include "nn_index.h"
#include "ground_truth.h"
#include "index_testing.h"
#include "sampling.h"
#include "kdtree_index.h"
#include "kdtree_single_index.h"
#include "kmeans_index.h"
#include "composite_index.h"
#include "linear_index.h"
#include "logger.h"
namespace cvflann
{
template<typename Distance>
NNIndex<Distance>* create_index_by_type(const Matrix<typename Distance::ElementType>& dataset, const IndexParams& params, const Distance& distance);
struct AutotunedIndexParams : public IndexParams
{
AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1)
{
(*this)["algorithm"] = FLANN_INDEX_AUTOTUNED;
// precision desired (used for autotuning, -1 otherwise)
(*this)["target_precision"] = target_precision;
// build tree time weighting factor
(*this)["build_weight"] = build_weight;
// index memory weighting factor
(*this)["memory_weight"] = memory_weight;
// what fraction of the dataset to use for autotuning
(*this)["sample_fraction"] = sample_fraction;
}
};
template <typename Distance>
class AutotunedIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
AutotunedIndex(const Matrix<ElementType>& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) :
dataset_(inputData), distance_(d)
{
target_precision_ = get_param(params, "target_precision",0.8f);
build_weight_ = get_param(params,"build_weight", 0.01f);
memory_weight_ = get_param(params, "memory_weight", 0.0f);
sample_fraction_ = get_param(params,"sample_fraction", 0.1f);
bestIndex_ = NULL;
speedup_ = 0;
}
AutotunedIndex(const AutotunedIndex&);
AutotunedIndex& operator=(const AutotunedIndex&);
virtual ~AutotunedIndex()
{
if (bestIndex_ != NULL) {
delete bestIndex_;
bestIndex_ = NULL;
}
}
/**
* Method responsible with building the index.
*/
virtual void buildIndex() CV_OVERRIDE
{
std::ostringstream stream;
bestParams_ = estimateBuildParams();
print_params(bestParams_, stream);
Logger::info("----------------------------------------------------\n");
Logger::info("Autotuned parameters:\n");
Logger::info("%s", stream.str().c_str());
Logger::info("----------------------------------------------------\n");
bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_);
bestIndex_->buildIndex();
speedup_ = estimateSearchParams(bestSearchParams_);
stream.str(std::string());
print_params(bestSearchParams_, stream);
Logger::info("----------------------------------------------------\n");
Logger::info("Search parameters:\n");
Logger::info("%s", stream.str().c_str());
Logger::info("----------------------------------------------------\n");
}
/**
* Saves the index to a stream
*/
virtual void saveIndex(FILE* stream) CV_OVERRIDE
{
save_value(stream, (int)bestIndex_->getType());
bestIndex_->saveIndex(stream);
save_value(stream, get_param<int>(bestSearchParams_, "checks"));
}
/**
* Loads the index from a stream
*/
virtual void loadIndex(FILE* stream) CV_OVERRIDE
{
int index_type;
load_value(stream, index_type);
IndexParams params;
params["algorithm"] = (flann_algorithm_t)index_type;
bestIndex_ = create_index_by_type<Distance>(dataset_, params, distance_);
bestIndex_->loadIndex(stream);
int checks;
load_value(stream, checks);
bestSearchParams_["checks"] = checks;
}
/**
* Method that searches for nearest-neighbors
*/
virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
{
int checks = get_param<int>(searchParams,"checks",FLANN_CHECKS_AUTOTUNED);
if (checks == FLANN_CHECKS_AUTOTUNED) {
bestIndex_->findNeighbors(result, vec, bestSearchParams_);
}
else {
bestIndex_->findNeighbors(result, vec, searchParams);
}
}
IndexParams getParameters() const CV_OVERRIDE
{
return bestIndex_->getParameters();
}
SearchParams getSearchParameters() const
{
return bestSearchParams_;
}
float getSpeedup() const
{
return speedup_;
}
/**
* Number of features in this index.
*/
virtual size_t size() const CV_OVERRIDE
{
return bestIndex_->size();
}
/**
* The length of each vector in this index.
*/
virtual size_t veclen() const CV_OVERRIDE
{
return bestIndex_->veclen();
}
/**
* The amount of memory (in bytes) this index uses.
*/
virtual int usedMemory() const CV_OVERRIDE
{
return bestIndex_->usedMemory();
}
/**
* Algorithm name
*/
virtual flann_algorithm_t getType() const CV_OVERRIDE
{
return FLANN_INDEX_AUTOTUNED;
}
private:
struct CostData
{
float searchTimeCost;
float buildTimeCost;
float memoryCost;
float totalCost;
IndexParams params;
};
void evaluate_kmeans(CostData& cost)
{
StartStopTimer t;
int checks;
const int nn = 1;
Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n",
get_param<int>(cost.params,"iterations"),
get_param<int>(cost.params,"branching"));
KMeansIndex<Distance> kmeans(sampledDataset_, cost.params, distance_);
// measure index build time
t.start();
kmeans.buildIndex();
t.stop();
float buildTime = (float)t.value;
// measure search time
float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory;
cost.searchTimeCost = searchTime;
cost.buildTimeCost = buildTime;
Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_);
}
void evaluate_kdtree(CostData& cost)
{
StartStopTimer t;
int checks;
const int nn = 1;
Logger::info("KDTree using params: trees=%d\n", get_param<int>(cost.params,"trees"));
KDTreeIndex<Distance> kdtree(sampledDataset_, cost.params, distance_);
t.start();
kdtree.buildIndex();
t.stop();
float buildTime = (float)t.value;
//measure search time
float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn);
float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float));
cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory;
cost.searchTimeCost = searchTime;
cost.buildTimeCost = buildTime;
Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime);
}
// struct KMeansSimpleDownhillFunctor {
//
// Autotune& autotuner;
// KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}
//
// float operator()(int* params) {
//
// float maxFloat = numeric_limits<float>::max();
//
// if (params[0]<2) return maxFloat;
// if (params[1]<0) return maxFloat;
//
// CostData c;
// c.params["algorithm"] = KMEANS;
// c.params["centers-init"] = CENTERS_RANDOM;
// c.params["branching"] = params[0];
// c.params["max-iterations"] = params[1];
//
// autotuner.evaluate_kmeans(c);
//
// return c.timeCost;
//
// }
// };
//
// struct KDTreeSimpleDownhillFunctor {
//
// Autotune& autotuner;
// KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {}
//
// float operator()(int* params) {
// float maxFloat = numeric_limits<float>::max();
//
// if (params[0]<1) return maxFloat;
//
// CostData c;
// c.params["algorithm"] = KDTREE;
// c.params["trees"] = params[0];
//
// autotuner.evaluate_kdtree(c);
//
// return c.timeCost;
//
// }
// };
void optimizeKMeans(std::vector<CostData>& costs)
{
Logger::info("KMEANS, Step 1: Exploring parameter space\n");
// explore kmeans parameters space using combinations of the parameters below
int maxIterations[] = { 1, 5, 10, 15 };
int branchingFactors[] = { 16, 32, 64, 128, 256 };
int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors);
costs.reserve(costs.size() + kmeansParamSpaceSize);
// evaluate kmeans for all parameter combinations
for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) {
for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) {
CostData cost;
cost.params["algorithm"] = FLANN_INDEX_KMEANS;
cost.params["centers_init"] = FLANN_CENTERS_RANDOM;
cost.params["iterations"] = maxIterations[i];
cost.params["branching"] = branchingFactors[j];
evaluate_kmeans(cost);
costs.push_back(cost);
}
}
// Logger::info("KMEANS, Step 2: simplex-downhill optimization\n");
//
// const int n = 2;
// // choose initial simplex points as the best parameters so far
// int kmeansNMPoints[n*(n+1)];
// float kmeansVals[n+1];
// for (int i=0;i<n+1;++i) {
// kmeansNMPoints[i*n] = (int)kmeansCosts[i].params["branching"];
// kmeansNMPoints[i*n+1] = (int)kmeansCosts[i].params["max-iterations"];
// kmeansVals[i] = kmeansCosts[i].timeCost;
// }
// KMeansSimpleDownhillFunctor kmeans_cost_func(*this);
// // run optimization
// optimizeSimplexDownhill(kmeansNMPoints,n,kmeans_cost_func,kmeansVals);
// // store results
// for (int i=0;i<n+1;++i) {
// kmeansCosts[i].params["branching"] = kmeansNMPoints[i*2];
// kmeansCosts[i].params["max-iterations"] = kmeansNMPoints[i*2+1];
// kmeansCosts[i].timeCost = kmeansVals[i];
// }
}
void optimizeKDTree(std::vector<CostData>& costs)
{
Logger::info("KD-TREE, Step 1: Exploring parameter space\n");
// explore kd-tree parameters space using the parameters below
int testTrees[] = { 1, 4, 8, 16, 32 };
// evaluate kdtree for all parameter combinations
for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) {
CostData cost;
cost.params["algorithm"] = FLANN_INDEX_KDTREE;
cost.params["trees"] = testTrees[i];
evaluate_kdtree(cost);
costs.push_back(cost);
}
// Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n");
//
// const int n = 1;
// // choose initial simplex points as the best parameters so far
// int kdtreeNMPoints[n*(n+1)];
// float kdtreeVals[n+1];
// for (int i=0;i<n+1;++i) {
// kdtreeNMPoints[i] = (int)kdtreeCosts[i].params["trees"];
// kdtreeVals[i] = kdtreeCosts[i].timeCost;
// }
// KDTreeSimpleDownhillFunctor kdtree_cost_func(*this);
// // run optimization
// optimizeSimplexDownhill(kdtreeNMPoints,n,kdtree_cost_func,kdtreeVals);
// // store results
// for (int i=0;i<n+1;++i) {
// kdtreeCosts[i].params["trees"] = kdtreeNMPoints[i];
// kdtreeCosts[i].timeCost = kdtreeVals[i];
// }
}
/**
* Chooses the best nearest-neighbor algorithm and estimates the optimal
* parameters to use when building the index (for a given precision).
* Returns a dictionary with the optimal parameters.
*/
IndexParams estimateBuildParams()
{
std::vector<CostData> costs;
int sampleSize = int(sample_fraction_ * dataset_.rows);
int testSampleSize = std::min(sampleSize / 10, 1000);
Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_);
// For a very small dataset, it makes no sense to build any fancy index, just
// use linear search
if (testSampleSize < 10) {
Logger::info("Choosing linear, dataset too small\n");
return LinearIndexParams();
}
// We use a fraction of the original dataset to speedup the autotune algorithm
sampledDataset_ = random_sample(dataset_, sampleSize);
// We use a cross-validation approach, first we sample a testset from the dataset
testDataset_ = random_sample(sampledDataset_, testSampleSize, true);
// We compute the ground truth using linear search
Logger::info("Computing ground truth... \n");
gt_matches_ = Matrix<int>(new int[testDataset_.rows], testDataset_.rows, 1);
StartStopTimer t;
t.start();
compute_ground_truth<Distance>(sampledDataset_, testDataset_, gt_matches_, 0, distance_);
t.stop();
CostData linear_cost;
linear_cost.searchTimeCost = (float)t.value;
linear_cost.buildTimeCost = 0;
linear_cost.memoryCost = 0;
linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR;
costs.push_back(linear_cost);
// Start parameter autotune process
Logger::info("Autotuning parameters...\n");
optimizeKMeans(costs);
optimizeKDTree(costs);
float bestTimeCost = costs[0].searchTimeCost;
for (size_t i = 0; i < costs.size(); ++i) {
float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost;
if (timeCost < bestTimeCost) {
bestTimeCost = timeCost;
}
}
float bestCost = costs[0].searchTimeCost / bestTimeCost;
IndexParams bestParams = costs[0].params;
if (bestTimeCost > 0) {
for (size_t i = 0; i < costs.size(); ++i) {
float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost +
memory_weight_ * costs[i].memoryCost;
if (crtCost < bestCost) {
bestCost = crtCost;
bestParams = costs[i].params;
}
}
}
delete[] gt_matches_.data;
delete[] testDataset_.data;
delete[] sampledDataset_.data;
return bestParams;
}
/**
* Estimates the search time parameters needed to get the desired precision.
* Precondition: the index is built
* Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search.
*/
float estimateSearchParams(SearchParams& searchParams)
{
const int nn = 1;
const size_t SAMPLE_COUNT = 1000;
CV_Assert(bestIndex_ != NULL && "Requires a valid index"); // must have a valid index
float speedup = 0;
int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT);
if (samples > 0) {
Matrix<ElementType> testDataset = random_sample(dataset_, samples);
Logger::info("Computing ground truth\n");
// we need to compute the ground truth first
Matrix<int> gt_matches(new int[testDataset.rows], testDataset.rows, 1);
StartStopTimer t;
t.start();
compute_ground_truth<Distance>(dataset_, testDataset, gt_matches, 1, distance_);
t.stop();
float linear = (float)t.value;
int checks;
Logger::info("Estimating number of checks\n");
float searchTime;
float cb_index;
if (bestIndex_->getType() == FLANN_INDEX_KMEANS) {
Logger::info("KMeans algorithm, estimating cluster border factor\n");
KMeansIndex<Distance>* kmeans = (KMeansIndex<Distance>*)bestIndex_;
float bestSearchTime = -1;
float best_cb_index = -1;
int best_checks = -1;
for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) {
kmeans->set_cb_index(cb_index);
searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) {
bestSearchTime = searchTime;
best_cb_index = cb_index;
best_checks = checks;
}
}
searchTime = bestSearchTime;
cb_index = best_cb_index;
checks = best_checks;
kmeans->set_cb_index(best_cb_index);
Logger::info("Optimum cb_index: %g\n", cb_index);
bestParams_["cb_index"] = cb_index;
}
else {
searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1);
}
Logger::info("Required number of checks: %d \n", checks);
searchParams["checks"] = checks;
speedup = linear / searchTime;
delete[] gt_matches.data;
delete[] testDataset.data;
}
return speedup;
}
private:
NNIndex<Distance>* bestIndex_;
IndexParams bestParams_;
SearchParams bestSearchParams_;
Matrix<ElementType> sampledDataset_;
Matrix<ElementType> testDataset_;
Matrix<int> gt_matches_;
float speedup_;
/**
* The dataset used by this index
*/
const Matrix<ElementType> dataset_;
/**
* Index parameters
*/
float target_precision_;
float build_weight_;
float memory_weight_;
float sample_fraction_;
Distance distance_;
};
}
//! @endcond
#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */

View File

@ -0,0 +1,197 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_
#define OPENCV_FLANN_COMPOSITE_INDEX_H_
//! @cond IGNORED
#include "nn_index.h"
#include "kdtree_index.h"
#include "kmeans_index.h"
namespace cvflann
{
/**
* Index parameters for the CompositeIndex.
*/
struct CompositeIndexParams : public IndexParams
{
CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 )
{
(*this)["algorithm"] = FLANN_INDEX_KMEANS;
// number of randomized trees to use (for kdtree)
(*this)["trees"] = trees;
// branching factor
(*this)["branching"] = branching;
// max iterations to perform in one kmeans clustering (kmeans tree)
(*this)["iterations"] = iterations;
// algorithm used for picking the initial cluster centers for kmeans tree
(*this)["centers_init"] = centers_init;
// cluster boundary index. Used when searching the kmeans tree
(*this)["cb_index"] = cb_index;
}
};
/**
* This index builds a kd-tree index and a k-means index and performs nearest
* neighbour search both indexes. This gives a slight boost in search performance
* as some of the neighbours that are missed by one index are found by the other.
*/
template <typename Distance>
class CompositeIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
/**
* Index constructor
* @param inputData dataset containing the points to index
* @param params Index parameters
* @param d Distance functor
* @return
*/
CompositeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = CompositeIndexParams(),
Distance d = Distance()) : index_params_(params)
{
kdtree_index_ = new KDTreeIndex<Distance>(inputData, params, d);
kmeans_index_ = new KMeansIndex<Distance>(inputData, params, d);
}
CompositeIndex(const CompositeIndex&);
CompositeIndex& operator=(const CompositeIndex&);
virtual ~CompositeIndex()
{
delete kdtree_index_;
delete kmeans_index_;
}
/**
* @return The index type
*/
flann_algorithm_t getType() const CV_OVERRIDE
{
return FLANN_INDEX_COMPOSITE;
}
/**
* @return Size of the index
*/
size_t size() const CV_OVERRIDE
{
return kdtree_index_->size();
}
/**
* \returns The dimensionality of the features in this index.
*/
size_t veclen() const CV_OVERRIDE
{
return kdtree_index_->veclen();
}
/**
* \returns The amount of memory (in bytes) used by the index.
*/
int usedMemory() const CV_OVERRIDE
{
return kmeans_index_->usedMemory() + kdtree_index_->usedMemory();
}
/**
* \brief Builds the index
*/
void buildIndex() CV_OVERRIDE
{
Logger::info("Building kmeans tree...\n");
kmeans_index_->buildIndex();
Logger::info("Building kdtree tree...\n");
kdtree_index_->buildIndex();
}
/**
* \brief Saves the index to a stream
* \param stream The stream to save the index to
*/
void saveIndex(FILE* stream) CV_OVERRIDE
{
kmeans_index_->saveIndex(stream);
kdtree_index_->saveIndex(stream);
}
/**
* \brief Loads the index from a stream
* \param stream The stream from which the index is loaded
*/
void loadIndex(FILE* stream) CV_OVERRIDE
{
kmeans_index_->loadIndex(stream);
kdtree_index_->loadIndex(stream);
}
/**
* \returns The index parameters
*/
IndexParams getParameters() const CV_OVERRIDE
{
return index_params_;
}
/**
* \brief Method that searches for nearest-neighbours
*/
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
{
kmeans_index_->findNeighbors(result, vec, searchParams);
kdtree_index_->findNeighbors(result, vec, searchParams);
}
private:
/** The k-means index */
KMeansIndex<Distance>* kmeans_index_;
/** The kd-tree index */
KDTreeIndex<Distance>* kdtree_index_;
/** The index parameters */
const IndexParams index_params_;
};
}
//! @endcond
#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_

View File

@ -0,0 +1,42 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_CONFIG_H_
#define OPENCV_FLANN_CONFIG_H_
//! @cond IGNORED
#ifdef FLANN_VERSION_
#undef FLANN_VERSION_
#endif
#define FLANN_VERSION_ "1.6.10"
//! @endcond
#endif /* OPENCV_FLANN_CONFIG_H_ */

View File

@ -0,0 +1,169 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_DEFINES_H_
#define OPENCV_FLANN_DEFINES_H_
//! @cond IGNORED
#include "config.h"
#ifdef FLANN_EXPORT
#undef FLANN_EXPORT
#endif
#ifdef _WIN32
/* win32 dll export/import directives */
#ifdef FLANN_EXPORTS
#define FLANN_EXPORT __declspec(dllexport)
#elif defined(FLANN_STATIC)
#define FLANN_EXPORT
#else
#define FLANN_EXPORT __declspec(dllimport)
#endif
#else
/* unix needs nothing */
#define FLANN_EXPORT
#endif
#undef FLANN_PLATFORM_32_BIT
#undef FLANN_PLATFORM_64_BIT
#if defined __amd64__ || defined __x86_64__ || defined _WIN64 || defined _M_X64
#define FLANN_PLATFORM_64_BIT
#else
#define FLANN_PLATFORM_32_BIT
#endif
#undef FLANN_ARRAY_LEN
#define FLANN_ARRAY_LEN(a) (sizeof(a)/sizeof(a[0]))
namespace cvflann {
/* Nearest neighbour index algorithms */
enum flann_algorithm_t
{
FLANN_INDEX_LINEAR = 0,
FLANN_INDEX_KDTREE = 1,
FLANN_INDEX_KMEANS = 2,
FLANN_INDEX_COMPOSITE = 3,
FLANN_INDEX_KDTREE_SINGLE = 4,
FLANN_INDEX_HIERARCHICAL = 5,
FLANN_INDEX_LSH = 6,
FLANN_INDEX_SAVED = 254,
FLANN_INDEX_AUTOTUNED = 255,
// deprecated constants, should use the FLANN_INDEX_* ones instead
LINEAR = 0,
KDTREE = 1,
KMEANS = 2,
COMPOSITE = 3,
KDTREE_SINGLE = 4,
SAVED = 254,
AUTOTUNED = 255
};
enum flann_centers_init_t
{
FLANN_CENTERS_RANDOM = 0,
FLANN_CENTERS_GONZALES = 1,
FLANN_CENTERS_KMEANSPP = 2,
FLANN_CENTERS_GROUPWISE = 3,
// deprecated constants, should use the FLANN_CENTERS_* ones instead
CENTERS_RANDOM = 0,
CENTERS_GONZALES = 1,
CENTERS_KMEANSPP = 2
};
enum flann_log_level_t
{
FLANN_LOG_NONE = 0,
FLANN_LOG_FATAL = 1,
FLANN_LOG_ERROR = 2,
FLANN_LOG_WARN = 3,
FLANN_LOG_INFO = 4
};
enum flann_distance_t
{
FLANN_DIST_EUCLIDEAN = 1,
FLANN_DIST_L2 = 1,
FLANN_DIST_MANHATTAN = 2,
FLANN_DIST_L1 = 2,
FLANN_DIST_MINKOWSKI = 3,
FLANN_DIST_MAX = 4,
FLANN_DIST_HIST_INTERSECT = 5,
FLANN_DIST_HELLINGER = 6,
FLANN_DIST_CHI_SQUARE = 7,
FLANN_DIST_CS = 7,
FLANN_DIST_KULLBACK_LEIBLER = 8,
FLANN_DIST_KL = 8,
FLANN_DIST_HAMMING = 9,
FLANN_DIST_DNAMMING = 10,
// deprecated constants, should use the FLANN_DIST_* ones instead
EUCLIDEAN = 1,
MANHATTAN = 2,
MINKOWSKI = 3,
MAX_DIST = 4,
HIST_INTERSECT = 5,
HELLINGER = 6,
CS = 7,
KL = 8,
KULLBACK_LEIBLER = 8
};
enum flann_datatype_t
{
FLANN_INT8 = 0,
FLANN_INT16 = 1,
FLANN_INT32 = 2,
FLANN_INT64 = 3,
FLANN_UINT8 = 4,
FLANN_UINT16 = 5,
FLANN_UINT32 = 6,
FLANN_UINT64 = 7,
FLANN_FLOAT32 = 8,
FLANN_FLOAT64 = 9
};
enum
{
FLANN_CHECKS_UNLIMITED = -1,
FLANN_CHECKS_AUTOTUNED = -2
};
}
//! @endcond
#endif /* OPENCV_FLANN_DEFINES_H_ */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,16 @@
#ifndef OPENCV_FLANN_DUMMY_H_
#define OPENCV_FLANN_DUMMY_H_
//! @cond IGNORED
namespace cvflann
{
CV_DEPRECATED inline void dummyfunc() {}
}
//! @endcond
#endif /* OPENCV_FLANN_DUMMY_H_ */

View File

@ -0,0 +1,163 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
/***********************************************************************
* Author: Vincent Rabaud
*************************************************************************/
#ifndef OPENCV_FLANN_DYNAMIC_BITSET_H_
#define OPENCV_FLANN_DYNAMIC_BITSET_H_
//! @cond IGNORED
#ifndef FLANN_USE_BOOST
# define FLANN_USE_BOOST 0
#endif
//#define FLANN_USE_BOOST 1
#if FLANN_USE_BOOST
#include <boost/dynamic_bitset.hpp>
typedef boost::dynamic_bitset<> DynamicBitset;
#else
#include <limits.h>
#include "dist.h"
namespace cvflann {
/** Class re-implementing the boost version of it
* This helps not depending on boost, it also does not do the bound checks
* and has a way to reset a block for speed
*/
class DynamicBitset
{
public:
/** default constructor
*/
DynamicBitset() : size_(0)
{
}
/** only constructor we use in our code
* @param sz the size of the bitset (in bits)
*/
DynamicBitset(size_t sz)
{
resize(sz);
reset();
}
/** Sets all the bits to 0
*/
void clear()
{
std::fill(bitset_.begin(), bitset_.end(), 0);
}
/** @brief checks if the bitset is empty
* @return true if the bitset is empty
*/
bool empty() const
{
return bitset_.empty();
}
/** set all the bits to 0
*/
void reset()
{
std::fill(bitset_.begin(), bitset_.end(), 0);
}
/** @brief set one bit to 0
* @param index
*/
void reset(size_t index)
{
bitset_[index / cell_bit_size_] &= ~(size_t(1) << (index % cell_bit_size_));
}
/** @brief sets a specific bit to 0, and more bits too
* This function is useful when resetting a given set of bits so that the
* whole bitset ends up being 0: if that's the case, we don't care about setting
* other bits to 0
* @param index
*/
void reset_block(size_t index)
{
bitset_[index / cell_bit_size_] = 0;
}
/** resize the bitset so that it contains at least sz bits
* @param sz
*/
void resize(size_t sz)
{
size_ = sz;
bitset_.resize(sz / cell_bit_size_ + 1);
}
/** set a bit to true
* @param index the index of the bit to set to 1
*/
void set(size_t index)
{
bitset_[index / cell_bit_size_] |= size_t(1) << (index % cell_bit_size_);
}
/** gives the number of contained bits
*/
size_t size() const
{
return size_;
}
/** check if a bit is set
* @param index the index of the bit to check
* @return true if the bit is set
*/
bool test(size_t index) const
{
return (bitset_[index / cell_bit_size_] & (size_t(1) << (index % cell_bit_size_))) != 0;
}
private:
std::vector<size_t> bitset_;
size_t size_;
static const unsigned int cell_bit_size_ = CHAR_BIT * sizeof(size_t);
};
} // namespace cvflann
#endif
//! @endcond
#endif // OPENCV_FLANN_DYNAMIC_BITSET_H_

View File

@ -0,0 +1,48 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef __OPENCV_BUILD
#error this is a compatibility header which should not be used inside the OpenCV library
#endif
#include "opencv2/flann.hpp"

View File

@ -0,0 +1,299 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_BASE_HPP_
#define OPENCV_FLANN_BASE_HPP_
//! @cond IGNORED
#include <vector>
#include <cstdio>
#include "general.h"
#include "matrix.h"
#include "params.h"
#include "saving.h"
#include "all_indices.h"
namespace cvflann
{
/**
* Sets the log level used for all flann functions
* @param level Verbosity level
*/
inline void log_verbosity(int level)
{
if (level >= 0) {
Logger::setLevel(level);
}
}
/**
* (Deprecated) Index parameters for creating a saved index.
*/
struct SavedIndexParams : public IndexParams
{
SavedIndexParams(cv::String filename)
{
(* this)["algorithm"] = FLANN_INDEX_SAVED;
(*this)["filename"] = filename;
}
};
template<typename Distance>
NNIndex<Distance>* load_saved_index(const Matrix<typename Distance::ElementType>& dataset, const cv::String& filename, Distance distance)
{
typedef typename Distance::ElementType ElementType;
FILE* fin = fopen(filename.c_str(), "rb");
if (fin == NULL) {
return NULL;
}
IndexHeader header = load_header(fin);
if (header.data_type != Datatype<ElementType>::type()) {
fclose(fin);
FLANN_THROW(cv::Error::StsError, "Datatype of saved index is different than of the one to be created.");
}
if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) {
fclose(fin);
FLANN_THROW(cv::Error::StsError, "The index saved belongs to a different dataset");
}
IndexParams params;
params["algorithm"] = header.index_type;
NNIndex<Distance>* nnIndex = create_index_by_type<Distance>(dataset, params, distance);
nnIndex->loadIndex(fin);
fclose(fin);
return nnIndex;
}
template<typename Distance>
class Index : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
Index(const Matrix<ElementType>& features, const IndexParams& params, Distance distance = Distance() )
: index_params_(params)
{
flann_algorithm_t index_type = get_param<flann_algorithm_t>(params,"algorithm");
loaded_ = false;
if (index_type == FLANN_INDEX_SAVED) {
nnIndex_ = load_saved_index<Distance>(features, get_param<cv::String>(params,"filename"), distance);
loaded_ = true;
}
else {
nnIndex_ = create_index_by_type<Distance>(features, params, distance);
}
}
~Index()
{
delete nnIndex_;
}
/**
* Builds the index.
*/
void buildIndex() CV_OVERRIDE
{
if (!loaded_) {
nnIndex_->buildIndex();
}
}
void save(cv::String filename)
{
FILE* fout = fopen(filename.c_str(), "wb");
if (fout == NULL) {
FLANN_THROW(cv::Error::StsError, "Cannot open file");
}
save_header(fout, *nnIndex_);
saveIndex(fout);
fclose(fout);
}
/**
* \brief Saves the index to a stream
* \param stream The stream to save the index to
*/
virtual void saveIndex(FILE* stream) CV_OVERRIDE
{
nnIndex_->saveIndex(stream);
}
/**
* \brief Loads the index from a stream
* \param stream The stream from which the index is loaded
*/
virtual void loadIndex(FILE* stream) CV_OVERRIDE
{
nnIndex_->loadIndex(stream);
}
/**
* \returns number of features in this index.
*/
size_t veclen() const CV_OVERRIDE
{
return nnIndex_->veclen();
}
/**
* \returns The dimensionality of the features in this index.
*/
size_t size() const CV_OVERRIDE
{
return nnIndex_->size();
}
/**
* \returns The index type (kdtree, kmeans,...)
*/
flann_algorithm_t getType() const CV_OVERRIDE
{
return nnIndex_->getType();
}
/**
* \returns The amount of memory (in bytes) used by the index.
*/
virtual int usedMemory() const CV_OVERRIDE
{
return nnIndex_->usedMemory();
}
/**
* \returns The index parameters
*/
IndexParams getParameters() const CV_OVERRIDE
{
return nnIndex_->getParameters();
}
/**
* \brief Perform k-nearest neighbor search
* \param[in] queries The query points for which to find the nearest neighbors
* \param[out] indices The indices of the nearest neighbors found
* \param[out] dists Distances to the nearest neighbors found
* \param[in] knn Number of nearest neighbors to return
* \param[in] params Search parameters
*/
void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) CV_OVERRIDE
{
nnIndex_->knnSearch(queries, indices, dists, knn, params);
}
/**
* \brief Perform radius search
* \param[in] query The query point
* \param[out] indices The indinces of the neighbors found within the given radius
* \param[out] dists The distances to the nearest neighbors found
* \param[in] radius The radius used for search
* \param[in] params Search parameters
* \returns Number of neighbors found
*/
int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params) CV_OVERRIDE
{
return nnIndex_->radiusSearch(query, indices, dists, radius, params);
}
/**
* \brief Method that searches for nearest-neighbours
*/
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
{
nnIndex_->findNeighbors(result, vec, searchParams);
}
/**
* \brief Returns actual index
*/
CV_DEPRECATED NNIndex<Distance>* getIndex()
{
return nnIndex_;
}
/**
* \brief Returns index parameters.
* \deprecated use getParameters() instead.
*/
CV_DEPRECATED const IndexParams* getIndexParameters()
{
return &index_params_;
}
private:
/** Pointer to actual index class */
NNIndex<Distance>* nnIndex_;
/** Indices if the index was loaded from a file */
bool loaded_;
/** Parameters passed to the index */
IndexParams index_params_;
Index(const Index &); // copy disabled
Index& operator=(const Index &); // assign disabled
};
/**
* Performs a hierarchical clustering of the points passed as argument and then takes a cut in the
* the clustering tree to return a flat clustering.
* @param[in] points Points to be clustered
* @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the
* number of clusters requested.
* @param params Clustering parameters (The same as for cvflann::KMeansIndex)
* @param d Distance to be used for clustering (eg: cvflann::L2)
* @return number of clusters computed (can be different than clusters.rows and is the highest number
* of the form (branching-1)*K+1 smaller than clusters.rows).
*/
template <typename Distance>
int hierarchicalClustering(const Matrix<typename Distance::ElementType>& points, Matrix<typename Distance::CentersType>& centers,
const KMeansIndexParams& params, Distance d = Distance())
{
KMeansIndex<Distance> kmeans(points, params, d);
kmeans.buildIndex();
int clusterNum = kmeans.getClusterCenters(centers);
return clusterNum;
}
}
//! @endcond
#endif /* OPENCV_FLANN_BASE_HPP_ */

View File

@ -0,0 +1,63 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_GENERAL_H_
#define OPENCV_FLANN_GENERAL_H_
#if CV_VERSION_MAJOR <= 4
//! @cond IGNORED
#include "opencv2/core.hpp"
namespace cvflann
{
class FLANNException : public cv::Exception
{
public:
FLANNException(const char* message) : cv::Exception(0, message, "", __FILE__, __LINE__) { }
FLANNException(const cv::String& message) : cv::Exception(0, message, "", __FILE__, __LINE__) { }
};
}
#define FLANN_THROW(TYPE, STR) throw FLANNException(STR)
#else
#define FLANN_THROW(TYPE, STR) CV_Error(TYPE, STR)
#endif
//! @endcond
#endif /* OPENCV_FLANN_GENERAL_H_ */

View File

@ -0,0 +1,98 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_GROUND_TRUTH_H_
#define OPENCV_FLANN_GROUND_TRUTH_H_
//! @cond IGNORED
#include "dist.h"
#include "matrix.h"
namespace cvflann
{
template <typename Distance>
void find_nearest(const Matrix<typename Distance::ElementType>& dataset, typename Distance::ElementType* query, int* matches, int nn,
int skip = 0, Distance distance = Distance())
{
typedef typename Distance::ResultType DistanceType;
int n = nn + skip;
std::vector<int> match(n);
std::vector<DistanceType> dists(n);
dists[0] = distance(dataset[0], query, dataset.cols);
match[0] = 0;
int dcnt = 1;
for (size_t i=1; i<dataset.rows; ++i) {
DistanceType tmp = distance(dataset[i], query, dataset.cols);
if (dcnt<n) {
match[dcnt] = (int)i;
dists[dcnt++] = tmp;
}
else if (tmp < dists[dcnt-1]) {
dists[dcnt-1] = tmp;
match[dcnt-1] = (int)i;
}
int j = dcnt-1;
// bubble up
while (j>=1 && dists[j]<dists[j-1]) {
std::swap(dists[j],dists[j-1]);
std::swap(match[j],match[j-1]);
j--;
}
}
for (int i=0; i<nn; ++i) {
matches[i] = match[i+skip];
}
}
template <typename Distance>
void compute_ground_truth(const Matrix<typename Distance::ElementType>& dataset, const Matrix<typename Distance::ElementType>& testset, Matrix<int>& matches,
int skip=0, Distance d = Distance())
{
for (size_t i=0; i<testset.rows; ++i) {
find_nearest<Distance>(dataset, testset[i], matches[i], (int)matches.cols, skip, d);
}
}
}
//! @endcond
#endif //OPENCV_FLANN_GROUND_TRUTH_H_

View File

@ -0,0 +1,235 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_HDF5_H_
#define OPENCV_FLANN_HDF5_H_
//! @cond IGNORED
#include <hdf5.h>
#include "matrix.h"
namespace cvflann
{
namespace
{
template<typename T>
hid_t get_hdf5_type()
{
throw FLANNException("Unsupported type for IO operations");
}
template<>
hid_t get_hdf5_type<char>() { return H5T_NATIVE_CHAR; }
template<>
hid_t get_hdf5_type<unsigned char>() { return H5T_NATIVE_UCHAR; }
template<>
hid_t get_hdf5_type<short int>() { return H5T_NATIVE_SHORT; }
template<>
hid_t get_hdf5_type<unsigned short int>() { return H5T_NATIVE_USHORT; }
template<>
hid_t get_hdf5_type<int>() { return H5T_NATIVE_INT; }
template<>
hid_t get_hdf5_type<unsigned int>() { return H5T_NATIVE_UINT; }
template<>
hid_t get_hdf5_type<long>() { return H5T_NATIVE_LONG; }
template<>
hid_t get_hdf5_type<unsigned long>() { return H5T_NATIVE_ULONG; }
template<>
hid_t get_hdf5_type<float>() { return H5T_NATIVE_FLOAT; }
template<>
hid_t get_hdf5_type<double>() { return H5T_NATIVE_DOUBLE; }
}
#define CHECK_ERROR(x,y) if ((x)<0) throw FLANNException((y));
template<typename T>
void save_to_file(const cvflann::Matrix<T>& dataset, const String& filename, const String& name)
{
#if H5Eset_auto_vers == 2
H5Eset_auto( H5E_DEFAULT, NULL, NULL );
#else
H5Eset_auto( NULL, NULL );
#endif
herr_t status;
hid_t file_id;
file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
if (file_id < 0) {
file_id = H5Fcreate(filename.c_str(), H5F_ACC_EXCL, H5P_DEFAULT, H5P_DEFAULT);
}
CHECK_ERROR(file_id,"Error creating hdf5 file.");
hsize_t dimsf[2]; // dataset dimensions
dimsf[0] = dataset.rows;
dimsf[1] = dataset.cols;
hid_t space_id = H5Screate_simple(2, dimsf, NULL);
hid_t memspace_id = H5Screate_simple(2, dimsf, NULL);
hid_t dataset_id;
#if H5Dcreate_vers == 2
dataset_id = H5Dcreate2(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);
#else
dataset_id = H5Dcreate(file_id, name.c_str(), get_hdf5_type<T>(), space_id, H5P_DEFAULT);
#endif
if (dataset_id<0) {
#if H5Dopen_vers == 2
dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
#else
dataset_id = H5Dopen(file_id, name.c_str());
#endif
}
CHECK_ERROR(dataset_id,"Error creating or opening dataset in file.");
status = H5Dwrite(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, H5P_DEFAULT, dataset.data );
CHECK_ERROR(status, "Error writing to dataset");
H5Sclose(memspace_id);
H5Sclose(space_id);
H5Dclose(dataset_id);
H5Fclose(file_id);
}
template<typename T>
void load_from_file(cvflann::Matrix<T>& dataset, const String& filename, const String& name)
{
herr_t status;
hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT);
CHECK_ERROR(file_id,"Error opening hdf5 file.");
hid_t dataset_id;
#if H5Dopen_vers == 2
dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
#else
dataset_id = H5Dopen(file_id, name.c_str());
#endif
CHECK_ERROR(dataset_id,"Error opening dataset in file.");
hid_t space_id = H5Dget_space(dataset_id);
hsize_t dims_out[2];
H5Sget_simple_extent_dims(space_id, dims_out, NULL);
dataset = cvflann::Matrix<T>(new T[dims_out[0]*dims_out[1]], dims_out[0], dims_out[1]);
status = H5Dread(dataset_id, get_hdf5_type<T>(), H5S_ALL, H5S_ALL, H5P_DEFAULT, dataset[0]);
CHECK_ERROR(status, "Error reading dataset");
H5Sclose(space_id);
H5Dclose(dataset_id);
H5Fclose(file_id);
}
#ifdef HAVE_MPI
namespace mpi
{
/**
* Loads a the hyperslice corresponding to this processor from a hdf5 file.
* @param flann_dataset Dataset where the data is loaded
* @param filename HDF5 file name
* @param name Name of dataset inside file
*/
template<typename T>
void load_from_file(cvflann::Matrix<T>& dataset, const String& filename, const String& name)
{
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Info info = MPI_INFO_NULL;
int mpi_size, mpi_rank;
MPI_Comm_size(comm, &mpi_size);
MPI_Comm_rank(comm, &mpi_rank);
herr_t status;
hid_t plist_id = H5Pcreate(H5P_FILE_ACCESS);
H5Pset_fapl_mpio(plist_id, comm, info);
hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, plist_id);
CHECK_ERROR(file_id,"Error opening hdf5 file.");
H5Pclose(plist_id);
hid_t dataset_id;
#if H5Dopen_vers == 2
dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT);
#else
dataset_id = H5Dopen(file_id, name.c_str());
#endif
CHECK_ERROR(dataset_id,"Error opening dataset in file.");
hid_t space_id = H5Dget_space(dataset_id);
hsize_t dims[2];
H5Sget_simple_extent_dims(space_id, dims, NULL);
hsize_t count[2];
hsize_t offset[2];
hsize_t item_cnt = dims[0]/mpi_size+(dims[0]%mpi_size==0 ? 0 : 1);
hsize_t cnt = (mpi_rank<mpi_size-1 ? item_cnt : dims[0]-item_cnt*(mpi_size-1));
count[0] = cnt;
count[1] = dims[1];
offset[0] = mpi_rank*item_cnt;
offset[1] = 0;
hid_t memspace_id = H5Screate_simple(2,count,NULL);
H5Sselect_hyperslab(space_id, H5S_SELECT_SET, offset, NULL, count, NULL);
dataset.rows = count[0];
dataset.cols = count[1];
dataset.data = new T[dataset.rows*dataset.cols];
plist_id = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
status = H5Dread(dataset_id, get_hdf5_type<T>(), memspace_id, space_id, plist_id, dataset.data);
CHECK_ERROR(status, "Error reading dataset");
H5Pclose(plist_id);
H5Sclose(space_id);
H5Sclose(memspace_id);
H5Dclose(dataset_id);
H5Fclose(file_id);
}
}
#endif // HAVE_MPI
} // namespace cvflann::mpi
//! @endcond
#endif /* OPENCV_FLANN_HDF5_H_ */

View File

@ -0,0 +1,244 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_HEAP_H_
#define OPENCV_FLANN_HEAP_H_
//! @cond IGNORED
#include <algorithm>
#include <vector>
#include <unordered_map>
namespace cvflann
{
// TODO: Define x > y operator and use std::greater<T> instead
template <typename T>
struct greater
{
bool operator()(const T& x, const T& y) const
{
return y < x;
}
};
/**
* Priority Queue Implementation
*
* The priority queue is implemented with a heap. A heap is a complete
* (full) binary tree in which each parent is less than both of its
* children, but the order of the children is unspecified.
*/
template <typename T>
class Heap
{
/**
* Storage array for the heap.
* Type T must be comparable.
*/
std::vector<T> heap;
public:
/**
* \brief Constructs a heap with a pre-allocated capacity
*
* \param capacity heap maximum capacity
*/
Heap(const int capacity)
{
reserve(capacity);
}
/**
* \brief Move-constructs a heap from an external vector
*
* \param vec external vector
*/
Heap(std::vector<T>&& vec)
: heap(std::move(vec))
{
std::make_heap(heap.begin(), heap.end(), greater<T>());
}
/**
*
* \returns heap size
*/
int size() const
{
return (int)heap.size();
}
/**
*
* \returns heap capacity
*/
int capacity() const
{
return (int)heap.capacity();
}
/**
* \brief Tests if the heap is empty
*
* \returns true is heap empty, false otherwise
*/
bool empty()
{
return heap.empty();
}
/**
* \brief Clears the heap.
*/
void clear()
{
heap.clear();
}
/**
* \brief Sets the heap maximum capacity.
*
* \param capacity heap maximum capacity
*/
void reserve(const int capacity)
{
heap.reserve(capacity);
}
/**
* \brief Inserts a new element in the heap.
*
* We select the next empty leaf node, and then keep moving any larger
* parents down until the right location is found to store this element.
*
* \param value the new element to be inserted in the heap
*/
void insert(T value)
{
/* If heap is full, then return without adding this element. */
if (size() == capacity()) {
return;
}
heap.push_back(value);
std::push_heap(heap.begin(), heap.end(), greater<T>());
}
/**
* \brief Returns the node of minimum value from the heap (top of the heap).
*
* \param[out] value parameter used to return the min element
* \returns false if heap empty
*/
bool popMin(T& value)
{
if (empty()) {
return false;
}
value = heap[0];
std::pop_heap(heap.begin(), heap.end(), greater<T>());
heap.pop_back();
return true; /* Return old last node. */
}
/**
* \brief Returns a shared heap for the given memory pool ID.
*
* It constructs the heap if it does not already exists.
*
* \param poolId a user-chosen hashable ID for identifying the heap.
* For thread-safe operations, using current thread ID is a good choice.
* \param capacity heap maximum capacity
* \param iterThreshold remove heaps that were not reused for more than specified iterations count
* if iterThreshold value is less 2, it will be internally adjusted to twice the number of CPU threads
* \returns pointer to the heap
*/
template <typename HashableT>
static cv::Ptr<Heap<T>> getPooledInstance(
const HashableT& poolId, const int capacity, int iterThreshold = 0)
{
static cv::Mutex mutex;
const cv::AutoLock lock(mutex);
struct HeapMapValueType {
cv::Ptr<Heap<T>> heapPtr;
int iterCounter;
};
typedef std::unordered_map<HashableT, HeapMapValueType> HeapMapType;
static HeapMapType heapsPool;
typename HeapMapType::iterator heapIt = heapsPool.find(poolId);
if (heapIt == heapsPool.end())
{
// Construct the heap as it does not already exists
HeapMapValueType heapAndTimePair = {cv::makePtr<Heap<T>>(capacity), 0};
const std::pair<typename HeapMapType::iterator, bool>& emplaceResult = heapsPool.emplace(poolId, std::move(heapAndTimePair));
CV_CheckEQ(static_cast<int>(emplaceResult.second), 1, "Failed to insert the heap into its memory pool");
heapIt = emplaceResult.first;
}
else
{
CV_CheckEQ(heapIt->second.heapPtr.use_count(), 1, "Cannot modify a heap that is currently accessed by another caller");
heapIt->second.heapPtr->clear();
heapIt->second.heapPtr->reserve(capacity);
heapIt->second.iterCounter = 0;
}
if (iterThreshold <= 1) {
iterThreshold = 2 * cv::getNumThreads();
}
// Remove heaps that were not reused for more than given iterThreshold
typename HeapMapType::iterator cleanupIt = heapsPool.begin();
while (cleanupIt != heapsPool.end())
{
if (cleanupIt->second.iterCounter++ > iterThreshold)
{
CV_Assert(cleanupIt != heapIt);
cleanupIt = heapsPool.erase(cleanupIt);
continue;
}
++cleanupIt;
}
return heapIt->second.heapPtr;
}
};
}
//! @endcond
#endif //OPENCV_FLANN_HEAP_H_

View File

@ -0,0 +1,846 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_
//! @cond IGNORED
#include <algorithm>
#include <map>
#include <limits>
#include <cmath>
#include "general.h"
#include "nn_index.h"
#include "dist.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"
namespace cvflann
{
struct HierarchicalClusteringIndexParams : public IndexParams
{
HierarchicalClusteringIndexParams(int branching = 32,
flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
int trees = 4, int leaf_size = 100)
{
(*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL;
// The branching factor used in the hierarchical clustering
(*this)["branching"] = branching;
// Algorithm used for picking the initial cluster centers
(*this)["centers_init"] = centers_init;
// number of parallel trees to build
(*this)["trees"] = trees;
// maximum leaf size
(*this)["leaf_size"] = leaf_size;
}
};
/**
* Hierarchical index
*
* Contains a tree constructed through a hierarchical clustering
* and other information for indexing a set of points for nearest-neighbour matching.
*/
template <typename Distance>
class HierarchicalClusteringIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
private:
typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&);
/**
* The function used for choosing the cluster centers.
*/
centersAlgFunction chooseCenters;
/**
* Chooses the initial centers in the k-means clustering in a random manner.
*
* Params:
* k = number of centers
* vecs = the dataset of points
* indices = indices in the dataset
* indices_length = length of indices vector
*
*/
void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
{
UniqueRandom r(indices_length);
int index;
for (index=0; index<k; ++index) {
bool duplicate = true;
int rnd;
while (duplicate) {
duplicate = false;
rnd = r.next();
if (rnd<0) {
centers_length = index;
return;
}
centers[index] = dsindices[rnd];
for (int j=0; j<index; ++j) {
DistanceType sq = distance(dataset[centers[index]], dataset[centers[j]], dataset.cols);
if (sq<1e-16) {
duplicate = true;
}
}
}
}
centers_length = index;
}
/**
* Chooses the initial centers in the k-means using Gonzales' algorithm
* so that the centers are spaced apart from each other.
*
* Params:
* k = number of centers
* vecs = the dataset of points
* indices = indices in the dataset
* Returns:
*/
void chooseCentersGonzales(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
{
int n = indices_length;
int rnd = rand_int(n);
CV_DbgAssert(rnd >=0 && rnd < n);
centers[0] = dsindices[rnd];
int index;
for (index=1; index<k; ++index) {
int best_index = -1;
DistanceType best_val = 0;
for (int j=0; j<n; ++j) {
DistanceType dist = distance(dataset[centers[0]],dataset[dsindices[j]],dataset.cols);
for (int i=1; i<index; ++i) {
DistanceType tmp_dist = distance(dataset[centers[i]],dataset[dsindices[j]],dataset.cols);
if (tmp_dist<dist) {
dist = tmp_dist;
}
}
if (dist>best_val) {
best_val = dist;
best_index = j;
}
}
if (best_index!=-1) {
centers[index] = dsindices[best_index];
}
else {
break;
}
}
centers_length = index;
}
/**
* Chooses the initial centers in the k-means using the algorithm
* proposed in the KMeans++ paper:
* Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
*
* Implementation of this function was converted from the one provided in Arthur's code.
*
* Params:
* k = number of centers
* vecs = the dataset of points
* indices = indices in the dataset
* Returns:
*/
void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
{
int n = indices_length;
double currentPot = 0;
DistanceType* closestDistSq = new DistanceType[n];
// Choose one random center and set the closestDistSq values
int index = rand_int(n);
CV_DbgAssert(index >=0 && index < n);
centers[0] = dsindices[index];
// Computing distance^2 will have the advantage of even higher probability further to pick new centers
// far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
for (int i = 0; i < n; i++) {
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
currentPot += closestDistSq[i];
}
const int numLocalTries = 1;
// Choose each center
int centerCount;
for (centerCount = 1; centerCount < k; centerCount++) {
// Repeat several trials
double bestNewPot = -1;
int bestNewIndex = 0;
for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
// Choose our center - have to be slightly careful to return a valid answer even accounting
// for possible rounding errors
double randVal = rand_double(currentPot);
for (index = 0; index < n-1; index++) {
if (randVal <= closestDistSq[index]) break;
else randVal -= closestDistSq[index];
}
// Compute the new potential
double newPot = 0;
for (int i = 0; i < n; i++) {
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
}
// Store the best result
if ((bestNewPot < 0)||(newPot < bestNewPot)) {
bestNewPot = newPot;
bestNewIndex = index;
}
}
// Add the appropriate center
centers[centerCount] = dsindices[bestNewIndex];
currentPot = bestNewPot;
for (int i = 0; i < n; i++) {
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
}
}
centers_length = centerCount;
delete[] closestDistSq;
}
/**
* Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel):
* select the first point of the list as a candidate, then parse the points list. If another
* point is further than current candidate from the other centers, test if it is a good center
* of a local aggregation. If it is, replace current candidate by this point. And so on...
*
* Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points,
* this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex
* class that pick centers among existing points instead of computing the barycenters, there is a real
* improvement.
*
* Params:
* k = number of centers
* vecs = the dataset of points
* indices = indices in the dataset
* Returns:
*/
void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length)
{
const float kSpeedUpFactor = 1.3f;
int n = indices_length;
DistanceType* closestDistSq = new DistanceType[n];
// Choose one random center and set the closestDistSq values
int index = rand_int(n);
CV_DbgAssert(index >=0 && index < n);
centers[0] = dsindices[index];
for (int i = 0; i < n; i++) {
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
}
// Choose each center
int centerCount;
for (centerCount = 1; centerCount < k; centerCount++) {
// Repeat several trials
double bestNewPot = -1;
int bestNewIndex = 0;
DistanceType furthest = 0;
for (index = 0; index < n; index++) {
// We will test only the potential of the points further than current candidate
if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) {
// Compute the new potential
double newPot = 0;
for (int i = 0; i < n; i++) {
newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols)
, closestDistSq[i] );
}
// Store the best result
if ((bestNewPot < 0)||(newPot <= bestNewPot)) {
bestNewPot = newPot;
bestNewIndex = index;
furthest = closestDistSq[index];
}
}
}
// Add the appropriate center
centers[centerCount] = dsindices[bestNewIndex];
for (int i = 0; i < n; i++) {
closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols)
, closestDistSq[i] );
}
}
centers_length = centerCount;
delete[] closestDistSq;
}
public:
/**
* Index constructor
*
* Params:
* inputData = dataset with the input features
* params = parameters passed to the hierarchical k-means algorithm
*/
HierarchicalClusteringIndex(const Matrix<ElementType>& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(),
Distance d = Distance())
: dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d)
{
memoryCounter = 0;
size_ = dataset.rows;
veclen_ = dataset.cols;
branching_ = get_param(params,"branching",32);
centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM);
trees_ = get_param(params,"trees",4);
leaf_size_ = get_param(params,"leaf_size",100);
if (centers_init_==FLANN_CENTERS_RANDOM) {
chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom;
}
else if (centers_init_==FLANN_CENTERS_GONZALES) {
chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales;
}
else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp;
}
else if (centers_init_==FLANN_CENTERS_GROUPWISE) {
chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser;
}
else {
FLANN_THROW(cv::Error::StsError, "Unknown algorithm for choosing initial centers.");
}
root = new NodePtr[trees_];
indices = new int*[trees_];
for (int i=0; i<trees_; ++i) {
root[i] = NULL;
indices[i] = NULL;
}
}
HierarchicalClusteringIndex(const HierarchicalClusteringIndex&);
HierarchicalClusteringIndex& operator=(const HierarchicalClusteringIndex&);
/**
* Index destructor.
*
* Release the memory used by the index.
*/
virtual ~HierarchicalClusteringIndex()
{
if (root!=NULL) {
delete[] root;
}
if (indices!=NULL) {
free_indices();
delete[] indices;
}
}
/**
* Returns size of index.
*/
size_t size() const CV_OVERRIDE
{
return size_;
}
/**
* Returns the length of an index feature.
*/
size_t veclen() const CV_OVERRIDE
{
return veclen_;
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
int usedMemory() const CV_OVERRIDE
{
return pool.usedMemory+pool.wastedMemory+memoryCounter;
}
/**
* Builds the index
*/
void buildIndex() CV_OVERRIDE
{
if (branching_<2) {
FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2");
}
free_indices();
for (int i=0; i<trees_; ++i) {
indices[i] = new int[size_];
for (size_t j=0; j<size_; ++j) {
indices[i][j] = (int)j;
}
root[i] = pool.allocate<Node>();
computeClustering(root[i], indices[i], (int)size_, branching_,0);
}
}
flann_algorithm_t getType() const CV_OVERRIDE
{
return FLANN_INDEX_HIERARCHICAL;
}
void saveIndex(FILE* stream) CV_OVERRIDE
{
save_value(stream, branching_);
save_value(stream, trees_);
save_value(stream, centers_init_);
save_value(stream, leaf_size_);
save_value(stream, memoryCounter);
for (int i=0; i<trees_; ++i) {
save_value(stream, *indices[i], size_);
save_tree(stream, root[i], i);
}
}
void loadIndex(FILE* stream) CV_OVERRIDE
{
if (root!=NULL) {
delete[] root;
}
if (indices!=NULL) {
free_indices();
delete[] indices;
}
load_value(stream, branching_);
load_value(stream, trees_);
load_value(stream, centers_init_);
load_value(stream, leaf_size_);
load_value(stream, memoryCounter);
indices = new int*[trees_];
root = new NodePtr[trees_];
for (int i=0; i<trees_; ++i) {
indices[i] = new int[size_];
load_value(stream, *indices[i], size_);
load_tree(stream, root[i], i);
}
params["algorithm"] = getType();
params["branching"] = branching_;
params["trees"] = trees_;
params["centers_init"] = centers_init_;
params["leaf_size"] = leaf_size_;
}
/**
* Find set of nearest neighbors to vec. Their indices are stored inside
* the result object.
*
* Params:
* result = the result object in which the indices of the nearest-neighbors are stored
* vec = the vector for which to search the nearest neighbors
* searchParams = parameters that influence the search algorithm (checks)
*/
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
{
const int maxChecks = get_param(searchParams,"checks",32);
const bool explore_all_trees = get_param(searchParams,"explore_all_trees",false);
// Priority queue storing intermediate branches in the best-bin-first search
const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
std::vector<bool> checked(size_,false);
int checks = 0;
for (int i=0; i<trees_; ++i) {
findNN(root[i], result, vec, checks, maxChecks, heap, checked, explore_all_trees);
if (!explore_all_trees && (checks >= maxChecks) && result.full())
break;
}
BranchSt branch;
while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
NodePtr node = branch.node;
findNN(node, result, vec, checks, maxChecks, heap, checked, false);
}
CV_Assert(result.full());
}
IndexParams getParameters() const CV_OVERRIDE
{
return params;
}
private:
/**
* Structure representing a node in the hierarchical k-means tree.
*/
struct Node
{
/**
* The cluster center index
*/
int pivot;
/**
* The cluster size (number of points in the cluster)
*/
int size;
/**
* Child nodes (only for non-terminal nodes)
*/
Node** childs;
/**
* Node points (only for terminal nodes)
*/
int* indices;
/**
* Level
*/
int level;
};
typedef Node* NodePtr;
/**
* Alias definition for a nicer syntax.
*/
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
void save_tree(FILE* stream, NodePtr node, int num)
{
save_value(stream, *node);
if (node->childs==NULL) {
int indices_offset = (int)(node->indices - indices[num]);
save_value(stream, indices_offset);
}
else {
for(int i=0; i<branching_; ++i) {
save_tree(stream, node->childs[i], num);
}
}
}
void load_tree(FILE* stream, NodePtr& node, int num)
{
node = pool.allocate<Node>();
load_value(stream, *node);
if (node->childs==NULL) {
int indices_offset;
load_value(stream, indices_offset);
node->indices = indices[num] + indices_offset;
}
else {
node->childs = pool.allocate<NodePtr>(branching_);
for(int i=0; i<branching_; ++i) {
load_tree(stream, node->childs[i], num);
}
}
}
/**
* Release the inner elements of indices[]
*/
void free_indices()
{
if (indices!=NULL) {
for(int i=0; i<trees_; ++i) {
if (indices[i]!=NULL) {
delete[] indices[i];
indices[i] = NULL;
}
}
}
}
void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost)
{
cost = 0;
for (int i=0; i<indices_length; ++i) {
ElementType* point = dataset[dsindices[i]];
DistanceType dist = distance(point, dataset[centers[0]], veclen_);
labels[i] = 0;
for (int j=1; j<centers_length; ++j) {
DistanceType new_dist = distance(point, dataset[centers[j]], veclen_);
if (dist>new_dist) {
labels[i] = j;
dist = new_dist;
}
}
cost += dist;
}
}
/**
* The method responsible with actually doing the recursive hierarchical
* clustering
*
* Params:
* node = the node to cluster
* indices = indices of the points belonging to the current node
* branching = the branching factor to use in the clustering
*
* TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
*/
void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level)
{
node->size = indices_length;
node->level = level;
if (indices_length < leaf_size_) { // leaf node
node->indices = dsindices;
std::sort(node->indices,node->indices+indices_length);
node->childs = NULL;
return;
}
std::vector<int> centers(branching);
std::vector<int> labels(indices_length);
int centers_length;
(this->*chooseCenters)(branching, dsindices, indices_length, &centers[0], centers_length);
if (centers_length<branching) {
node->indices = dsindices;
std::sort(node->indices,node->indices+indices_length);
node->childs = NULL;
return;
}
// assign points to clusters
DistanceType cost;
computeLabels(dsindices, indices_length, &centers[0], centers_length, &labels[0], cost);
node->childs = pool.allocate<NodePtr>(branching);
int start = 0;
int end = start;
for (int i=0; i<branching; ++i) {
for (int j=0; j<indices_length; ++j) {
if (labels[j]==i) {
std::swap(dsindices[j],dsindices[end]);
std::swap(labels[j],labels[end]);
end++;
}
}
node->childs[i] = pool.allocate<Node>();
node->childs[i]->pivot = centers[i];
node->childs[i]->indices = NULL;
computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1);
start=end;
}
}
/**
* Performs one descent in the hierarchical k-means tree. The branches not
* visited are stored in a priority queue.
*
* Params:
* node = node to explore
* result = container for the k-nearest neighbors found
* vec = query points
* checks = how many points in the dataset have been checked so far
* maxChecks = maximum dataset points to checks
*/
void findNN(NodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
const cv::Ptr<Heap<BranchSt>>& heap, std::vector<bool>& checked, bool explore_all_trees = false)
{
if (node->childs==NULL) {
if (!explore_all_trees && (checks>=maxChecks) && result.full()) {
return;
}
for (int i=0; i<node->size; ++i) {
int index = node->indices[i];
if (!checked[index]) {
DistanceType dist = distance(dataset[index], vec, veclen_);
result.addPoint(dist, index);
checked[index] = true;
++checks;
}
}
}
else {
DistanceType* domain_distances = new DistanceType[branching_];
int best_index = 0;
domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_);
for (int i=1; i<branching_; ++i) {
domain_distances[i] = distance(vec, dataset[node->childs[i]->pivot], veclen_);
if (domain_distances[i]<domain_distances[best_index]) {
best_index = i;
}
}
for (int i=0; i<branching_; ++i) {
if (i!=best_index) {
heap->insert(BranchSt(node->childs[i],domain_distances[i]));
}
}
delete[] domain_distances;
findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked, explore_all_trees);
}
}
private:
/**
* The dataset used by this index
*/
const Matrix<ElementType> dataset;
/**
* Parameters used by this index
*/
IndexParams params;
/**
* Number of features in the dataset.
*/
size_t size_;
/**
* Length of each feature.
*/
size_t veclen_;
/**
* The root node in the tree.
*/
NodePtr* root;
/**
* Array of indices to vectors in the dataset.
*/
int** indices;
/**
* The distance
*/
Distance distance;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool;
/**
* Memory occupied by the index.
*/
int memoryCounter;
/** index parameters */
int branching_;
int trees_;
flann_centers_init_t centers_init_;
int leaf_size_;
};
}
//! @endcond
#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */

View File

@ -0,0 +1,321 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_INDEX_TESTING_H_
#define OPENCV_FLANN_INDEX_TESTING_H_
//! @cond IGNORED
#include <cstring>
#include <cmath>
#include "matrix.h"
#include "nn_index.h"
#include "result_set.h"
#include "logger.h"
#include "timer.h"
namespace cvflann
{
inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
{
int count = 0;
for (int i=0; i<n; ++i) {
for (int k=0; k<n; ++k) {
if (neighbors[i]==groundTruth[k]) {
count++;
break;
}
}
}
return count;
}
template <typename Distance>
typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
{
typedef typename Distance::ResultType DistanceType;
DistanceType ret = 0;
for (int i=0; i<n; ++i) {
DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
DistanceType num = distance(inputData[neighbors[i]], target, veclen);
if ((den==0)&&(num==0)) {
ret += 1;
}
else {
ret += num/den;
}
}
return ret;
}
template <typename Distance>
float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
{
typedef typename Distance::ResultType DistanceType;
if (matches.cols<size_t(nn)) {
Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
FLANN_THROW(cv::Error::StsError, "Ground truth is not computed for as many neighbors as requested");
}
KNNResultSet<DistanceType> resultSet(nn+skipMatches);
SearchParams searchParams(checks);
std::vector<int> indices(nn+skipMatches);
std::vector<DistanceType> dists(nn+skipMatches);
int* neighbors = &indices[skipMatches];
int correct = 0;
DistanceType distR = 0;
StartStopTimer t;
int repeats = 0;
while (t.value<0.2) {
repeats++;
t.start();
correct = 0;
distR = 0;
for (size_t i = 0; i < testData.rows; i++) {
resultSet.init(&indices[0], &dists[0]);
index.findNeighbors(resultSet, testData[i], searchParams);
correct += countCorrectMatches(neighbors,matches[i], nn);
distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
}
t.stop();
}
time = float(t.value/repeats);
float precicion = (float)correct/(nn*testData.rows);
dist = distR/(testData.rows*nn);
Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
checks, precicion, time, 1000.0 * time / testData.rows, dist);
return precicion;
}
template <typename Distance>
float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
{
typedef typename Distance::ResultType DistanceType;
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
Logger::info("---------------------------------------------------------\n");
float time = 0;
DistanceType dist = 0;
precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
return time;
}
template <typename Distance>
float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
{
typedef typename Distance::ResultType DistanceType;
const float SEARCH_EPS = 0.001f;
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
Logger::info("---------------------------------------------------------\n");
int c2 = 1;
float p2;
int c1 = 1;
//float p1;
float time;
DistanceType dist;
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
if (p2>precision) {
Logger::info("Got as close as I can\n");
checks = c2;
return time;
}
while (p2<precision) {
c1 = c2;
//p1 = p2;
c2 *=2;
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
}
int cx;
float realPrecision;
if (fabs(p2-precision)>SEARCH_EPS) {
Logger::info("Start linear estimation\n");
// after we got to values in the vecinity of the desired precision
// use linear approximation get a better estimation
cx = (c1+c2)/2;
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
while (fabs(realPrecision-precision)>SEARCH_EPS) {
if (realPrecision<precision) {
c1 = cx;
}
else {
c2 = cx;
}
cx = (c1+c2)/2;
if (cx==c1) {
Logger::info("Got as close as I can\n");
break;
}
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
}
c2 = cx;
p2 = realPrecision;
}
else {
Logger::info("No need for linear estimation\n");
cx = c2;
realPrecision = p2;
}
checks = cx;
return time;
}
template <typename Distance>
void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
{
typedef typename Distance::ResultType DistanceType;
const float SEARCH_EPS = 0.001;
// make sure precisions array is sorted
std::sort(precisions, precisions+precisions_length);
int pindex = 0;
float precision = precisions[pindex];
Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
Logger::info("---------------------------------------------------------\n");
int c2 = 1;
float p2;
int c1 = 1;
float p1;
float time;
DistanceType dist;
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
// if precision for 1 run down the tree is already
// better then some of the requested precisions, then
// skip those
while (precisions[pindex]<p2 && pindex<precisions_length) {
pindex++;
}
if (pindex==precisions_length) {
Logger::info("Got as close as I can\n");
return;
}
for (int i=pindex; i<precisions_length; ++i) {
precision = precisions[i];
while (p2<precision) {
c1 = c2;
p1 = p2;
c2 *=2;
p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
}
int cx;
float realPrecision;
if (fabs(p2-precision)>SEARCH_EPS) {
Logger::info("Start linear estimation\n");
// after we got to values in the vecinity of the desired precision
// use linear approximation get a better estimation
cx = (c1+c2)/2;
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
while (fabs(realPrecision-precision)>SEARCH_EPS) {
if (realPrecision<precision) {
c1 = cx;
}
else {
c2 = cx;
}
cx = (c1+c2)/2;
if (cx==c1) {
Logger::info("Got as close as I can\n");
break;
}
realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
}
c2 = cx;
p2 = realPrecision;
}
else {
Logger::info("No need for linear estimation\n");
cx = c2;
realPrecision = p2;
}
}
}
}
//! @endcond
#endif //OPENCV_FLANN_INDEX_TESTING_H_

View File

@ -0,0 +1,636 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_KDTREE_INDEX_H_
#define OPENCV_FLANN_KDTREE_INDEX_H_
//! @cond IGNORED
#include <algorithm>
#include <map>
#include <cstring>
#include "nn_index.h"
#include "dynamic_bitset.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"
namespace cvflann
{
struct KDTreeIndexParams : public IndexParams
{
KDTreeIndexParams(int trees = 4)
{
(*this)["algorithm"] = FLANN_INDEX_KDTREE;
(*this)["trees"] = trees;
}
};
/**
* Randomized kd-tree index
*
* Contains the k-d trees and other information for indexing a set of points
* for nearest-neighbor matching.
*/
template <typename Distance>
class KDTreeIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
/**
* KDTree constructor
*
* Params:
* inputData = dataset with the input features
* params = parameters passed to the kdtree algorithm
*/
KDTreeIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeIndexParams(),
Distance d = Distance() ) :
dataset_(inputData), index_params_(params), distance_(d)
{
size_ = dataset_.rows;
veclen_ = dataset_.cols;
trees_ = get_param(index_params_,"trees",4);
tree_roots_ = new NodePtr[trees_];
// Create a permutable array of indices to the input vectors.
vind_.resize(size_);
for (size_t i = 0; i < size_; ++i) {
vind_[i] = int(i);
}
mean_ = new DistanceType[veclen_];
var_ = new DistanceType[veclen_];
}
KDTreeIndex(const KDTreeIndex&);
KDTreeIndex& operator=(const KDTreeIndex&);
/**
* Standard destructor
*/
~KDTreeIndex()
{
if (tree_roots_!=NULL) {
delete[] tree_roots_;
}
delete[] mean_;
delete[] var_;
}
/**
* Builds the index
*/
void buildIndex() CV_OVERRIDE
{
/* Construct the randomized trees. */
for (int i = 0; i < trees_; i++) {
/* Randomize the order of vectors to allow for unbiased sampling. */
#ifndef OPENCV_FLANN_USE_STD_RAND
cv::randShuffle(vind_);
#else
std::random_shuffle(vind_.begin(), vind_.end());
#endif
tree_roots_[i] = divideTree(&vind_[0], int(size_) );
}
}
flann_algorithm_t getType() const CV_OVERRIDE
{
return FLANN_INDEX_KDTREE;
}
void saveIndex(FILE* stream) CV_OVERRIDE
{
save_value(stream, trees_);
for (int i=0; i<trees_; ++i) {
save_tree(stream, tree_roots_[i]);
}
}
void loadIndex(FILE* stream) CV_OVERRIDE
{
load_value(stream, trees_);
if (tree_roots_!=NULL) {
delete[] tree_roots_;
}
tree_roots_ = new NodePtr[trees_];
for (int i=0; i<trees_; ++i) {
load_tree(stream,tree_roots_[i]);
}
index_params_["algorithm"] = getType();
index_params_["trees"] = tree_roots_;
}
/**
* Returns size of index.
*/
size_t size() const CV_OVERRIDE
{
return size_;
}
/**
* Returns the length of an index feature.
*/
size_t veclen() const CV_OVERRIDE
{
return veclen_;
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
int usedMemory() const CV_OVERRIDE
{
return int(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory
}
/**
* Find set of nearest neighbors to vec. Their indices are stored inside
* the result object.
*
* Params:
* result = the result object in which the indices of the nearest-neighbors are stored
* vec = the vector for which to search the nearest neighbors
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
*/
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
{
const int maxChecks = get_param(searchParams,"checks", 32);
const float epsError = 1+get_param(searchParams,"eps",0.0f);
const bool explore_all_trees = get_param(searchParams,"explore_all_trees",false);
if (maxChecks==FLANN_CHECKS_UNLIMITED) {
getExactNeighbors(result, vec, epsError);
}
else {
getNeighbors(result, vec, maxChecks, epsError, explore_all_trees);
}
}
IndexParams getParameters() const CV_OVERRIDE
{
return index_params_;
}
private:
/*--------------------- Internal Data Structures --------------------------*/
struct Node
{
/**
* Dimension used for subdivision.
*/
int divfeat;
/**
* The values used for subdivision.
*/
DistanceType divval;
/**
* The child nodes.
*/
Node* child1, * child2;
};
typedef Node* NodePtr;
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
typedef BranchSt* Branch;
void save_tree(FILE* stream, NodePtr tree)
{
save_value(stream, *tree);
if (tree->child1!=NULL) {
save_tree(stream, tree->child1);
}
if (tree->child2!=NULL) {
save_tree(stream, tree->child2);
}
}
void load_tree(FILE* stream, NodePtr& tree)
{
tree = pool_.allocate<Node>();
load_value(stream, *tree);
if (tree->child1!=NULL) {
load_tree(stream, tree->child1);
}
if (tree->child2!=NULL) {
load_tree(stream, tree->child2);
}
}
/**
* Create a tree node that subdivides the list of vecs from vind[first]
* to vind[last]. The routine is called recursively on each sublist.
* Place a pointer to this new tree node in the location pTree.
*
* Params: pTree = the new node to create
* first = index of the first vector
* last = index of the last vector
*/
NodePtr divideTree(int* ind, int count)
{
NodePtr node = pool_.allocate<Node>(); // allocate memory
/* If too few exemplars remain, then make this a leaf node. */
if ( count == 1) {
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
node->divfeat = *ind; /* Store index of this vec. */
}
else {
int idx;
int cutfeat;
DistanceType cutval;
meanSplit(ind, count, idx, cutfeat, cutval);
node->divfeat = cutfeat;
node->divval = cutval;
node->child1 = divideTree(ind, idx);
node->child2 = divideTree(ind+idx, count-idx);
}
return node;
}
/**
* Choose which feature to use in order to subdivide this set of vectors.
* Make a random choice among those with the highest variance, and use
* its variance as the threshold value.
*/
void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval)
{
memset(mean_,0,veclen_*sizeof(DistanceType));
memset(var_,0,veclen_*sizeof(DistanceType));
/* Compute mean values. Only the first SAMPLE_MEAN values need to be
sampled to get a good estimate.
*/
int cnt = std::min((int)SAMPLE_MEAN+1, count);
for (int j = 0; j < cnt; ++j) {
ElementType* v = dataset_[ind[j]];
for (size_t k=0; k<veclen_; ++k) {
mean_[k] += v[k];
}
}
for (size_t k=0; k<veclen_; ++k) {
mean_[k] /= cnt;
}
/* Compute variances (no need to divide by count). */
for (int j = 0; j < cnt; ++j) {
ElementType* v = dataset_[ind[j]];
for (size_t k=0; k<veclen_; ++k) {
DistanceType dist = v[k] - mean_[k];
var_[k] += dist * dist;
}
}
/* Select one of the highest variance indices at random. */
cutfeat = selectDivision(var_);
cutval = mean_[cutfeat];
int lim1, lim2;
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
if (lim1>count/2) index = lim1;
else if (lim2<count/2) index = lim2;
else index = count/2;
/* If either list is empty, it means that all remaining features
* are identical. Split in the middle to maintain a balanced tree.
*/
if ((lim1==count)||(lim2==0)) index = count/2;
}
/**
* Select the top RAND_DIM largest values from v and return the index of
* one of these selected at random.
*/
int selectDivision(DistanceType* v)
{
int num = 0;
size_t topind[RAND_DIM];
/* Create a list of the indices of the top RAND_DIM values. */
for (size_t i = 0; i < veclen_; ++i) {
if ((num < RAND_DIM)||(v[i] > v[topind[num-1]])) {
/* Put this element at end of topind. */
if (num < RAND_DIM) {
topind[num++] = i; /* Add to list. */
}
else {
topind[num-1] = i; /* Replace last element. */
}
/* Bubble end value down to right location by repeated swapping. */
int j = num - 1;
while (j > 0 && v[topind[j]] > v[topind[j-1]]) {
std::swap(topind[j], topind[j-1]);
--j;
}
}
}
/* Select a random integer in range [0,num-1], and return that index. */
int rnd = rand_int(num);
return (int)topind[rnd];
}
/**
* Subdivide the list of points by a plane perpendicular on axe corresponding
* to the 'cutfeat' dimension at 'cutval' position.
*
* On return:
* dataset[ind[0..lim1-1]][cutfeat]<cutval
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
* dataset[ind[lim2..count]][cutfeat]>cutval
*/
void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
{
/* Move vector indices for left subtree to front of list. */
int left = 0;
int right = count-1;
for (;; ) {
while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
if (left>right) break;
std::swap(ind[left], ind[right]); ++left; --right;
}
lim1 = left;
right = count-1;
for (;; ) {
while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
if (left>right) break;
std::swap(ind[left], ind[right]); ++left; --right;
}
lim2 = left;
}
/**
* Performs an exact nearest neighbor search. The exact search performs a full
* traversal of the tree.
*/
void getExactNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, float epsError)
{
// checkID -= 1; /* Set a different unique ID for each search. */
if (trees_ > 1) {
fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
}
if (trees_>0) {
searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError);
}
CV_Assert(result.full());
}
/**
* Performs the approximate nearest-neighbor search. The search is approximate
* because the tree traversal is abandoned after a given number of descends in
* the tree.
*/
void getNeighbors(ResultSet<DistanceType>& result, const ElementType* vec,
int maxCheck, float epsError, bool explore_all_trees = false)
{
int i;
BranchSt branch;
int checkCount = 0;
DynamicBitset checked(size_);
// Priority queue storing intermediate branches in the best-bin-first search
const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
/* Search once through each tree down to root. */
for (i = 0; i < trees_; ++i) {
searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck,
epsError, heap, checked, explore_all_trees);
if (!explore_all_trees && (checkCount >= maxCheck) && result.full())
break;
}
/* Keep searching other branches from heap until finished. */
while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck,
epsError, heap, checked, false);
}
CV_Assert(result.full());
}
/**
* Search starting from a given node of the tree. Based on any mismatches at
* higher levels, all exemplars below this level must have a distance of
* at least "mindistsq".
*/
void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck,
float epsError, const cv::Ptr<Heap<BranchSt>>& heap, DynamicBitset& checked, bool explore_all_trees = false)
{
if (result_set.worstDist()<mindist) {
// printf("Ignoring branch, too far\n");
return;
}
/* If this is a leaf node, then do check and return. */
if ((node->child1 == NULL)&&(node->child2 == NULL)) {
/* Do not check same node more than once when searching multiple trees.
Once a vector is checked, we set its location in vind to the
current checkID.
*/
int index = node->divfeat;
if ( checked.test(index) ||
(!explore_all_trees && (checkCount>=maxCheck) && result_set.full()) ) {
return;
}
checked.set(index);
checkCount++;
DistanceType dist = distance_(dataset_[index], vec, veclen_);
result_set.addPoint(dist,index);
return;
}
/* Which child branch should be taken first? */
ElementType val = vec[node->divfeat];
DistanceType diff = val - node->divval;
NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
/* Create a branch record for the branch not taken. Add distance
of this feature boundary (we don't attempt to correct for any
use of this feature in a parent node, which is unlikely to
happen and would have only a small effect). Don't bother
adding more branches to heap after halfway point, as cost of
adding exceeds their value.
*/
DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
// if (2 * checkCount < maxCheck || !result.full()) {
if ((new_distsq*epsError < result_set.worstDist())|| !result_set.full()) {
heap->insert( BranchSt(otherChild, new_distsq) );
}
/* Call recursively to search next level down. */
searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked);
}
/**
* Performs an exact search in the tree starting from a node.
*/
void searchLevelExact(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError)
{
/* If this is a leaf node, then do check and return. */
if ((node->child1 == NULL)&&(node->child2 == NULL)) {
int index = node->divfeat;
DistanceType dist = distance_(dataset_[index], vec, veclen_);
result_set.addPoint(dist,index);
return;
}
/* Which child branch should be taken first? */
ElementType val = vec[node->divfeat];
DistanceType diff = val - node->divval;
NodePtr bestChild = (diff < 0) ? node->child1 : node->child2;
NodePtr otherChild = (diff < 0) ? node->child2 : node->child1;
/* Create a branch record for the branch not taken. Add distance
of this feature boundary (we don't attempt to correct for any
use of this feature in a parent node, which is unlikely to
happen and would have only a small effect). Don't bother
adding more branches to heap after halfway point, as cost of
adding exceeds their value.
*/
DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat);
/* Call recursively to search next level down. */
searchLevelExact(result_set, vec, bestChild, mindist, epsError);
if (new_distsq*epsError<=result_set.worstDist()) {
searchLevelExact(result_set, vec, otherChild, new_distsq, epsError);
}
}
private:
enum
{
/**
* To improve efficiency, only SAMPLE_MEAN random values are used to
* compute the mean and variance at each level when building a tree.
* A value of 100 seems to perform as well as using all values.
*/
SAMPLE_MEAN = 100,
/**
* Top random dimensions to consider
*
* When creating random trees, the dimension on which to subdivide is
* selected at random from among the top RAND_DIM dimensions with the
* highest variance. A value of 5 works well.
*/
RAND_DIM=5
};
/**
* Number of randomized trees that are used
*/
int trees_;
/**
* Array of indices to vectors in the dataset.
*/
std::vector<int> vind_;
/**
* The dataset used by this index
*/
const Matrix<ElementType> dataset_;
IndexParams index_params_;
size_t size_;
size_t veclen_;
DistanceType* mean_;
DistanceType* var_;
/**
* Array of k-d trees used to find neighbours.
*/
NodePtr* tree_roots_;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool_;
Distance distance_;
}; // class KDTreeForest
}
//! @endcond
#endif //OPENCV_FLANN_KDTREE_INDEX_H_

View File

@ -0,0 +1,645 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
//! @cond IGNORED
#include <algorithm>
#include <map>
#include <cstring>
#include "nn_index.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"
namespace cvflann
{
struct KDTreeSingleIndexParams : public IndexParams
{
KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
{
(*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
(*this)["leaf_max_size"] = leaf_max_size;
(*this)["reorder"] = reorder;
(*this)["dim"] = dim;
}
};
/**
* Randomized kd-tree index
*
* Contains the k-d trees and other information for indexing a set of points
* for nearest-neighbor matching.
*/
template <typename Distance>
class KDTreeSingleIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
/**
* KDTree constructor
*
* Params:
* inputData = dataset with the input features
* params = parameters passed to the kdtree algorithm
*/
KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
Distance d = Distance() ) :
dataset_(inputData), index_params_(params), distance_(d)
{
size_ = dataset_.rows;
dim_ = dataset_.cols;
root_node_ = 0;
int dim_param = get_param(params,"dim",-1);
if (dim_param>0) dim_ = dim_param;
leaf_max_size_ = get_param(params,"leaf_max_size",10);
reorder_ = get_param(params,"reorder",true);
// Create a permutable array of indices to the input vectors.
vind_.resize(size_);
for (size_t i = 0; i < size_; i++) {
vind_[i] = (int)i;
}
}
KDTreeSingleIndex(const KDTreeSingleIndex&);
KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
/**
* Standard destructor
*/
~KDTreeSingleIndex()
{
if (reorder_) delete[] data_.data;
}
/**
* Builds the index
*/
void buildIndex() CV_OVERRIDE
{
computeBoundingBox(root_bbox_);
root_node_ = divideTree(0, (int)size_, root_bbox_ ); // construct the tree
if (reorder_) {
delete[] data_.data;
data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
for (size_t i=0; i<size_; ++i) {
for (size_t j=0; j<dim_; ++j) {
data_[i][j] = dataset_[vind_[i]][j];
}
}
}
else {
data_ = dataset_;
}
}
flann_algorithm_t getType() const CV_OVERRIDE
{
return FLANN_INDEX_KDTREE_SINGLE;
}
void saveIndex(FILE* stream) CV_OVERRIDE
{
save_value(stream, size_);
save_value(stream, dim_);
save_value(stream, root_bbox_);
save_value(stream, reorder_);
save_value(stream, leaf_max_size_);
save_value(stream, vind_);
if (reorder_) {
save_value(stream, data_);
}
save_tree(stream, root_node_);
}
void loadIndex(FILE* stream) CV_OVERRIDE
{
load_value(stream, size_);
load_value(stream, dim_);
load_value(stream, root_bbox_);
load_value(stream, reorder_);
load_value(stream, leaf_max_size_);
load_value(stream, vind_);
if (reorder_) {
load_value(stream, data_);
}
else {
data_ = dataset_;
}
load_tree(stream, root_node_);
index_params_["algorithm"] = getType();
index_params_["leaf_max_size"] = leaf_max_size_;
index_params_["reorder"] = reorder_;
}
/**
* Returns size of index.
*/
size_t size() const CV_OVERRIDE
{
return size_;
}
/**
* Returns the length of an index feature.
*/
size_t veclen() const CV_OVERRIDE
{
return dim_;
}
/**
* Computes the inde memory usage
* Returns: memory used by the index
*/
int usedMemory() const CV_OVERRIDE
{
return (int)(pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int)); // pool memory and vind array memory
}
/**
* \brief Perform k-nearest neighbor search
* \param[in] queries The query points for which to find the nearest neighbors
* \param[out] indices The indices of the nearest neighbors found
* \param[out] dists Distances to the nearest neighbors found
* \param[in] knn Number of nearest neighbors to return
* \param[in] params Search parameters
*/
void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) CV_OVERRIDE
{
CV_Assert(queries.cols == veclen());
CV_Assert(indices.rows >= queries.rows);
CV_Assert(dists.rows >= queries.rows);
CV_Assert(int(indices.cols) >= knn);
CV_Assert(int(dists.cols) >= knn);
KNNSimpleResultSet<DistanceType> resultSet(knn);
for (size_t i = 0; i < queries.rows; i++) {
resultSet.init(indices[i], dists[i]);
findNeighbors(resultSet, queries[i], params);
}
}
IndexParams getParameters() const CV_OVERRIDE
{
return index_params_;
}
/**
* Find set of nearest neighbors to vec. Their indices are stored inside
* the result object.
*
* Params:
* result = the result object in which the indices of the nearest-neighbors are stored
* vec = the vector for which to search the nearest neighbors
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
*/
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
{
float epsError = 1+get_param(searchParams,"eps",0.0f);
std::vector<DistanceType> dists(dim_,0);
DistanceType distsq = computeInitialDistances(vec, dists);
searchLevel(result, vec, root_node_, distsq, dists, epsError);
}
private:
/*--------------------- Internal Data Structures --------------------------*/
struct Node
{
/**
* Indices of points in leaf node
*/
int left, right;
/**
* Dimension used for subdivision.
*/
int divfeat;
/**
* The values used for subdivision.
*/
DistanceType divlow, divhigh;
/**
* The child nodes.
*/
Node* child1, * child2;
};
typedef Node* NodePtr;
struct Interval
{
DistanceType low, high;
};
typedef std::vector<Interval> BoundingBox;
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
typedef BranchSt* Branch;
void save_tree(FILE* stream, NodePtr tree)
{
save_value(stream, *tree);
if (tree->child1!=NULL) {
save_tree(stream, tree->child1);
}
if (tree->child2!=NULL) {
save_tree(stream, tree->child2);
}
}
void load_tree(FILE* stream, NodePtr& tree)
{
tree = pool_.allocate<Node>();
load_value(stream, *tree);
if (tree->child1!=NULL) {
load_tree(stream, tree->child1);
}
if (tree->child2!=NULL) {
load_tree(stream, tree->child2);
}
}
void computeBoundingBox(BoundingBox& bbox)
{
bbox.resize(dim_);
for (size_t i=0; i<dim_; ++i) {
bbox[i].low = (DistanceType)dataset_[0][i];
bbox[i].high = (DistanceType)dataset_[0][i];
}
for (size_t k=1; k<dataset_.rows; ++k) {
for (size_t i=0; i<dim_; ++i) {
if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
}
}
}
/**
* Create a tree node that subdivides the list of vecs from vind[first]
* to vind[last]. The routine is called recursively on each sublist.
* Place a pointer to this new tree node in the location pTree.
*
* Params: pTree = the new node to create
* first = index of the first vector
* last = index of the last vector
*/
NodePtr divideTree(int left, int right, BoundingBox& bbox)
{
NodePtr node = pool_.allocate<Node>(); // allocate memory
/* If too few exemplars remain, then make this a leaf node. */
if ( (right-left) <= leaf_max_size_) {
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
node->left = left;
node->right = right;
// compute bounding-box of leaf points
for (size_t i=0; i<dim_; ++i) {
bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
}
for (int k=left+1; k<right; ++k) {
for (size_t i=0; i<dim_; ++i) {
if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
}
}
}
else {
int idx;
int cutfeat;
DistanceType cutval;
middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
node->divfeat = cutfeat;
BoundingBox left_bbox(bbox);
left_bbox[cutfeat].high = cutval;
node->child1 = divideTree(left, left+idx, left_bbox);
BoundingBox right_bbox(bbox);
right_bbox[cutfeat].low = cutval;
node->child2 = divideTree(left+idx, right, right_bbox);
node->divlow = left_bbox[cutfeat].high;
node->divhigh = right_bbox[cutfeat].low;
for (size_t i=0; i<dim_; ++i) {
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
}
}
return node;
}
void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
{
min_elem = dataset_[ind[0]][dim];
max_elem = dataset_[ind[0]][dim];
for (int i=1; i<count; ++i) {
ElementType val = dataset_[ind[i]][dim];
if (val<min_elem) min_elem = val;
if (val>max_elem) max_elem = val;
}
}
void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
{
// find the largest span from the approximate bounding box
ElementType max_span = bbox[0].high-bbox[0].low;
cutfeat = 0;
cutval = (bbox[0].high+bbox[0].low)/2;
for (size_t i=1; i<dim_; ++i) {
ElementType span = bbox[i].high-bbox[i].low;
if (span>max_span) {
max_span = span;
cutfeat = i;
cutval = (bbox[i].high+bbox[i].low)/2;
}
}
// compute exact span on the found dimension
ElementType min_elem, max_elem;
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
cutval = (min_elem+max_elem)/2;
max_span = max_elem - min_elem;
// check if a dimension of a largest span exists
size_t k = cutfeat;
for (size_t i=0; i<dim_; ++i) {
if (i==k) continue;
ElementType span = bbox[i].high-bbox[i].low;
if (span>max_span) {
computeMinMax(ind, count, i, min_elem, max_elem);
span = max_elem - min_elem;
if (span>max_span) {
max_span = span;
cutfeat = i;
cutval = (min_elem+max_elem)/2;
}
}
}
int lim1, lim2;
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
if (lim1>count/2) index = lim1;
else if (lim2<count/2) index = lim2;
else index = count/2;
}
void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
{
const float EPS=0.00001f;
DistanceType max_span = bbox[0].high-bbox[0].low;
for (size_t i=1; i<dim_; ++i) {
DistanceType span = bbox[i].high-bbox[i].low;
if (span>max_span) {
max_span = span;
}
}
DistanceType max_spread = -1;
cutfeat = 0;
for (size_t i=0; i<dim_; ++i) {
DistanceType span = bbox[i].high-bbox[i].low;
if (span>(DistanceType)((1-EPS)*max_span)) {
ElementType min_elem, max_elem;
computeMinMax(ind, count, (int)i, min_elem, max_elem);
DistanceType spread = (DistanceType)(max_elem-min_elem);
if (spread>max_spread) {
cutfeat = (int)i;
max_spread = spread;
}
}
}
// split in the middle
DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
ElementType min_elem, max_elem;
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
if (split_val<min_elem) cutval = (DistanceType)min_elem;
else if (split_val>max_elem) cutval = (DistanceType)max_elem;
else cutval = split_val;
int lim1, lim2;
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
if (lim1>count/2) index = lim1;
else if (lim2<count/2) index = lim2;
else index = count/2;
}
/**
* Subdivide the list of points by a plane perpendicular on axe corresponding
* to the 'cutfeat' dimension at 'cutval' position.
*
* On return:
* dataset[ind[0..lim1-1]][cutfeat]<cutval
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
* dataset[ind[lim2..count]][cutfeat]>cutval
*/
void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
{
/* Move vector indices for left subtree to front of list. */
int left = 0;
int right = count-1;
for (;; ) {
while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
if (left>right) break;
std::swap(ind[left], ind[right]); ++left; --right;
}
/* If either list is empty, it means that all remaining features
* are identical. Split in the middle to maintain a balanced tree.
*/
lim1 = left;
right = count-1;
for (;; ) {
while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
if (left>right) break;
std::swap(ind[left], ind[right]); ++left; --right;
}
lim2 = left;
}
DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
{
DistanceType distsq = 0.0;
for (size_t i = 0; i < dim_; ++i) {
if (vec[i] < root_bbox_[i].low) {
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i);
distsq += dists[i];
}
if (vec[i] > root_bbox_[i].high) {
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i);
distsq += dists[i];
}
}
return distsq;
}
/**
* Performs an exact search in the tree starting from a node.
*/
void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
std::vector<DistanceType>& dists, const float epsError)
{
/* If this is a leaf node, then do check and return. */
if ((node->child1 == NULL)&&(node->child2 == NULL)) {
DistanceType worst_dist = result_set.worstDist();
if (reorder_) {
for (int i=node->left; i<node->right; ++i) {
DistanceType dist = distance_(vec, data_[i], dim_, worst_dist);
if (dist<worst_dist) {
result_set.addPoint(dist,vind_[i]);
}
}
} else {
for (int i=node->left; i<node->right; ++i) {
DistanceType dist = distance_(vec, data_[vind_[i]], dim_, worst_dist);
if (dist<worst_dist) {
result_set.addPoint(dist,vind_[i]);
}
}
}
return;
}
/* Which child branch should be taken first? */
int idx = node->divfeat;
ElementType val = vec[idx];
DistanceType diff1 = val - node->divlow;
DistanceType diff2 = val - node->divhigh;
NodePtr bestChild;
NodePtr otherChild;
DistanceType cut_dist;
if ((diff1+diff2)<0) {
bestChild = node->child1;
otherChild = node->child2;
cut_dist = distance_.accum_dist(val, node->divhigh, idx);
}
else {
bestChild = node->child2;
otherChild = node->child1;
cut_dist = distance_.accum_dist( val, node->divlow, idx);
}
/* Call recursively to search next level down. */
searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
DistanceType dst = dists[idx];
mindistsq = mindistsq + cut_dist - dst;
dists[idx] = cut_dist;
if (mindistsq*epsError<=result_set.worstDist()) {
searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
}
dists[idx] = dst;
}
private:
/**
* The dataset used by this index
*/
const Matrix<ElementType> dataset_;
IndexParams index_params_;
int leaf_max_size_;
bool reorder_;
/**
* Array of indices to vectors in the dataset.
*/
std::vector<int> vind_;
Matrix<ElementType> data_;
size_t size_;
size_t dim_;
/**
* Array of k-d trees used to find neighbours.
*/
NodePtr root_node_;
BoundingBox root_bbox_;
/**
* Pooled memory allocator.
*
* Using a pooled memory allocator is more efficient
* than allocating memory directly when there is a large
* number small of memory allocations.
*/
PooledAllocator pool_;
Distance distance_;
}; // class KDTree
}
//! @endcond
#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,135 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_LINEAR_INDEX_H_
#define OPENCV_FLANN_LINEAR_INDEX_H_
//! @cond IGNORED
#include "nn_index.h"
namespace cvflann
{
struct LinearIndexParams : public IndexParams
{
LinearIndexParams()
{
(* this)["algorithm"] = FLANN_INDEX_LINEAR;
}
};
template <typename Distance>
class LinearIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
LinearIndex(const Matrix<ElementType>& inputData, const IndexParams& params = LinearIndexParams(),
Distance d = Distance()) :
dataset_(inputData), index_params_(params), distance_(d)
{
}
LinearIndex(const LinearIndex&);
LinearIndex& operator=(const LinearIndex&);
flann_algorithm_t getType() const CV_OVERRIDE
{
return FLANN_INDEX_LINEAR;
}
size_t size() const CV_OVERRIDE
{
return dataset_.rows;
}
size_t veclen() const CV_OVERRIDE
{
return dataset_.cols;
}
int usedMemory() const CV_OVERRIDE
{
return 0;
}
void buildIndex() CV_OVERRIDE
{
/* nothing to do here for linear search */
}
void saveIndex(FILE*) CV_OVERRIDE
{
/* nothing to do here for linear search */
}
void loadIndex(FILE*) CV_OVERRIDE
{
/* nothing to do here for linear search */
index_params_["algorithm"] = getType();
}
void findNeighbors(ResultSet<DistanceType>& resultSet, const ElementType* vec, const SearchParams& /*searchParams*/) CV_OVERRIDE
{
ElementType* data = dataset_.data;
for (size_t i = 0; i < dataset_.rows; ++i, data += dataset_.cols) {
DistanceType dist = distance_(data, vec, dataset_.cols);
resultSet.addPoint(dist, (int)i);
}
}
IndexParams getParameters() const CV_OVERRIDE
{
return index_params_;
}
private:
/** The dataset */
const Matrix<ElementType> dataset_;
/** Index parameters */
IndexParams index_params_;
/** Index distance */
Distance distance_;
};
}
//! @endcond
#endif // OPENCV_FLANN_LINEAR_INDEX_H_

View File

@ -0,0 +1,139 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_LOGGER_H
#define OPENCV_FLANN_LOGGER_H
//! @cond IGNORED
#include <stdio.h>
#include <stdarg.h>
#include "defines.h"
namespace cvflann
{
class Logger
{
Logger() : stream(stdout), logLevel(FLANN_LOG_WARN) {}
~Logger()
{
if ((stream!=NULL)&&(stream!=stdout)) {
fclose(stream);
}
}
static Logger& instance()
{
static Logger logger;
return logger;
}
void _setDestination(const char* name)
{
if (name==NULL) {
stream = stdout;
}
else {
#ifdef _MSC_VER
if (fopen_s(&stream, name, "w") != 0)
stream = NULL;
#else
stream = fopen(name,"w");
#endif
if (stream == NULL) {
stream = stdout;
}
}
}
int _log(int level, const char* fmt, va_list arglist)
{
if (level > logLevel ) return -1;
int ret = vfprintf(stream, fmt, arglist);
return ret;
}
public:
/**
* Sets the logging level. All messages with lower priority will be ignored.
* @param level Logging level
*/
static void setLevel(int level) { instance().logLevel = level; }
/**
* Sets the logging destination
* @param name Filename or NULL for console
*/
static void setDestination(const char* name) { instance()._setDestination(name); }
/**
* Print log message
* @param level Log level
* @param fmt Message format
* @return
*/
static int log(int level, const char* fmt, ...)
{
va_list arglist;
va_start(arglist, fmt);
int ret = instance()._log(level,fmt,arglist);
va_end(arglist);
return ret;
}
#define LOG_METHOD(NAME,LEVEL) \
static int NAME(const char* fmt, ...) \
{ \
va_list ap; \
va_start(ap, fmt); \
int ret = instance()._log(LEVEL, fmt, ap); \
va_end(ap); \
return ret; \
}
LOG_METHOD(fatal, FLANN_LOG_FATAL)
LOG_METHOD(error, FLANN_LOG_ERROR)
LOG_METHOD(warn, FLANN_LOG_WARN)
LOG_METHOD(info, FLANN_LOG_INFO)
private:
FILE* stream;
int logLevel;
};
}
//! @endcond
#endif //OPENCV_FLANN_LOGGER_H

View File

@ -0,0 +1,403 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
/***********************************************************************
* Author: Vincent Rabaud
*************************************************************************/
#ifndef OPENCV_FLANN_LSH_INDEX_H_
#define OPENCV_FLANN_LSH_INDEX_H_
//! @cond IGNORED
#include <algorithm>
#include <cstring>
#include <map>
#include <vector>
#include "nn_index.h"
#include "matrix.h"
#include "result_set.h"
#include "heap.h"
#include "lsh_table.h"
#include "allocator.h"
#include "random.h"
#include "saving.h"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4702) //disable unreachable code
#endif
namespace cvflann
{
struct LshIndexParams : public IndexParams
{
LshIndexParams(int table_number = 12, int key_size = 20, int multi_probe_level = 2)
{
(*this)["algorithm"] = FLANN_INDEX_LSH;
// The number of hash tables to use
(*this)["table_number"] = table_number;
// The length of the key in the hash tables
(*this)["key_size"] = key_size;
// Number of levels to use in multi-probe (0 for standard LSH)
(*this)["multi_probe_level"] = multi_probe_level;
}
};
/**
* Locality-sensitive hashing index
*
* Contains the tables and other information for indexing a set of points
* for nearest-neighbor matching.
*/
template<typename Distance>
class LshIndex : public NNIndex<Distance>
{
public:
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
/** Constructor
* @param input_data dataset with the input features
* @param params parameters passed to the LSH algorithm
* @param d the distance used
*/
LshIndex(const Matrix<ElementType>& input_data, const IndexParams& params = LshIndexParams(),
Distance d = Distance()) :
dataset_(input_data), index_params_(params), distance_(d)
{
// cv::flann::IndexParams sets integer params as 'int', so it is used with get_param
// in place of 'unsigned int'
table_number_ = get_param(index_params_,"table_number",12);
key_size_ = get_param(index_params_,"key_size",20);
multi_probe_level_ = get_param(index_params_,"multi_probe_level",2);
feature_size_ = (unsigned)dataset_.cols;
fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_);
}
LshIndex(const LshIndex&);
LshIndex& operator=(const LshIndex&);
/**
* Builds the index
*/
void buildIndex() CV_OVERRIDE
{
tables_.resize(table_number_);
for (int i = 0; i < table_number_; ++i) {
lsh::LshTable<ElementType>& table = tables_[i];
table = lsh::LshTable<ElementType>(feature_size_, key_size_);
// Add the features to the table
table.add(dataset_);
}
}
flann_algorithm_t getType() const CV_OVERRIDE
{
return FLANN_INDEX_LSH;
}
void saveIndex(FILE* stream) CV_OVERRIDE
{
save_value(stream,table_number_);
save_value(stream,key_size_);
save_value(stream,multi_probe_level_);
save_value(stream, dataset_);
}
void loadIndex(FILE* stream) CV_OVERRIDE
{
load_value(stream, table_number_);
load_value(stream, key_size_);
load_value(stream, multi_probe_level_);
load_value(stream, dataset_);
// Building the index is so fast we can afford not storing it
buildIndex();
index_params_["algorithm"] = getType();
index_params_["table_number"] = table_number_;
index_params_["key_size"] = key_size_;
index_params_["multi_probe_level"] = multi_probe_level_;
}
/**
* Returns size of index.
*/
size_t size() const CV_OVERRIDE
{
return dataset_.rows;
}
/**
* Returns the length of an index feature.
*/
size_t veclen() const CV_OVERRIDE
{
return feature_size_;
}
/**
* Computes the index memory usage
* Returns: memory used by the index
*/
int usedMemory() const CV_OVERRIDE
{
return (int)(dataset_.rows * sizeof(int));
}
IndexParams getParameters() const CV_OVERRIDE
{
return index_params_;
}
/**
* \brief Perform k-nearest neighbor search
* \param[in] queries The query points for which to find the nearest neighbors
* \param[out] indices The indices of the nearest neighbors found
* \param[out] dists Distances to the nearest neighbors found
* \param[in] knn Number of nearest neighbors to return
* \param[in] params Search parameters
*/
virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params) CV_OVERRIDE
{
CV_Assert(queries.cols == veclen());
CV_Assert(indices.rows >= queries.rows);
CV_Assert(dists.rows >= queries.rows);
CV_Assert(int(indices.cols) >= knn);
CV_Assert(int(dists.cols) >= knn);
KNNUniqueResultSet<DistanceType> resultSet(knn);
for (size_t i = 0; i < queries.rows; i++) {
resultSet.clear();
std::fill_n(indices[i], knn, -1);
std::fill_n(dists[i], knn, std::numeric_limits<DistanceType>::max());
findNeighbors(resultSet, queries[i], params);
if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
else resultSet.copy(indices[i], dists[i], knn);
}
}
/**
* Find set of nearest neighbors to vec. Their indices are stored inside
* the result object.
*
* Params:
* result = the result object in which the indices of the nearest-neighbors are stored
* vec = the vector for which to search the nearest neighbors
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
*/
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& /*searchParams*/) CV_OVERRIDE
{
getNeighbors(vec, result);
}
private:
/** Defines the comparator on score and index
*/
typedef std::pair<float, unsigned int> ScoreIndexPair;
struct SortScoreIndexPairOnSecond
{
bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const
{
return left.second < right.second;
}
};
/** Fills the different xor masks to use when getting the neighbors in multi-probe LSH
* @param key the key we build neighbors from
* @param lowest_index the lowest index of the bit set
* @param level the multi-probe level we are at
* @param xor_masks all the xor mask
*/
void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level,
std::vector<lsh::BucketKey>& xor_masks)
{
xor_masks.push_back(key);
if (level == 0) return;
for (int index = lowest_index - 1; index >= 0; --index) {
// Create a new key
lsh::BucketKey new_key = key | (1 << index);
fill_xor_mask(new_key, index, level - 1, xor_masks);
}
}
/** Performs the approximate nearest-neighbor search.
* @param vec the feature to analyze
* @param do_radius flag indicating if we check the radius too
* @param radius the radius if it is a radius search
* @param do_k flag indicating if we limit the number of nn
* @param k_nn the number of nearest neighbors
* @param checked_average used for debugging
*/
void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn,
float& /*checked_average*/)
{
static std::vector<ScoreIndexPair> score_index_heap;
if (do_k) {
unsigned int worst_score = std::numeric_limits<unsigned int>::max();
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
for (; table != table_end; ++table) {
size_t key = table->getKey(vec);
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
for (; xor_mask != xor_mask_end; ++xor_mask) {
size_t sub_key = key ^ (*xor_mask);
const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
if (bucket == 0) continue;
// Go over each descriptor index
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
DistanceType hamming_distance;
// Process the rest of the candidates
for (; training_index < last_training_index; ++training_index) {
hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
if (hamming_distance < worst_score) {
// Insert the new element
score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
std::push_heap(score_index_heap.begin(), score_index_heap.end());
if (score_index_heap.size() > (unsigned int)k_nn) {
// Remove the highest distance value as we have too many elements
std::pop_heap(score_index_heap.begin(), score_index_heap.end());
score_index_heap.pop_back();
// Keep track of the worst score
worst_score = score_index_heap.front().first;
}
}
}
}
}
}
else {
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
for (; table != table_end; ++table) {
size_t key = table->getKey(vec);
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
for (; xor_mask != xor_mask_end; ++xor_mask) {
size_t sub_key = key ^ (*xor_mask);
const lsh::Bucket* bucket = table->getBucketFromKey(sub_key);
if (bucket == 0) continue;
// Go over each descriptor index
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
DistanceType hamming_distance;
// Process the rest of the candidates
for (; training_index < last_training_index; ++training_index) {
// Compute the Hamming distance
hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols);
if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index));
}
}
}
}
}
/** Performs the approximate nearest-neighbor search.
* This is a slower version than the above as it uses the ResultSet
* @param vec the feature to analyze
*/
void getNeighbors(const ElementType* vec, ResultSet<DistanceType>& result)
{
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table = tables_.begin();
typename std::vector<lsh::LshTable<ElementType> >::const_iterator table_end = tables_.end();
for (; table != table_end; ++table) {
size_t key = table->getKey(vec);
std::vector<lsh::BucketKey>::const_iterator xor_mask = xor_masks_.begin();
std::vector<lsh::BucketKey>::const_iterator xor_mask_end = xor_masks_.end();
for (; xor_mask != xor_mask_end; ++xor_mask) {
size_t sub_key = key ^ (*xor_mask);
const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key);
if (bucket == 0) continue;
// Go over each descriptor index
std::vector<lsh::FeatureIndex>::const_iterator training_index = bucket->begin();
std::vector<lsh::FeatureIndex>::const_iterator last_training_index = bucket->end();
DistanceType hamming_distance;
// Process the rest of the candidates
for (; training_index < last_training_index; ++training_index) {
// Compute the Hamming distance
hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols);
result.addPoint(hamming_distance, *training_index);
}
}
}
}
/** The different hash tables */
std::vector<lsh::LshTable<ElementType> > tables_;
/** The data the LSH tables where built from */
Matrix<ElementType> dataset_;
/** The size of the features (as ElementType[]) */
unsigned int feature_size_;
IndexParams index_params_;
/** table number */
int table_number_;
/** key size */
int key_size_;
/** How far should we look for neighbors in multi-probe LSH */
int multi_probe_level_;
/** The XOR masks to apply to a key to get the neighboring buckets */
std::vector<lsh::BucketKey> xor_masks_;
Distance distance_;
};
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
//! @endcond
#endif //OPENCV_FLANN_LSH_INDEX_H_

View File

@ -0,0 +1,525 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
/***********************************************************************
* Author: Vincent Rabaud
*************************************************************************/
#ifndef OPENCV_FLANN_LSH_TABLE_H_
#define OPENCV_FLANN_LSH_TABLE_H_
//! @cond IGNORED
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <limits.h>
// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP
#ifdef __GXX_EXPERIMENTAL_CXX0X__
# define USE_UNORDERED_MAP 1
#else
# define USE_UNORDERED_MAP 0
#endif
#if USE_UNORDERED_MAP
#include <unordered_map>
#else
#include <map>
#endif
#include <math.h>
#include <stddef.h>
#include "dynamic_bitset.h"
#include "matrix.h"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4702) //disable unreachable code
#endif
namespace cvflann
{
namespace lsh
{
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** What is stored in an LSH bucket
*/
typedef uint32_t FeatureIndex;
/** The id from which we can get a bucket back in an LSH table
*/
typedef unsigned int BucketKey;
/** A bucket in an LSH table
*/
typedef std::vector<FeatureIndex> Bucket;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** POD for stats about an LSH table
*/
struct LshStats
{
std::vector<unsigned int> bucket_sizes_;
size_t n_buckets_;
size_t bucket_size_mean_;
size_t bucket_size_median_;
size_t bucket_size_min_;
size_t bucket_size_max_;
size_t bucket_size_std_dev;
/** Each contained vector contains three value: beginning/end for interval, number of elements in the bin
*/
std::vector<std::vector<unsigned int> > size_histogram_;
};
/** Overload the << operator for LshStats
* @param out the streams
* @param stats the stats to display
* @return the streams
*/
inline std::ostream& operator <<(std::ostream& out, const LshStats& stats)
{
int w = 20;
out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : "
<< stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : "
<< std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w)
<< std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w)
<< std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left)
<< stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : "
<< std::setiosflags(std::ios::left) << stats.bucket_size_max_;
// Display the histogram
out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : "
<< std::setiosflags(std::ios::left);
for (std::vector<std::vector<unsigned int> >::const_iterator iterator = stats.size_histogram_.begin(), end =
stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ", ";
return out;
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Lsh hash table. As its key is a sub-feature, and as usually
* the size of it is pretty small, we keep it as a continuous memory array.
* The value is an index in the corpus of features (we keep it as an unsigned
* int for pure memory reasons, it could be a size_t)
*/
template<typename ElementType>
class LshTable
{
public:
/** A container of all the feature indices. Optimized for space
*/
#if USE_UNORDERED_MAP
typedef std::unordered_map<BucketKey, Bucket> BucketsSpace;
#else
typedef std::map<BucketKey, Bucket> BucketsSpace;
#endif
/** A container of all the feature indices. Optimized for speed
*/
typedef std::vector<Bucket> BucketsSpeed;
/** Default constructor
*/
LshTable()
{
key_size_ = 0;
feature_size_ = 0;
speed_level_ = kArray;
}
/** Default constructor
* Create the mask and allocate the memory
* @param feature_size is the size of the feature (considered as a ElementType[])
* @param key_size is the number of bits that are turned on in the feature
*/
LshTable(unsigned int feature_size, unsigned int key_size)
{
feature_size_ = feature_size;
CV_UNUSED(key_size);
CV_Error(cv::Error::StsUnsupportedFormat, "LSH is not implemented for that type" );
}
/** Add a feature to the table
* @param value the value to store for that feature
* @param feature the feature itself
*/
void add(unsigned int value, const ElementType* feature)
{
// Add the value to the corresponding bucket
BucketKey key = (lsh::BucketKey)getKey(feature);
switch (speed_level_) {
case kArray:
// That means we get the buckets from an array
buckets_speed_[key].push_back(value);
break;
case kBitsetHash:
// That means we can check the bitset for the presence of a key
key_bitset_.set(key);
buckets_space_[key].push_back(value);
break;
case kHash:
{
// That means we have to check for the hash table for the presence of a key
buckets_space_[key].push_back(value);
break;
}
}
}
/** Add a set of features to the table
* @param dataset the values to store
*/
void add(Matrix<ElementType> dataset)
{
#if USE_UNORDERED_MAP
buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2);
#endif
// Add the features to the table
for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]);
// Now that the table is full, optimize it for speed/space
optimize();
}
/** Get a bucket given the key
* @param key
* @return
*/
inline const Bucket* getBucketFromKey(BucketKey key) const
{
// Generate other buckets
switch (speed_level_) {
case kArray:
// That means we get the buckets from an array
return &buckets_speed_[key];
break;
case kBitsetHash:
// That means we can check the bitset for the presence of a key
if (key_bitset_.test(key)) return &buckets_space_.find(key)->second;
else return 0;
break;
case kHash:
{
// That means we have to check for the hash table for the presence of a key
BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end();
bucket_it = buckets_space_.find(key);
// Stop here if that bucket does not exist
if (bucket_it == bucket_end) return 0;
else return &bucket_it->second;
break;
}
}
return 0;
}
/** Compute the sub-signature of a feature
*/
size_t getKey(const ElementType* /*feature*/) const
{
CV_Error(cv::Error::StsUnsupportedFormat, "LSH is not implemented for that type" );
return 0;
}
/** Get statistics about the table
* @return
*/
LshStats getStats() const;
private:
/** defines the speed fo the implementation
* kArray uses a vector for storing data
* kBitsetHash uses a hash map but checks for the validity of a key with a bitset
* kHash uses a hash map only
*/
enum SpeedLevel
{
kArray, kBitsetHash, kHash
};
/** Initialize some variables
*/
void initialize(size_t key_size)
{
const size_t key_size_lower_bound = 1;
//a value (size_t(1) << key_size) must fit the size_t type so key_size has to be strictly less than size of size_t
const size_t key_size_upper_bound = (std::min)(sizeof(BucketKey) * CHAR_BIT + 1, sizeof(size_t) * CHAR_BIT);
if (key_size < key_size_lower_bound || key_size >= key_size_upper_bound)
{
CV_Error(cv::Error::StsBadArg, cv::format("Invalid key_size (=%d). Valid values for your system are %d <= key_size < %d.", (int)key_size, (int)key_size_lower_bound, (int)key_size_upper_bound));
}
speed_level_ = kHash;
key_size_ = (unsigned)key_size;
}
/** Optimize the table for speed/space
*/
void optimize()
{
// If we are already using the fast storage, no need to do anything
if (speed_level_ == kArray) return;
// Use an array if it will be more than half full
if (buckets_space_.size() > ((size_t(1) << key_size_) / 2)) {
speed_level_ = kArray;
// Fill the array version of it
buckets_speed_.resize(size_t(1) << key_size_);
for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second;
// Empty the hash table
buckets_space_.clear();
return;
}
// If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two
// for the vector) or less than 512MB (key_size_ <= 30)
if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10
>= (size_t(1) << key_size_)) || (key_size_ <= 32)) {
speed_level_ = kBitsetHash;
key_bitset_.resize(size_t(1) << key_size_);
key_bitset_.reset();
// Try with the BucketsSpace
for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first);
}
else {
speed_level_ = kHash;
key_bitset_.clear();
}
}
/** The vector of all the buckets if they are held for speed
*/
BucketsSpeed buckets_speed_;
/** The hash table of all the buckets in case we cannot use the speed version
*/
BucketsSpace buckets_space_;
/** What is used to store the data */
SpeedLevel speed_level_;
/** If the subkey is small enough, it will keep track of which subkeys are set through that bitset
* That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset)
*/
DynamicBitset key_bitset_;
/** The size of the sub-signature in bits
*/
unsigned int key_size_;
unsigned int feature_size_;
// Members only used for the unsigned char specialization
/** The mask to apply to a feature to get the hash key
* Only used in the unsigned char case
*/
std::vector<size_t> mask_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Specialization for unsigned char
template<>
inline LshTable<unsigned char>::LshTable(unsigned int feature_size, unsigned int subsignature_size)
{
feature_size_ = feature_size;
initialize(subsignature_size);
// Allocate the mask
mask_ = std::vector<size_t>((feature_size * sizeof(char) + sizeof(size_t) - 1) / sizeof(size_t), 0);
// A bit brutal but fast to code
std::vector<int> indices(feature_size * CHAR_BIT);
for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = (int)i;
#ifndef OPENCV_FLANN_USE_STD_RAND
cv::randShuffle(indices);
#else
std::random_shuffle(indices.begin(), indices.end());
#endif
// Generate a random set of order of subsignature_size_ bits
for (unsigned int i = 0; i < key_size_; ++i) {
size_t index = indices[i];
// Set that bit in the mask
size_t divisor = CHAR_BIT * sizeof(size_t);
size_t idx = index / divisor; //pick the right size_t index
mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset
}
// Set to 1 if you want to display the mask for debug
#if 0
{
size_t bcount = 0;
BOOST_FOREACH(size_t mask_block, mask_){
out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block
<< std::endl;
bcount += __builtin_popcountll(mask_block);
}
out << "bit count : " << std::dec << bcount << std::endl;
out << "mask size : " << mask_.size() << std::endl;
return out;
}
#endif
}
/** Return the Subsignature of a feature
* @param feature the feature to analyze
*/
template<>
inline size_t LshTable<unsigned char>::getKey(const unsigned char* feature) const
{
// no need to check if T is dividable by sizeof(size_t) like in the Hamming
// distance computation as we have a mask
// FIXIT: This is bad assumption, because we reading tail bytes after of the allocated features buffer
const size_t* feature_block_ptr = reinterpret_cast<const size_t*> ((const void*)feature);
// Figure out the subsignature of the feature
// Given the feature ABCDEF, and the mask 001011, the output will be
// 000CEF
size_t subsignature = 0;
size_t bit_index = 1;
for (unsigned i = 0; i < feature_size_; i += sizeof(size_t)) {
// get the mask and signature blocks
size_t feature_block;
if (i <= feature_size_ - sizeof(size_t))
{
feature_block = *feature_block_ptr;
}
else
{
size_t tmp = 0;
memcpy(&tmp, feature_block_ptr, feature_size_ - i); // preserve bytes order
feature_block = tmp;
}
size_t mask_block = mask_[i / sizeof(size_t)];
while (mask_block) {
// Get the lowest set bit in the mask block
size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block);
// Add it to the current subsignature if necessary
subsignature += (feature_block & lowest_bit) ? bit_index : 0;
// Reset the bit in the mask block
mask_block ^= lowest_bit;
// increment the bit index for the subsignature
bit_index <<= 1;
}
// Check the next feature block
++feature_block_ptr;
}
return subsignature;
}
template<>
inline LshStats LshTable<unsigned char>::getStats() const
{
LshStats stats;
stats.bucket_size_mean_ = 0;
if ((buckets_speed_.empty()) && (buckets_space_.empty())) {
stats.n_buckets_ = 0;
stats.bucket_size_median_ = 0;
stats.bucket_size_min_ = 0;
stats.bucket_size_max_ = 0;
return stats;
}
if (!buckets_speed_.empty()) {
for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) {
stats.bucket_sizes_.push_back((lsh::FeatureIndex)pbucket->size());
stats.bucket_size_mean_ += pbucket->size();
}
stats.bucket_size_mean_ /= buckets_speed_.size();
stats.n_buckets_ = buckets_speed_.size();
}
else {
for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) {
stats.bucket_sizes_.push_back((lsh::FeatureIndex)x->second.size());
stats.bucket_size_mean_ += x->second.size();
}
stats.bucket_size_mean_ /= buckets_space_.size();
stats.n_buckets_ = buckets_space_.size();
}
std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end());
// BOOST_FOREACH(int size, stats.bucket_sizes_)
// std::cout << size << " ";
// std::cout << std::endl;
stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2];
stats.bucket_size_min_ = stats.bucket_sizes_.front();
stats.bucket_size_max_ = stats.bucket_sizes_.back();
// TODO compute mean and std
/*float mean, stddev;
stats.bucket_size_mean_ = mean;
stats.bucket_size_std_dev = stddev;*/
// Include a histogram of the buckets
unsigned int bin_start = 0;
unsigned int bin_end = 20;
bool is_new_bin = true;
for (std::vector<unsigned int>::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator
!= end; )
if (*iterator < bin_end) {
if (is_new_bin) {
stats.size_histogram_.push_back(std::vector<unsigned int>(3, 0));
stats.size_histogram_.back()[0] = bin_start;
stats.size_histogram_.back()[1] = bin_end - 1;
is_new_bin = false;
}
++stats.size_histogram_.back()[2];
++iterator;
}
else {
bin_start += 20;
bin_end += 20;
is_new_bin = true;
}
return stats;
}
// End the two namespaces
}
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//! @endcond
#endif /* OPENCV_FLANN_LSH_TABLE_H_ */

View File

@ -0,0 +1,118 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_DATASET_H_
#define OPENCV_FLANN_DATASET_H_
//! @cond IGNORED
#include <stdio.h>
namespace cvflann
{
/**
* Class that implements a simple rectangular matrix stored in a memory buffer and
* provides convenient matrix-like access using the [] operators.
*/
template <typename T>
class Matrix
{
public:
typedef T type;
size_t rows;
size_t cols;
size_t stride;
T* data;
Matrix() : rows(0), cols(0), stride(0), data(NULL)
{
}
Matrix(T* data_, size_t rows_, size_t cols_, size_t stride_ = 0) :
rows(rows_), cols(cols_), stride(stride_), data(data_)
{
if (stride==0) stride = cols;
}
/**
* Convenience function for deallocating the storage data.
*/
CV_DEPRECATED void free()
{
fprintf(stderr, "The cvflann::Matrix<T>::free() method is deprecated "
"and it does not do any memory deallocation any more. You are"
"responsible for deallocating the matrix memory (by doing"
"'delete[] matrix.data' for example)");
}
/**
* Operator that return a (pointer to a) row of the data.
*/
T* operator[](size_t index) const
{
return data+index*stride;
}
};
class UntypedMatrix
{
public:
size_t rows;
size_t cols;
void* data;
flann_datatype_t type;
UntypedMatrix(void* data_, long rows_, long cols_) :
rows(rows_), cols(cols_), data(data_)
{
}
~UntypedMatrix()
{
}
template<typename T>
Matrix<T> as()
{
return Matrix<T>((T*)data, rows, cols);
}
};
}
//! @endcond
#endif //OPENCV_FLANN_DATASET_H_

View File

@ -0,0 +1,185 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_MINIFLANN_HPP
#define OPENCV_MINIFLANN_HPP
//! @cond IGNORED
#include "opencv2/core.hpp"
#include "opencv2/flann/defines.h"
namespace cv
{
namespace flann
{
enum FlannIndexType {
FLANN_INDEX_TYPE_8U = CV_8U,
FLANN_INDEX_TYPE_8S = CV_8S,
FLANN_INDEX_TYPE_16U = CV_16U,
FLANN_INDEX_TYPE_16S = CV_16S,
FLANN_INDEX_TYPE_32S = CV_32S,
FLANN_INDEX_TYPE_32F = CV_32F,
FLANN_INDEX_TYPE_64F = CV_64F,
FLANN_INDEX_TYPE_STRING,
FLANN_INDEX_TYPE_BOOL,
FLANN_INDEX_TYPE_ALGORITHM,
LAST_VALUE_FLANN_INDEX_TYPE = FLANN_INDEX_TYPE_ALGORITHM
};
struct CV_EXPORTS IndexParams
{
IndexParams();
~IndexParams();
String getString(const String& key, const String& defaultVal=String()) const;
int getInt(const String& key, int defaultVal=-1) const;
double getDouble(const String& key, double defaultVal=-1) const;
void setString(const String& key, const String& value);
void setInt(const String& key, int value);
void setDouble(const String& key, double value);
void setFloat(const String& key, float value);
void setBool(const String& key, bool value);
void setAlgorithm(int value);
// FIXIT: replace by void write(FileStorage& fs) const + read()
void getAll(std::vector<String>& names,
std::vector<FlannIndexType>& types,
std::vector<String>& strValues,
std::vector<double>& numValues) const;
void* params;
private:
IndexParams(const IndexParams &); // copy disabled
IndexParams& operator=(const IndexParams &); // assign disabled
};
struct CV_EXPORTS KDTreeIndexParams : public IndexParams
{
KDTreeIndexParams(int trees=4);
};
struct CV_EXPORTS LinearIndexParams : public IndexParams
{
LinearIndexParams();
};
struct CV_EXPORTS CompositeIndexParams : public IndexParams
{
CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11,
cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, float cb_index = 0.2f );
};
struct CV_EXPORTS AutotunedIndexParams : public IndexParams
{
AutotunedIndexParams(float target_precision = 0.8f, float build_weight = 0.01f,
float memory_weight = 0, float sample_fraction = 0.1f);
};
struct CV_EXPORTS HierarchicalClusteringIndexParams : public IndexParams
{
HierarchicalClusteringIndexParams(int branching = 32,
cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, int trees = 4, int leaf_size = 100 );
};
struct CV_EXPORTS KMeansIndexParams : public IndexParams
{
KMeansIndexParams(int branching = 32, int iterations = 11,
cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, float cb_index = 0.2f );
};
struct CV_EXPORTS LshIndexParams : public IndexParams
{
LshIndexParams(int table_number, int key_size, int multi_probe_level);
};
struct CV_EXPORTS SavedIndexParams : public IndexParams
{
SavedIndexParams(const String& filename);
};
struct CV_EXPORTS SearchParams : public IndexParams
{
SearchParams( int checks, float eps, bool sorted, bool explore_all_trees );
SearchParams( int checks = 32, float eps = 0, bool sorted = true );
};
class CV_EXPORTS_W Index
{
public:
CV_WRAP Index();
CV_WRAP Index(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2);
virtual ~Index();
CV_WRAP virtual void build(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2);
CV_WRAP virtual void knnSearch(InputArray query, OutputArray indices,
OutputArray dists, int knn, const SearchParams& params=SearchParams());
CV_WRAP virtual int radiusSearch(InputArray query, OutputArray indices,
OutputArray dists, double radius, int maxResults,
const SearchParams& params=SearchParams());
CV_WRAP virtual void save(const String& filename) const;
CV_WRAP virtual bool load(InputArray features, const String& filename);
CV_WRAP virtual void release();
CV_WRAP cvflann::flann_distance_t getDistance() const;
CV_WRAP cvflann::flann_algorithm_t getAlgorithm() const;
protected:
bool load_(const String& filename);
cvflann::flann_distance_t distType;
cvflann::flann_algorithm_t algo;
int featureType;
void* index;
Mat features_clone; // index may store features pointer internally for searching, so avoid dangling pointers: https://github.com/opencv/opencv/issues/17553
};
} } // namespace cv::flann
//! @endcond
#endif

View File

@ -0,0 +1,180 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_NNINDEX_H
#define OPENCV_FLANN_NNINDEX_H
#include "matrix.h"
#include "result_set.h"
#include "params.h"
//! @cond IGNORED
namespace cvflann
{
/**
* Nearest-neighbour index base class
*/
template <typename Distance>
class NNIndex
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
public:
virtual ~NNIndex() {}
/**
* \brief Builds the index
*/
virtual void buildIndex() = 0;
/**
* \brief Perform k-nearest neighbor search
* \param[in] queries The query points for which to find the nearest neighbors
* \param[out] indices The indices of the nearest neighbors found
* \param[out] dists Distances to the nearest neighbors found
* \param[in] knn Number of nearest neighbors to return
* \param[in] params Search parameters
*/
virtual void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
{
CV_Assert(queries.cols == veclen());
CV_Assert(indices.rows >= queries.rows);
CV_Assert(dists.rows >= queries.rows);
CV_Assert(int(indices.cols) >= knn);
CV_Assert(int(dists.cols) >= knn);
#if 0
KNNResultSet<DistanceType> resultSet(knn);
for (size_t i = 0; i < queries.rows; i++) {
resultSet.init(indices[i], dists[i]);
findNeighbors(resultSet, queries[i], params);
}
#else
KNNUniqueResultSet<DistanceType> resultSet(knn);
for (size_t i = 0; i < queries.rows; i++) {
resultSet.clear();
findNeighbors(resultSet, queries[i], params);
if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn);
else resultSet.copy(indices[i], dists[i], knn);
}
#endif
}
/**
* \brief Perform radius search
* \param[in] query The query point
* \param[out] indices The indinces of the neighbors found within the given radius
* \param[out] dists The distances to the nearest neighbors found
* \param[in] radius The radius used for search
* \param[in] params Search parameters
* \returns Number of neighbors found
*/
virtual int radiusSearch(const Matrix<ElementType>& query, Matrix<int>& indices, Matrix<DistanceType>& dists, float radius, const SearchParams& params)
{
if (query.rows != 1) {
fprintf(stderr, "I can only search one feature at a time for range search\n");
return -1;
}
assert(query.cols == veclen());
assert(indices.cols == dists.cols);
int n = 0;
int* indices_ptr = NULL;
DistanceType* dists_ptr = NULL;
if (indices.cols > 0) {
n = (int)indices.cols;
indices_ptr = indices[0];
dists_ptr = dists[0];
}
RadiusUniqueResultSet<DistanceType> resultSet((DistanceType)radius);
resultSet.clear();
findNeighbors(resultSet, query[0], params);
if (n>0) {
if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n);
else resultSet.copy(indices_ptr, dists_ptr, n);
}
return (int)resultSet.size();
}
/**
* \brief Saves the index to a stream
* \param stream The stream to save the index to
*/
virtual void saveIndex(FILE* stream) = 0;
/**
* \brief Loads the index from a stream
* \param stream The stream from which the index is loaded
*/
virtual void loadIndex(FILE* stream) = 0;
/**
* \returns number of features in this index.
*/
virtual size_t size() const = 0;
/**
* \returns The dimensionality of the features in this index.
*/
virtual size_t veclen() const = 0;
/**
* \returns The amount of memory (in bytes) used by the index.
*/
virtual int usedMemory() const = 0;
/**
* \returns The index type (kdtree, kmeans,...)
*/
virtual flann_algorithm_t getType() const = 0;
/**
* \returns The index parameters
*/
virtual IndexParams getParameters() const = 0;
/**
* \brief Method that searches for nearest-neighbours
*/
virtual void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) = 0;
};
}
//! @endcond
#endif //OPENCV_FLANN_NNINDEX_H

View File

@ -0,0 +1,95 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_OBJECT_FACTORY_H_
#define OPENCV_FLANN_OBJECT_FACTORY_H_
//! @cond IGNORED
#include <map>
namespace cvflann
{
class CreatorNotFound
{
};
template<typename BaseClass,
typename UniqueIdType,
typename ObjectCreator = BaseClass* (*)()>
class ObjectFactory
{
typedef ObjectFactory<BaseClass,UniqueIdType,ObjectCreator> ThisClass;
typedef std::map<UniqueIdType, ObjectCreator> ObjectRegistry;
// singleton class, private constructor
ObjectFactory() {}
public:
bool subscribe(UniqueIdType id, ObjectCreator creator)
{
if (object_registry.find(id) != object_registry.end()) return false;
object_registry[id] = creator;
return true;
}
bool unregister(UniqueIdType id)
{
return object_registry.erase(id) == 1;
}
ObjectCreator create(UniqueIdType id)
{
typename ObjectRegistry::const_iterator iter = object_registry.find(id);
if (iter == object_registry.end()) {
throw CreatorNotFound();
}
return iter->second;
}
static ThisClass& instance()
{
static ThisClass the_factory;
return the_factory;
}
private:
ObjectRegistry object_registry;
};
}
//! @endcond
#endif /* OPENCV_FLANN_OBJECT_FACTORY_H_ */

View File

@ -0,0 +1,116 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_PARAMS_H_
#define OPENCV_FLANN_PARAMS_H_
//! @cond IGNORED
#include "any.h"
#include "general.h"
#include <iostream>
#include <map>
namespace cvflann
{
typedef std::map<cv::String, any> IndexParams;
struct SearchParams : public IndexParams
{
SearchParams(int checks = 32, float eps = 0, bool sorted = true )
{
init(checks, eps, sorted, false);
}
SearchParams(int checks, float eps, bool sorted, bool explore_all_trees )
{
init(checks, eps, sorted, explore_all_trees);
}
void init(int checks = 32, float eps = 0, bool sorted = true, bool explore_all_trees = false )
{
// how many leafs to visit when searching for neighbours (-1 for unlimited)
(*this)["checks"] = checks;
// search for eps-approximate neighbours (default: 0)
(*this)["eps"] = eps;
// only for radius search, require neighbours sorted by distance (default: true)
(*this)["sorted"] = sorted;
// if false, search stops at the tree reaching the number of max checks (original behavior).
// When true, we do a descent in each tree and. Like before the alternative paths
// stored in the heap are not be processed further when max checks is reached.
(*this)["explore_all_trees"] = explore_all_trees;
}
};
template<typename T>
T get_param(const IndexParams& params, cv::String name, const T& default_value)
{
IndexParams::const_iterator it = params.find(name);
if (it != params.end()) {
return it->second.cast<T>();
}
else {
return default_value;
}
}
template<typename T>
T get_param(const IndexParams& params, cv::String name)
{
IndexParams::const_iterator it = params.find(name);
if (it != params.end()) {
return it->second.cast<T>();
}
else {
FLANN_THROW(cv::Error::StsBadArg, cv::String("Missing parameter '")+name+cv::String("' in the parameters given"));
}
}
inline void print_params(const IndexParams& params, std::ostream& stream)
{
IndexParams::const_iterator it;
for(it=params.begin(); it!=params.end(); ++it) {
stream << it->first << " : " << it->second << std::endl;
}
}
inline void print_params(const IndexParams& params)
{
print_params(params, std::cout);
}
}
//! @endcond
#endif /* OPENCV_FLANN_PARAMS_H_ */

View File

@ -0,0 +1,157 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_RANDOM_H
#define OPENCV_FLANN_RANDOM_H
//! @cond IGNORED
#include <algorithm>
#include <cstdlib>
#include <vector>
namespace cvflann
{
inline int rand()
{
#ifndef OPENCV_FLANN_USE_STD_RAND
# if INT_MAX == RAND_MAX
int v = cv::theRNG().next() & INT_MAX;
# else
int v = cv::theRNG().uniform(0, RAND_MAX + 1);
# endif
#else
int v = std::rand();
#endif // OPENCV_FLANN_USE_STD_RAND
return v;
}
/**
* Seeds the random number generator
* @param seed Random seed
*/
inline void seed_random(unsigned int seed)
{
#ifndef OPENCV_FLANN_USE_STD_RAND
cv::theRNG() = cv::RNG(seed);
#else
std::srand(seed);
#endif
}
/*
* Generates a random double value.
*/
/**
* Generates a random double value.
* @param high Upper limit
* @param low Lower limit
* @return Random double value
*/
inline double rand_double(double high = 1.0, double low = 0)
{
return low + ((high-low) * (rand() / (RAND_MAX + 1.0)));
}
/**
* Generates a random integer value.
* @param high Upper limit
* @param low Lower limit
* @return Random integer value
*/
inline int rand_int(int high = RAND_MAX, int low = 0)
{
return low + (int) ( double(high-low) * (rand() / (RAND_MAX + 1.0)));
}
/**
* Random number generator that returns a distinct number from
* the [0,n) interval each time.
*/
class UniqueRandom
{
std::vector<int> vals_;
int size_;
int counter_;
public:
/**
* Constructor.
* @param n Size of the interval from which to generate
* @return
*/
UniqueRandom(int n)
{
init(n);
}
/**
* Initializes the number generator.
* @param n the size of the interval from which to generate random numbers.
*/
void init(int n)
{
// create and initialize an array of size n
vals_.resize(n);
size_ = n;
for (int i = 0; i < size_; ++i) vals_[i] = i;
// shuffle the elements in the array
#ifndef OPENCV_FLANN_USE_STD_RAND
cv::randShuffle(vals_);
#else
std::random_shuffle(vals_.begin(), vals_.end());
#endif
counter_ = 0;
}
/**
* Return a distinct random integer in greater or equal to 0 and less
* than 'n' on each call. It should be called maximum 'n' times.
* Returns: a random integer
*/
int next()
{
if (counter_ == size_) {
return -1;
}
else {
return vals_[counter_++];
}
}
};
}
//! @endcond
#endif //OPENCV_FLANN_RANDOM_H

View File

@ -0,0 +1,548 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_RESULTSET_H
#define OPENCV_FLANN_RESULTSET_H
//! @cond IGNORED
#include <algorithm>
#include <cstring>
#include <iostream>
#include <limits>
#include <set>
#include <vector>
namespace cvflann
{
/* This record represents a branch point when finding neighbors in
the tree. It contains a record of the minimum distance to the query
point, as well as the node at which the search resumes.
*/
template <typename T, typename DistanceType>
struct BranchStruct
{
T node; /* Tree node at which search resumes */
DistanceType mindist; /* Minimum distance to query for all nodes below. */
BranchStruct() {}
BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {}
bool operator<(const BranchStruct<T, DistanceType>& rhs) const
{
return mindist<rhs.mindist;
}
};
template <typename DistanceType>
class ResultSet
{
public:
virtual ~ResultSet() {}
virtual bool full() const = 0;
virtual void addPoint(DistanceType dist, int index) = 0;
virtual DistanceType worstDist() const = 0;
};
/**
* KNNSimpleResultSet does not ensure that the element it holds are unique.
* Is used in those cases where the nearest neighbour algorithm used does not
* attempt to insert the same element multiple times.
*/
template <typename DistanceType>
class KNNSimpleResultSet : public ResultSet<DistanceType>
{
int* indices;
DistanceType* dists;
int capacity;
int count;
DistanceType worst_distance_;
public:
KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0)
{
}
void init(int* indices_, DistanceType* dists_)
{
indices = indices_;
dists = dists_;
count = 0;
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
dists[capacity-1] = worst_distance_;
}
size_t size() const
{
return count;
}
bool full() const CV_OVERRIDE
{
return count == capacity;
}
void addPoint(DistanceType dist, int index) CV_OVERRIDE
{
if (dist >= worst_distance_) return;
int i;
for (i=count; i>0; --i) {
#ifdef FLANN_FIRST_MATCH
if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) )
#else
if (dists[i-1]>dist)
#endif
{
if (i<capacity) {
dists[i] = dists[i-1];
indices[i] = indices[i-1];
}
}
else break;
}
if (count < capacity) ++count;
dists[i] = dist;
indices[i] = index;
worst_distance_ = dists[capacity-1];
}
DistanceType worstDist() const CV_OVERRIDE
{
return worst_distance_;
}
};
/**
* K-Nearest neighbour result set. Ensures that the elements inserted are unique
*/
template <typename DistanceType>
class KNNResultSet : public ResultSet<DistanceType>
{
int* indices;
DistanceType* dists;
int capacity;
int count;
DistanceType worst_distance_;
public:
KNNResultSet(int capacity_)
: indices(NULL), dists(NULL), capacity(capacity_), count(0), worst_distance_(0)
{
}
void init(int* indices_, DistanceType* dists_)
{
indices = indices_;
dists = dists_;
count = 0;
worst_distance_ = (std::numeric_limits<DistanceType>::max)();
dists[capacity-1] = worst_distance_;
}
size_t size() const
{
return count;
}
bool full() const CV_OVERRIDE
{
return count == capacity;
}
void addPoint(DistanceType dist, int index) CV_OVERRIDE
{
CV_DbgAssert(indices);
CV_DbgAssert(dists);
if (dist >= worst_distance_) return;
int i;
for (i = count; i > 0; --i) {
#ifdef FLANN_FIRST_MATCH
if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) )
#else
if (dists[i-1]<=dist)
#endif
{
// Check for duplicate indices
for (int j = i; dists[j] == dist && j--;) {
if (indices[j] == index) {
return;
}
}
break;
}
}
if (count < capacity) ++count;
for (int j = count-1; j > i; --j) {
dists[j] = dists[j-1];
indices[j] = indices[j-1];
}
dists[i] = dist;
indices[i] = index;
worst_distance_ = dists[capacity-1];
}
DistanceType worstDist() const CV_OVERRIDE
{
return worst_distance_;
}
};
/**
* A result-set class used when performing a radius based search.
*/
template <typename DistanceType>
class RadiusResultSet : public ResultSet<DistanceType>
{
DistanceType radius;
int* indices;
DistanceType* dists;
size_t capacity;
size_t count;
public:
RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) :
radius(radius_), indices(indices_), dists(dists_), capacity(capacity_)
{
init();
}
~RadiusResultSet()
{
}
void init()
{
count = 0;
}
size_t size() const
{
return count;
}
bool full() const
{
return true;
}
void addPoint(DistanceType dist, int index)
{
if (dist<radius) {
if ((capacity>0)&&(count < capacity)) {
dists[count] = dist;
indices[count] = index;
}
count++;
}
}
DistanceType worstDist() const
{
return radius;
}
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class that holds the k NN neighbors
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
*/
template<typename DistanceType>
class UniqueResultSet : public ResultSet<DistanceType>
{
public:
struct DistIndex
{
DistIndex(DistanceType dist, unsigned int index) :
dist_(dist), index_(index)
{
}
bool operator<(const DistIndex dist_index) const
{
return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_);
}
DistanceType dist_;
unsigned int index_;
};
/** Default constructor */
UniqueResultSet() :
is_full_(false), worst_distance_(std::numeric_limits<DistanceType>::max())
{
}
/** Check the status of the set
* @return true if we have k NN
*/
inline bool full() const CV_OVERRIDE
{
return is_full_;
}
/** Remove all elements in the set
*/
virtual void clear() = 0;
/** Copy the set to two C arrays
* @param indices pointer to a C array of indices
* @param dist pointer to a C array of distances
* @param n_neighbors the number of neighbors to copy
*/
virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const
{
if (n_neighbors < 0) {
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) {
*indices = dist_index->index_;
*dist = dist_index->dist_;
}
}
else {
int i = 0;
for (typename std::set<DistIndex>::const_iterator dist_index = dist_indices_.begin(), dist_index_end =
dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) {
*indices = dist_index->index_;
*dist = dist_index->dist_;
}
}
}
/** Copy the set to two C arrays but sort it according to the distance first
* @param indices pointer to a C array of indices
* @param dist pointer to a C array of distances
* @param n_neighbors the number of neighbors to copy
*/
virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const
{
copy(indices, dist, n_neighbors);
}
/** The number of neighbors in the set
* @return
*/
size_t size() const
{
return dist_indices_.size();
}
/** The distance of the furthest neighbor
* If we don't have enough neighbors, it returns the max possible value
* @return
*/
inline DistanceType worstDist() const CV_OVERRIDE
{
return worst_distance_;
}
protected:
/** Flag to say if the set is full */
bool is_full_;
/** The worst distance found so far */
DistanceType worst_distance_;
/** The best candidates so far */
std::set<DistIndex> dist_indices_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class that holds the k NN neighbors
* Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays
*/
template<typename DistanceType>
class KNNUniqueResultSet : public UniqueResultSet<DistanceType>
{
public:
/** Constructor
* @param capacity the number of neighbors to store at max
*/
KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity)
{
this->is_full_ = false;
this->clear();
}
/** Add a possible candidate to the best neighbors
* @param dist distance for that neighbor
* @param index index of that neighbor
*/
inline void addPoint(DistanceType dist, int index) CV_OVERRIDE
{
// Don't do anything if we are worse than the worst
if (dist >= worst_distance_) return;
dist_indices_.insert(DistIndex(dist, index));
if (is_full_) {
if (dist_indices_.size() > capacity_) {
dist_indices_.erase(*dist_indices_.rbegin());
worst_distance_ = dist_indices_.rbegin()->dist_;
}
}
else if (dist_indices_.size() == capacity_) {
is_full_ = true;
worst_distance_ = dist_indices_.rbegin()->dist_;
}
}
/** Remove all elements in the set
*/
void clear() CV_OVERRIDE
{
dist_indices_.clear();
worst_distance_ = std::numeric_limits<DistanceType>::max();
is_full_ = false;
}
protected:
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
using UniqueResultSet<DistanceType>::is_full_;
using UniqueResultSet<DistanceType>::worst_distance_;
using UniqueResultSet<DistanceType>::dist_indices_;
/** The number of neighbors to keep */
unsigned int capacity_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class that holds the radius nearest neighbors
* It is more accurate than RadiusResult as it is not limited in the number of neighbors
*/
template<typename DistanceType>
class RadiusUniqueResultSet : public UniqueResultSet<DistanceType>
{
public:
/** Constructor
* @param radius the maximum distance of a neighbor
*/
RadiusUniqueResultSet(DistanceType radius) :
radius_(radius)
{
is_full_ = true;
}
/** Add a possible candidate to the best neighbors
* @param dist distance for that neighbor
* @param index index of that neighbor
*/
void addPoint(DistanceType dist, int index) CV_OVERRIDE
{
if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index));
}
/** Remove all elements in the set
*/
inline void clear() CV_OVERRIDE
{
dist_indices_.clear();
}
/** Check the status of the set
* @return alwys false
*/
inline bool full() const CV_OVERRIDE
{
return true;
}
/** The distance of the furthest neighbor
* If we don't have enough neighbors, it returns the max possible value
* @return
*/
inline DistanceType worstDist() const CV_OVERRIDE
{
return radius_;
}
private:
typedef typename UniqueResultSet<DistanceType>::DistIndex DistIndex;
using UniqueResultSet<DistanceType>::dist_indices_;
using UniqueResultSet<DistanceType>::is_full_;
/** The furthest distance a neighbor can be */
DistanceType radius_;
};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** Class that holds the k NN neighbors within a radius distance
*/
template<typename DistanceType>
class KNNRadiusUniqueResultSet : public KNNUniqueResultSet<DistanceType>
{
public:
/** Constructor
* @param capacity the number of neighbors to store at max
* @param radius the maximum distance of a neighbor
*/
KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius)
{
this->capacity_ = capacity;
this->radius_ = radius;
this->dist_indices_.reserve(capacity_);
this->clear();
}
/** Remove all elements in the set
*/
void clear()
{
dist_indices_.clear();
worst_distance_ = radius_;
is_full_ = false;
}
private:
using KNNUniqueResultSet<DistanceType>::dist_indices_;
using KNNUniqueResultSet<DistanceType>::is_full_;
using KNNUniqueResultSet<DistanceType>::worst_distance_;
/** The maximum number of neighbors to consider */
unsigned int capacity_;
/** The maximum distance of a neighbor */
DistanceType radius_;
};
}
//! @endcond
#endif //OPENCV_FLANN_RESULTSET_H

View File

@ -0,0 +1,84 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_SAMPLING_H_
#define OPENCV_FLANN_SAMPLING_H_
//! @cond IGNORED
#include "matrix.h"
#include "random.h"
namespace cvflann
{
template<typename T>
Matrix<T> random_sample(Matrix<T>& srcMatrix, long size, bool remove = false)
{
Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols);
T* src,* dest;
for (long i=0; i<size; ++i) {
long r = rand_int((int)(srcMatrix.rows-i));
dest = newSet[i];
src = srcMatrix[r];
std::copy(src, src+srcMatrix.cols, dest);
if (remove) {
src = srcMatrix[srcMatrix.rows-i-1];
dest = srcMatrix[r];
std::copy(src, src+srcMatrix.cols, dest);
}
}
if (remove) {
srcMatrix.rows -= size;
}
return newSet;
}
template<typename T>
Matrix<T> random_sample(const Matrix<T>& srcMatrix, size_t size)
{
UniqueRandom rand((int)srcMatrix.rows);
Matrix<T> newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols);
T* src,* dest;
for (size_t i=0; i<size; ++i) {
long r = rand.next();
dest = newSet[i];
src = srcMatrix[r];
std::copy(src, src+srcMatrix.cols, dest);
}
return newSet;
}
} // namespace
//! @endcond
#endif /* OPENCV_FLANN_SAMPLING_H_ */

View File

@ -0,0 +1,191 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE NNIndexGOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_SAVING_H_
#define OPENCV_FLANN_SAVING_H_
//! @cond IGNORED
#include <cstring>
#include <vector>
#include "general.h"
#include "nn_index.h"
#ifdef FLANN_SIGNATURE_
#undef FLANN_SIGNATURE_
#endif
#define FLANN_SIGNATURE_ "FLANN_INDEX"
namespace cvflann
{
template <typename T>
struct Datatype {};
template<>
struct Datatype<char> { static flann_datatype_t type() { return FLANN_INT8; } };
template<>
struct Datatype<short> { static flann_datatype_t type() { return FLANN_INT16; } };
template<>
struct Datatype<int> { static flann_datatype_t type() { return FLANN_INT32; } };
template<>
struct Datatype<unsigned char> { static flann_datatype_t type() { return FLANN_UINT8; } };
template<>
struct Datatype<unsigned short> { static flann_datatype_t type() { return FLANN_UINT16; } };
template<>
struct Datatype<unsigned int> { static flann_datatype_t type() { return FLANN_UINT32; } };
template<>
struct Datatype<float> { static flann_datatype_t type() { return FLANN_FLOAT32; } };
template<>
struct Datatype<double> { static flann_datatype_t type() { return FLANN_FLOAT64; } };
/**
* Structure representing the index header.
*/
struct IndexHeader
{
char signature[16];
char version[16];
flann_datatype_t data_type;
flann_algorithm_t index_type;
size_t rows;
size_t cols;
};
/**
* Saves index header to stream
*
* @param stream - Stream to save to
* @param index - The index to save
*/
template<typename Distance>
void save_header(FILE* stream, const NNIndex<Distance>& index)
{
IndexHeader header;
memset(header.signature, 0, sizeof(header.signature));
strcpy(header.signature, FLANN_SIGNATURE_);
memset(header.version, 0, sizeof(header.version));
strcpy(header.version, FLANN_VERSION_);
header.data_type = Datatype<typename Distance::ElementType>::type();
header.index_type = index.getType();
header.rows = index.size();
header.cols = index.veclen();
std::fwrite(&header, sizeof(header),1,stream);
}
/**
*
* @param stream - Stream to load from
* @return Index header
*/
inline IndexHeader load_header(FILE* stream)
{
IndexHeader header;
size_t read_size = fread(&header,sizeof(header),1,stream);
if (read_size!=(size_t)1) {
FLANN_THROW(cv::Error::StsError, "Invalid index file, cannot read");
}
if (strcmp(header.signature,FLANN_SIGNATURE_)!=0) {
FLANN_THROW(cv::Error::StsError, "Invalid index file, wrong signature");
}
return header;
}
template<typename T>
void save_value(FILE* stream, const T& value, size_t count = 1)
{
fwrite(&value, sizeof(value),count, stream);
}
template<typename T>
void save_value(FILE* stream, const cvflann::Matrix<T>& value)
{
fwrite(&value, sizeof(value),1, stream);
fwrite(value.data, sizeof(T),value.rows*value.cols, stream);
}
template<typename T>
void save_value(FILE* stream, const std::vector<T>& value)
{
size_t size = value.size();
fwrite(&size, sizeof(size_t), 1, stream);
fwrite(&value[0], sizeof(T), size, stream);
}
template<typename T>
void load_value(FILE* stream, T& value, size_t count = 1)
{
size_t read_cnt = fread(&value, sizeof(value), count, stream);
if (read_cnt != count) {
FLANN_THROW(cv::Error::StsParseError, "Cannot read from file");
}
}
template<typename T>
void load_value(FILE* stream, cvflann::Matrix<T>& value)
{
size_t read_cnt = fread(&value, sizeof(value), 1, stream);
if (read_cnt != 1) {
FLANN_THROW(cv::Error::StsParseError, "Cannot read from file");
}
value.data = new T[value.rows*value.cols];
read_cnt = fread(value.data, sizeof(T), value.rows*value.cols, stream);
if (read_cnt != (size_t)(value.rows*value.cols)) {
FLANN_THROW(cv::Error::StsParseError, "Cannot read from file");
}
}
template<typename T>
void load_value(FILE* stream, std::vector<T>& value)
{
size_t size;
size_t read_cnt = fread(&size, sizeof(size_t), 1, stream);
if (read_cnt!=1) {
FLANN_THROW(cv::Error::StsError, "Cannot read from file");
}
value.resize(size);
read_cnt = fread(&value[0], sizeof(T), size, stream);
if (read_cnt != size) {
FLANN_THROW(cv::Error::StsError, "Cannot read from file");
}
}
}
//! @endcond
#endif /* OPENCV_FLANN_SAVING_H_ */

View File

@ -0,0 +1,190 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_
//! @cond IGNORED
namespace cvflann
{
/**
Adds val to array vals (and point to array points) and keeping the arrays sorted by vals.
*/
template <typename T>
void addValue(int pos, float val, float* vals, T* point, T* points, int n)
{
vals[pos] = val;
for (int i=0; i<n; ++i) {
points[pos*n+i] = point[i];
}
// bubble down
int j=pos;
while (j>0 && vals[j]<vals[j-1]) {
swap(vals[j],vals[j-1]);
for (int i=0; i<n; ++i) {
swap(points[j*n+i],points[(j-1)*n+i]);
}
--j;
}
}
/**
Simplex downhill optimization function.
Preconditions: points is a 2D mattrix of size (n+1) x n
func is the cost function taking n an array of n params and returning float
vals is the cost function in the n+1 simplex points, if NULL it will be computed
Postcondition: returns optimum value and points[0..n] are the optimum parameters
*/
template <typename T, typename F>
float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL )
{
const int MAX_ITERATIONS = 10;
CV_DbgAssert(n>0);
T* p_o = new T[n];
T* p_r = new T[n];
T* p_e = new T[n];
int alpha = 1;
int iterations = 0;
bool ownVals = false;
if (vals == NULL) {
ownVals = true;
vals = new float[n+1];
for (int i=0; i<n+1; ++i) {
float val = func(points+i*n);
addValue(i, val, vals, points+i*n, points, n);
}
}
int nn = n*n;
while (true) {
if (iterations++ > MAX_ITERATIONS) break;
// compute average of simplex points (except the highest point)
for (int j=0; j<n; ++j) {
p_o[j] = 0;
for (int i=0; i<n; ++i) {
p_o[i] += points[j*n+i];
}
}
for (int i=0; i<n; ++i) {
p_o[i] /= n;
}
bool converged = true;
for (int i=0; i<n; ++i) {
if (p_o[i] != points[nn+i]) {
converged = false;
}
}
if (converged) break;
// trying a reflection
for (int i=0; i<n; ++i) {
p_r[i] = p_o[i] + alpha*(p_o[i]-points[nn+i]);
}
float val_r = func(p_r);
if ((val_r>=vals[0])&&(val_r<vals[n])) {
// reflection between second highest and lowest
// add it to the simplex
Logger::info("Choosing reflection\n");
addValue(n, val_r,vals, p_r, points, n);
continue;
}
if (val_r<vals[0]) {
// value is smaller than smallest in simplex
// expand some more to see if it drops further
for (int i=0; i<n; ++i) {
p_e[i] = 2*p_r[i]-p_o[i];
}
float val_e = func(p_e);
if (val_e<val_r) {
Logger::info("Choosing reflection and expansion\n");
addValue(n, val_e,vals,p_e,points,n);
}
else {
Logger::info("Choosing reflection\n");
addValue(n, val_r,vals,p_r,points,n);
}
continue;
}
if (val_r>=vals[n]) {
for (int i=0; i<n; ++i) {
p_e[i] = (p_o[i]+points[nn+i])/2;
}
float val_e = func(p_e);
if (val_e<vals[n]) {
Logger::info("Choosing contraction\n");
addValue(n,val_e,vals,p_e,points,n);
continue;
}
}
{
Logger::info("Full contraction\n");
for (int j=1; j<=n; ++j) {
for (int i=0; i<n; ++i) {
points[j*n+i] = (points[j*n+i]+points[i])/2;
}
float val = func(points+j*n);
addValue(j,val,vals,points+j*n,points,n);
}
}
}
float bestVal = vals[0];
delete[] p_r;
delete[] p_o;
delete[] p_e;
if (ownVals) delete[] vals;
return bestVal;
}
}
//! @endcond
#endif //OPENCV_FLANN_SIMPLEX_DOWNHILL_H_

View File

@ -0,0 +1,99 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* THE BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#ifndef OPENCV_FLANN_TIMER_H
#define OPENCV_FLANN_TIMER_H
//! @cond IGNORED
#include <time.h>
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
namespace cvflann
{
/**
* A start-stop timer class.
*
* Can be used to time portions of code.
*/
class StartStopTimer
{
int64 startTime;
public:
/**
* Value of the timer.
*/
double value;
/**
* Constructor.
*/
StartStopTimer()
: startTime(0)
{
reset();
}
/**
* Starts the timer.
*/
void start()
{
startTime = cv::getTickCount();
}
/**
* Stops the timer and updates timer value.
*/
void stop()
{
int64 stopTime = cv::getTickCount();
value += ( (double)stopTime - startTime) / cv::getTickFrequency();
}
/**
* Resets the timer value to 0.
*/
void reset()
{
value = 0;
}
};
}
//! @endcond
#endif // FLANN_TIMER_H

View File

@ -0,0 +1,87 @@
#ifdef HAVE_OPENCV_FLANN
typedef cvflann::flann_distance_t cvflann_flann_distance_t;
typedef cvflann::flann_algorithm_t cvflann_flann_algorithm_t;
template<>
PyObject* pyopencv_from(const cvflann_flann_algorithm_t& value)
{
return PyInt_FromLong(int(value));
}
template<>
PyObject* pyopencv_from(const cvflann_flann_distance_t& value)
{
return PyInt_FromLong(int(value));
}
template<>
bool pyopencv_to(PyObject *o, cv::flann::IndexParams& p, const ArgInfo& info)
{
CV_UNUSED(info);
bool ok = true;
PyObject* key = NULL;
PyObject* item = NULL;
Py_ssize_t pos = 0;
if (!o || o == Py_None)
return true;
if(PyDict_Check(o)) {
while(PyDict_Next(o, &pos, &key, &item))
{
// get key
std::string k;
if (!getUnicodeString(key, k))
{
ok = false;
break;
}
// get value
if( !!PyBool_Check(item) )
{
p.setBool(k, item == Py_True);
}
else if( PyInt_Check(item) )
{
int value = (int)PyInt_AsLong(item);
if( strcmp(k.c_str(), "algorithm") == 0 )
p.setAlgorithm(value);
else
p.setInt(k, value);
}
else if( PyFloat_Check(item) )
{
double value = PyFloat_AsDouble(item);
p.setDouble(k, value);
}
else
{
std::string val_str;
if (!getUnicodeString(item, val_str))
{
ok = false;
break;
}
p.setString(k, val_str);
}
}
}
return ok && !PyErr_Occurred();
}
template<>
bool pyopencv_to(PyObject* obj, cv::flann::SearchParams & value, const ArgInfo& info)
{
return pyopencv_to<cv::flann::IndexParams>(obj, value, info);
}
template<>
bool pyopencv_to(PyObject *o, cvflann::flann_distance_t& dist, const ArgInfo& info)
{
int d = (int)dist;
bool ok = pyopencv_to(o, d, info);
dist = (cvflann::flann_distance_t)d;
return ok;
}
#endif

View File

@ -0,0 +1,56 @@
/***********************************************************************
* Software License Agreement (BSD License)
*
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*************************************************************************/
#include "precomp.hpp"
#include "opencv2/flann.hpp"
namespace cvflann
{
/** Global variable indicating the distance metric to be used.
* \deprecated Provided for backward compatibility
*/
flann_distance_t flann_distance_type_ = FLANN_DIST_L2;
flann_distance_t flann_distance_type() { return flann_distance_type_; }
/**
* Set distance type to used
* \deprecated
*/
void set_distance_type(flann_distance_t distance_type, int /*order*/)
{
printf("[WARNING] The cvflann::set_distance_type function is deperecated, "
"use cv::flann::GenericIndex<Distance> instead.\n");
if (distance_type != FLANN_DIST_L1 && distance_type != FLANN_DIST_L2) {
printf("[ERROR] cvflann::set_distance_type only provides backwards compatibility "
"for the L1 and L2 distances. "
"For other distance types you must use cv::flann::GenericIndex<Distance>\n");
}
flann_distance_type_ = distance_type;
}
}

View File

@ -0,0 +1,887 @@
#include "precomp.hpp"
#define MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES 0
static cvflann::IndexParams& get_params(const cv::flann::IndexParams& p)
{
return *(cvflann::IndexParams*)(p.params);
}
cv::flann::IndexParams::~IndexParams()
{
delete &get_params(*this);
}
namespace cv
{
namespace flann
{
using namespace cvflann;
IndexParams::IndexParams()
{
params = new ::cvflann::IndexParams();
}
template<typename T>
T getParam(const IndexParams& _p, const String& key, const T& defaultVal=T())
{
::cvflann::IndexParams& p = get_params(_p);
::cvflann::IndexParams::const_iterator it = p.find(key);
if( it == p.end() )
return defaultVal;
return it->second.cast<T>();
}
template<typename T>
void setParam(IndexParams& _p, const String& key, const T& value)
{
::cvflann::IndexParams& p = get_params(_p);
p[key] = value;
}
String IndexParams::getString(const String& key, const String& defaultVal) const
{
return getParam(*this, key, defaultVal);
}
int IndexParams::getInt(const String& key, int defaultVal) const
{
return getParam(*this, key, defaultVal);
}
double IndexParams::getDouble(const String& key, double defaultVal) const
{
return getParam(*this, key, defaultVal);
}
void IndexParams::setString(const String& key, const String& value)
{
setParam(*this, key, value);
}
void IndexParams::setInt(const String& key, int value)
{
setParam(*this, key, value);
}
void IndexParams::setDouble(const String& key, double value)
{
setParam(*this, key, value);
}
void IndexParams::setFloat(const String& key, float value)
{
setParam(*this, key, value);
}
void IndexParams::setBool(const String& key, bool value)
{
setParam(*this, key, value);
}
void IndexParams::setAlgorithm(int value)
{
setParam(*this, "algorithm", (cvflann::flann_algorithm_t)value);
}
void IndexParams::getAll(std::vector<String>& names,
std::vector<FlannIndexType>& types,
std::vector<String>& strValues,
std::vector<double>& numValues) const
{
names.clear();
types.clear();
strValues.clear();
numValues.clear();
::cvflann::IndexParams& p = get_params(*this);
::cvflann::IndexParams::const_iterator it = p.begin(), it_end = p.end();
for( ; it != it_end; ++it )
{
names.push_back(it->first);
try
{
String val = it->second.cast<String>();
types.push_back(FLANN_INDEX_TYPE_STRING);
strValues.push_back(val);
numValues.push_back(-1);
continue;
}
catch (...) {}
strValues.push_back(it->second.type().name());
try
{
double val = it->second.cast<double>();
types.push_back(FLANN_INDEX_TYPE_64F);
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
float val = it->second.cast<float>();
types.push_back(FLANN_INDEX_TYPE_32F);
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
int val = it->second.cast<int>();
types.push_back(FLANN_INDEX_TYPE_32S);
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
short val = it->second.cast<short>();
types.push_back(FLANN_INDEX_TYPE_16S);
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
ushort val = it->second.cast<ushort>();
types.push_back(FLANN_INDEX_TYPE_16U);
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
char val = it->second.cast<char>();
types.push_back(FLANN_INDEX_TYPE_8S);
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
uchar val = it->second.cast<uchar>();
types.push_back(FLANN_INDEX_TYPE_8U);
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
bool val = it->second.cast<bool>();
types.push_back(FLANN_INDEX_TYPE_BOOL);
numValues.push_back(val);
continue;
}
catch (...) {}
try
{
cvflann::flann_algorithm_t val = it->second.cast<cvflann::flann_algorithm_t>();
types.push_back(FLANN_INDEX_TYPE_ALGORITHM);
numValues.push_back(val);
continue;
}
catch (...) {}
types.push_back((FlannIndexType)-1); // unknown type
numValues.push_back(-1);
}
}
KDTreeIndexParams::KDTreeIndexParams(int trees)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KDTREE;
p["trees"] = trees;
}
LinearIndexParams::LinearIndexParams()
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_LINEAR;
}
CompositeIndexParams::CompositeIndexParams(int trees, int branching, int iterations,
flann_centers_init_t centers_init, float cb_index )
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KMEANS;
// number of randomized trees to use (for kdtree)
p["trees"] = trees;
// branching factor
p["branching"] = branching;
// max iterations to perform in one kmeans clustering (kmeans tree)
p["iterations"] = iterations;
// algorithm used for picking the initial cluster centers for kmeans tree
p["centers_init"] = centers_init;
// cluster boundary index. Used when searching the kmeans tree
p["cb_index"] = cb_index;
}
AutotunedIndexParams::AutotunedIndexParams(float target_precision, float build_weight,
float memory_weight, float sample_fraction)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_AUTOTUNED;
// precision desired (used for autotuning, -1 otherwise)
p["target_precision"] = target_precision;
// build tree time weighting factor
p["build_weight"] = build_weight;
// index memory weighting factor
p["memory_weight"] = memory_weight;
// what fraction of the dataset to use for autotuning
p["sample_fraction"] = sample_fraction;
}
KMeansIndexParams::KMeansIndexParams(int branching, int iterations,
flann_centers_init_t centers_init, float cb_index )
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_KMEANS;
// branching factor
p["branching"] = branching;
// max iterations to perform in one kmeans clustering (kmeans tree)
p["iterations"] = iterations;
// algorithm used for picking the initial cluster centers for kmeans tree
p["centers_init"] = centers_init;
// cluster boundary index. Used when searching the kmeans tree
p["cb_index"] = cb_index;
}
HierarchicalClusteringIndexParams::HierarchicalClusteringIndexParams(int branching ,
flann_centers_init_t centers_init,
int trees, int leaf_size)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_HIERARCHICAL;
// The branching factor used in the hierarchical clustering
p["branching"] = branching;
// Algorithm used for picking the initial cluster centers
p["centers_init"] = centers_init;
// number of parallel trees to build
p["trees"] = trees;
// maximum leaf size
p["leaf_size"] = leaf_size;
}
LshIndexParams::LshIndexParams(int table_number, int key_size, int multi_probe_level)
{
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_LSH;
// The number of hash tables to use
p["table_number"] = table_number;
// The length of the key in the hash tables
p["key_size"] = key_size;
// Number of levels to use in multi-probe (0 for standard LSH)
p["multi_probe_level"] = multi_probe_level;
}
SavedIndexParams::SavedIndexParams(const String& _filename)
{
String filename = _filename;
::cvflann::IndexParams& p = get_params(*this);
p["algorithm"] = FLANN_INDEX_SAVED;
p["filename"] = filename;
}
SearchParams::SearchParams( int checks, float eps, bool sorted, bool explore_all_trees )
{
::cvflann::IndexParams& p = get_params(*this);
// how many leafs to visit when searching for neighbours (-1 for unlimited)
p["checks"] = checks;
// search for eps-approximate neighbours (default: 0)
p["eps"] = eps;
// only for radius search, require neighbours sorted by distance (default: true)
p["sorted"] = sorted;
// if false, search stops at the tree reaching the number of max checks (original behavior).
// When true, we do a descent in each tree and. Like before the alternative paths
// stored in the heap are not be processed further when max checks is reached.
p["explore_all_trees"] = explore_all_trees;
}
SearchParams::SearchParams( int checks, float eps, bool sorted )
{
::cvflann::IndexParams& p = get_params(*this);
// how many leafs to visit when searching for neighbours (-1 for unlimited)
p["checks"] = checks;
// search for eps-approximate neighbours (default: 0)
p["eps"] = eps;
// only for radius search, require neighbours sorted by distance (default: true)
p["sorted"] = sorted;
// if false, search stops at the tree reaching the number of max checks (original behavior).
// When true, we do a descent in each tree and. Like before the alternative paths
// stored in the heap are not be processed further when max checks is reached.
p["explore_all_trees"] = false;
}
template<typename Distance, typename IndexType> void
buildIndex_(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
{
typedef typename Distance::ElementType ElementType;
if(DataType<ElementType>::type != data.type())
CV_Error_(Error::StsUnsupportedFormat, ("type=%d\n", data.type()));
if(!data.isContinuous())
CV_Error(Error::StsBadArg, "Only continuous arrays are supported");
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
IndexType* _index = new IndexType(dataset, get_params(params), dist);
try
{
_index->buildIndex();
}
catch (...)
{
delete _index;
_index = NULL;
throw;
}
index = _index;
}
template<typename Distance> void
buildIndex(void*& index, const Mat& data, const IndexParams& params, const Distance& dist = Distance())
{
buildIndex_<Distance, ::cvflann::Index<Distance> >(index, data, params, dist);
}
#if CV_NEON
typedef ::cvflann::Hamming<uchar> HammingDistance;
#else
typedef ::cvflann::HammingLUT HammingDistance;
#endif
typedef ::cvflann::DNAmming2<uchar> DNAmmingDistance;
Index::Index()
{
index = 0;
featureType = CV_32F;
algo = FLANN_INDEX_LINEAR;
distType = FLANN_DIST_L2;
}
Index::Index(InputArray _data, const IndexParams& params, flann_distance_t _distType)
{
index = 0;
featureType = CV_32F;
algo = FLANN_INDEX_LINEAR;
distType = FLANN_DIST_L2;
build(_data, params, _distType);
}
void Index::build(InputArray _data, const IndexParams& params, flann_distance_t _distType)
{
CV_INSTRUMENT_REGION();
release();
// Index may reuse 'data' during search, need to keep it alive
features_clone = _data.getMat().clone();
Mat data = features_clone;
algo = getParam<flann_algorithm_t>(params, "algorithm", FLANN_INDEX_LINEAR);
if( algo == FLANN_INDEX_SAVED )
{
load_(getParam<String>(params, "filename", String()));
return;
}
index = 0;
featureType = data.type();
distType = _distType;
if ( algo == FLANN_INDEX_LSH)
{
distType = FLANN_DIST_HAMMING;
}
switch( distType )
{
case FLANN_DIST_HAMMING:
buildIndex< HammingDistance >(index, data, params);
break;
case FLANN_DIST_L2:
buildIndex< ::cvflann::L2<float> >(index, data, params);
break;
case FLANN_DIST_L1:
buildIndex< ::cvflann::L1<float> >(index, data, params);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
buildIndex< DNAmmingDistance >(index, data, params);
break;
case FLANN_DIST_MAX:
buildIndex< ::cvflann::MaxDistance<float> >(index, data, params);
break;
case FLANN_DIST_HIST_INTERSECT:
buildIndex< ::cvflann::HistIntersectionDistance<float> >(index, data, params);
break;
case FLANN_DIST_HELLINGER:
buildIndex< ::cvflann::HellingerDistance<float> >(index, data, params);
break;
case FLANN_DIST_CHI_SQUARE:
buildIndex< ::cvflann::ChiSquareDistance<float> >(index, data, params);
break;
case FLANN_DIST_KL:
buildIndex< ::cvflann::KL_Divergence<float> >(index, data, params);
break;
#endif
default:
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
}
template<typename IndexType> void deleteIndex_(void* index)
{
delete (IndexType*)index;
}
template<typename Distance> void deleteIndex(void* index)
{
deleteIndex_< ::cvflann::Index<Distance> >(index);
}
Index::~Index()
{
release();
}
void Index::release()
{
CV_INSTRUMENT_REGION();
features_clone.release();
if( !index )
return;
switch( distType )
{
case FLANN_DIST_HAMMING:
deleteIndex< HammingDistance >(index);
break;
case FLANN_DIST_L2:
deleteIndex< ::cvflann::L2<float> >(index);
break;
case FLANN_DIST_L1:
deleteIndex< ::cvflann::L1<float> >(index);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
deleteIndex< DNAmmingDistance >(index);
break;
case FLANN_DIST_MAX:
deleteIndex< ::cvflann::MaxDistance<float> >(index);
break;
case FLANN_DIST_HIST_INTERSECT:
deleteIndex< ::cvflann::HistIntersectionDistance<float> >(index);
break;
case FLANN_DIST_HELLINGER:
deleteIndex< ::cvflann::HellingerDistance<float> >(index);
break;
case FLANN_DIST_CHI_SQUARE:
deleteIndex< ::cvflann::ChiSquareDistance<float> >(index);
break;
case FLANN_DIST_KL:
deleteIndex< ::cvflann::KL_Divergence<float> >(index);
break;
#endif
default:
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
index = 0;
}
template<typename Distance, typename IndexType>
void runKnnSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
int knn, const SearchParams& params)
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
int type = DataType<ElementType>::type;
int dtype = DataType<DistanceType>::type;
IndexType* index_ = (IndexType*)index;
CV_Assert((size_t)knn <= index_->size());
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
::cvflann::Matrix<int> _indices(indices.ptr<int>(), indices.rows, indices.cols);
::cvflann::Matrix<DistanceType> _dists(dists.ptr<DistanceType>(), dists.rows, dists.cols);
index_->knnSearch(_query, _indices, _dists, knn,
(const ::cvflann::SearchParams&)get_params(params));
}
template<typename Distance>
void runKnnSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
int knn, const SearchParams& params)
{
runKnnSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, knn, params);
}
template<typename Distance, typename IndexType>
int runRadiusSearch_(void* index, const Mat& query, Mat& indices, Mat& dists,
double radius, const SearchParams& params)
{
typedef typename Distance::ElementType ElementType;
typedef typename Distance::ResultType DistanceType;
int type = DataType<ElementType>::type;
int dtype = DataType<DistanceType>::type;
CV_Assert(query.type() == type && indices.type() == CV_32S && dists.type() == dtype);
CV_Assert(query.isContinuous() && indices.isContinuous() && dists.isContinuous());
::cvflann::Matrix<ElementType> _query((ElementType*)query.data, query.rows, query.cols);
::cvflann::Matrix<int> _indices(indices.ptr<int>(), indices.rows, indices.cols);
::cvflann::Matrix<DistanceType> _dists(dists.ptr<DistanceType>(), dists.rows, dists.cols);
return ((IndexType*)index)->radiusSearch(_query, _indices, _dists,
saturate_cast<float>(radius),
(const ::cvflann::SearchParams&)get_params(params));
}
template<typename Distance>
int runRadiusSearch(void* index, const Mat& query, Mat& indices, Mat& dists,
double radius, const SearchParams& params)
{
return runRadiusSearch_<Distance, ::cvflann::Index<Distance> >(index, query, indices, dists, radius, params);
}
static void createIndicesDists(OutputArray _indices, OutputArray _dists,
Mat& indices, Mat& dists, int rows,
int minCols, int maxCols, int dtype)
{
if( _indices.needed() )
{
indices = _indices.getMat();
if( !indices.isContinuous() || indices.type() != CV_32S ||
indices.rows != rows || indices.cols < minCols || indices.cols > maxCols )
{
if( !indices.isContinuous() )
_indices.release();
_indices.create( rows, minCols, CV_32S );
indices = _indices.getMat();
}
}
else
indices.create( rows, minCols, CV_32S );
if( _dists.needed() )
{
dists = _dists.getMat();
if( !dists.isContinuous() || dists.type() != dtype ||
dists.rows != rows || dists.cols < minCols || dists.cols > maxCols )
{
if( !_dists.isContinuous() )
_dists.release();
_dists.create( rows, minCols, dtype );
dists = _dists.getMat();
}
}
else
dists.create( rows, minCols, dtype );
}
void Index::knnSearch(InputArray _query, OutputArray _indices,
OutputArray _dists, int knn, const SearchParams& params)
{
CV_INSTRUMENT_REGION();
Mat query = _query.getMat(), indices, dists;
int dtype = (distType == FLANN_DIST_HAMMING)
|| (distType == FLANN_DIST_DNAMMING) ? CV_32S : CV_32F;
createIndicesDists( _indices, _dists, indices, dists, query.rows, knn, knn, dtype );
switch( distType )
{
case FLANN_DIST_HAMMING:
runKnnSearch<HammingDistance>(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_L2:
runKnnSearch< ::cvflann::L2<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_L1:
runKnnSearch< ::cvflann::L1<float> >(index, query, indices, dists, knn, params);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
runKnnSearch<DNAmmingDistance>(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_MAX:
runKnnSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_HIST_INTERSECT:
runKnnSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_HELLINGER:
runKnnSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_CHI_SQUARE:
runKnnSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, knn, params);
break;
case FLANN_DIST_KL:
runKnnSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, knn, params);
break;
#endif
default:
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
}
int Index::radiusSearch(InputArray _query, OutputArray _indices,
OutputArray _dists, double radius, int maxResults,
const SearchParams& params)
{
CV_INSTRUMENT_REGION();
Mat query = _query.getMat(), indices, dists;
int dtype = (distType == FLANN_DIST_HAMMING)
|| (distType == FLANN_DIST_DNAMMING) ? CV_32S : CV_32F;
CV_Assert( maxResults > 0 );
createIndicesDists( _indices, _dists, indices, dists, query.rows, maxResults, INT_MAX, dtype );
if( algo == FLANN_INDEX_LSH )
CV_Error( Error::StsNotImplemented, "LSH index does not support radiusSearch operation" );
switch( distType )
{
case FLANN_DIST_HAMMING:
return runRadiusSearch< HammingDistance >(index, query, indices, dists, radius, params);
case FLANN_DIST_L2:
return runRadiusSearch< ::cvflann::L2<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_L1:
return runRadiusSearch< ::cvflann::L1<float> >(index, query, indices, dists, radius, params);
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
return runRadiusSearch< DNAmmingDistance >(index, query, indices, dists, radius, params);
case FLANN_DIST_MAX:
return runRadiusSearch< ::cvflann::MaxDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_HIST_INTERSECT:
return runRadiusSearch< ::cvflann::HistIntersectionDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_HELLINGER:
return runRadiusSearch< ::cvflann::HellingerDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_CHI_SQUARE:
return runRadiusSearch< ::cvflann::ChiSquareDistance<float> >(index, query, indices, dists, radius, params);
case FLANN_DIST_KL:
return runRadiusSearch< ::cvflann::KL_Divergence<float> >(index, query, indices, dists, radius, params);
#endif
default:
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
return -1;
}
flann_distance_t Index::getDistance() const
{
return distType;
}
flann_algorithm_t Index::getAlgorithm() const
{
return algo;
}
template<typename IndexType> void saveIndex_(const Index* index0, const void* index, FILE* fout)
{
IndexType* _index = (IndexType*)index;
::cvflann::save_header(fout, *_index);
// some compilers may store short enumerations as bytes,
// so make sure we always write integers (which are 4-byte values in any modern C compiler)
int idistType = (int)index0->getDistance();
::cvflann::save_value<int>(fout, idistType);
_index->saveIndex(fout);
}
template<typename Distance> void saveIndex(const Index* index0, const void* index, FILE* fout)
{
saveIndex_< ::cvflann::Index<Distance> >(index0, index, fout);
}
void Index::save(const String& filename) const
{
CV_INSTRUMENT_REGION();
FILE* fout = fopen(filename.c_str(), "wb");
if (fout == NULL)
CV_Error_( Error::StsError, ("Can not open file %s for writing FLANN index\n", filename.c_str()) );
switch( distType )
{
case FLANN_DIST_HAMMING:
saveIndex< HammingDistance >(this, index, fout);
break;
case FLANN_DIST_L2:
saveIndex< ::cvflann::L2<float> >(this, index, fout);
break;
case FLANN_DIST_L1:
saveIndex< ::cvflann::L1<float> >(this, index, fout);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
saveIndex< DNAmmingDistance >(this, index, fout);
break;
case FLANN_DIST_MAX:
saveIndex< ::cvflann::MaxDistance<float> >(this, index, fout);
break;
case FLANN_DIST_HIST_INTERSECT:
saveIndex< ::cvflann::HistIntersectionDistance<float> >(this, index, fout);
break;
case FLANN_DIST_HELLINGER:
saveIndex< ::cvflann::HellingerDistance<float> >(this, index, fout);
break;
case FLANN_DIST_CHI_SQUARE:
saveIndex< ::cvflann::ChiSquareDistance<float> >(this, index, fout);
break;
case FLANN_DIST_KL:
saveIndex< ::cvflann::KL_Divergence<float> >(this, index, fout);
break;
#endif
default:
fclose(fout);
fout = 0;
CV_Error(Error::StsBadArg, "Unknown/unsupported distance type");
}
if( fout )
fclose(fout);
}
template<typename Distance, typename IndexType>
bool loadIndex_(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
{
typedef typename Distance::ElementType ElementType;
CV_Assert(DataType<ElementType>::type == data.type() && data.isContinuous());
::cvflann::Matrix<ElementType> dataset((ElementType*)data.data, data.rows, data.cols);
::cvflann::IndexParams params;
params["algorithm"] = index0->getAlgorithm();
IndexType* _index = new IndexType(dataset, params, dist);
_index->loadIndex(fin);
index = _index;
return true;
}
template<typename Distance>
bool loadIndex(Index* index0, void*& index, const Mat& data, FILE* fin, const Distance& dist=Distance())
{
return loadIndex_<Distance, ::cvflann::Index<Distance> >(index0, index, data, fin, dist);
}
bool Index::load(InputArray _data, const String& filename)
{
release();
// Index may reuse 'data' during search, need to keep it alive
features_clone = _data.getMat().clone();
Mat data = features_clone;
return load_(filename);
}
bool Index::load_(const String& filename)
{
Mat data = features_clone;
bool ok = true;
FILE* fin = fopen(filename.c_str(), "rb");
if (fin == NULL)
return false;
::cvflann::IndexHeader header = ::cvflann::load_header(fin);
algo = header.index_type;
featureType = header.data_type == FLANN_UINT8 ? CV_8U :
header.data_type == FLANN_INT8 ? CV_8S :
header.data_type == FLANN_UINT16 ? CV_16U :
header.data_type == FLANN_INT16 ? CV_16S :
header.data_type == FLANN_INT32 ? CV_32S :
header.data_type == FLANN_FLOAT32 ? CV_32F :
header.data_type == FLANN_FLOAT64 ? CV_64F : -1;
if( (int)header.rows != data.rows || (int)header.cols != data.cols ||
featureType != data.type() )
{
fprintf(stderr, "Reading FLANN index error: the saved data size (%d, %d) or type (%d) is different from the passed one (%d, %d), %d\n",
(int)header.rows, (int)header.cols, featureType, data.rows, data.cols, data.type());
fclose(fin);
return false;
}
int idistType = 0;
::cvflann::load_value(fin, idistType);
distType = (flann_distance_t)idistType;
if( !((distType == FLANN_DIST_HAMMING && featureType == CV_8U) ||
(distType == FLANN_DIST_DNAMMING && featureType == CV_8U) ||
(distType != FLANN_DIST_HAMMING && featureType == CV_32F)) )
{
fprintf(stderr, "Reading FLANN index error: unsupported feature type %d for the index type %d\n", featureType, algo);
fclose(fin);
return false;
}
switch( distType )
{
case FLANN_DIST_HAMMING:
loadIndex< HammingDistance >(this, index, data, fin);
break;
case FLANN_DIST_L2:
loadIndex< ::cvflann::L2<float> >(this, index, data, fin);
break;
case FLANN_DIST_L1:
loadIndex< ::cvflann::L1<float> >(this, index, data, fin);
break;
#if MINIFLANN_SUPPORT_EXOTIC_DISTANCE_TYPES
case FLANN_DIST_DNAMMING:
loadIndex< DNAmmingDistance >(this, index, data, fin);
break;
case FLANN_DIST_MAX:
loadIndex< ::cvflann::MaxDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_HIST_INTERSECT:
loadIndex< ::cvflann::HistIntersectionDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_HELLINGER:
loadIndex< ::cvflann::HellingerDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_CHI_SQUARE:
loadIndex< ::cvflann::ChiSquareDistance<float> >(this, index, data, fin);
break;
case FLANN_DIST_KL:
loadIndex< ::cvflann::KL_Divergence<float> >(this, index, data, fin);
break;
#endif
default:
fprintf(stderr, "Reading FLANN index error: unsupported distance type %d\n", distType);
ok = false;
}
if( fin )
fclose(fin);
return ok;
}
}
}

View File

@ -0,0 +1,23 @@
#ifndef OPENCV_FLANN_PRECOMP_HPP
#define OPENCV_FLANN_PRECOMP_HPP
#include <cstdio>
#include <cstdarg>
#include <sstream>
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/flann/miniflann.hpp"
#include "opencv2/flann/dist.h"
#include "opencv2/flann/index_testing.h"
#include "opencv2/flann/params.h"
#include "opencv2/flann/saving.h"
// index types
#include "opencv2/flann/all_indices.h"
#include "opencv2/flann/flann_base.hpp"
#include "opencv2/core/private.hpp"
#endif

View File

@ -0,0 +1,99 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
class CV_LshTableBadArgTest : public cvtest::BadArgTest
{
protected:
void run(int);
void run_func(void) { }
struct Caller
{
int table_number, key_size, multi_probe_level;
Mat features;
void operator()() const
{
flann::LshIndexParams indexParams(table_number, key_size, multi_probe_level);
flann::Index lsh(features, indexParams);
}
};
};
void CV_LshTableBadArgTest::run( int /* start_from */ )
{
RNG &rng = ts->get_rng();
Caller caller;
Size featuresSize = cvtest::randomSize(rng, 10.0);
caller.features = cvtest::randomMat(rng, featuresSize, CV_8UC1, 0, 255, false);
caller.table_number = 12;
caller.multi_probe_level = 2;
int errors = 0;
caller.key_size = 0;
errors += run_test_case(Error::StsBadArg, "key_size is zero", caller);
caller.key_size = static_cast<int>(sizeof(size_t) * CHAR_BIT);
errors += run_test_case(Error::StsBadArg, "key_size is too big", caller);
caller.key_size += cvtest::randInt(rng) % 100;
errors += run_test_case(Error::StsBadArg, "key_size is too big", caller);
if (errors != 0)
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
else
ts->set_failed_test_info(cvtest::TS::OK);
}
TEST(Flann_LshTable, badarg) { CV_LshTableBadArgTest test; test.safe_run(); }
TEST(Flann_LshTable, bad_any_cast) {
Mat features = Mat::ones(1, 64, CV_8U);
EXPECT_NO_THROW(flann::GenericIndex<cvflann::Hamming2<unsigned char> >(
features, cvflann::LshIndexParams()));
}
}} // namespace

View File

@ -0,0 +1,7 @@
#include "test_precomp.hpp"
#if defined(HAVE_HPX)
#include <hpx/hpx_main.hpp>
#endif
CV_TEST_MAIN("cv")

View File

@ -0,0 +1,7 @@
#ifndef OPENCV_TEST_PRECOMP_HPP
#define OPENCV_TEST_PRECOMP_HPP
#include "opencv2/ts.hpp"
#include "opencv2/flann.hpp"
#endif