feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,42 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#ifndef OPENCV_GAPI_HPP
#define OPENCV_GAPI_HPP
#include <memory>
/** \defgroup gapi G-API framework
@{
@defgroup gapi_main_classes G-API Main Classes
@defgroup gapi_data_objects G-API Data Types
@{
@defgroup gapi_meta_args G-API Metadata Descriptors
@}
@defgroup gapi_std_backends G-API Standard Backends
@defgroup gapi_compile_args G-API Graph Compilation Arguments
@defgroup gapi_serialization G-API Serialization functionality
@}
*/
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/garray.hpp>
#include <opencv2/gapi/gscalar.hpp>
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/gapi/gframe.hpp>
#include <opencv2/gapi/gcomputation.hpp>
#include <opencv2/gapi/gcompiled.hpp>
#include <opencv2/gapi/gtyped.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/operators.hpp>
// Include these files here to avoid cyclic dependency between
// Desync & GKernel & GComputation & GStreamingCompiled.
#include <opencv2/gapi/streaming/desync.hpp>
#include <opencv2/gapi/streaming/format.hpp>
#endif // OPENCV_GAPI_HPP

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,27 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_CPU_CORE_API_HPP
#define OPENCV_GAPI_CPU_CORE_API_HPP
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
namespace cv {
namespace gapi {
namespace core {
namespace cpu {
GAPI_EXPORTS_W cv::gapi::GKernelPackage kernels();
} // namespace cpu
} // namespace core
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_CPU_CORE_API_HPP

View File

@ -0,0 +1,542 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GCPUKERNEL_HPP
#define OPENCV_GAPI_GCPUKERNEL_HPP
#include <functional>
#include <unordered_map>
#include <utility>
#include <vector>
#include <opencv2/core/mat.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/gmetaarg.hpp>
#include <opencv2/gapi/util/compiler_hints.hpp> //suppress_unused_warning
#include <opencv2/gapi/util/util.hpp>
// FIXME: namespace scheme for backends?
namespace cv {
namespace gimpl
{
// Forward-declare an internal class
class GCPUExecutable;
namespace render
{
namespace ocv
{
class GRenderExecutable;
}
}
} // namespace gimpl
namespace gapi
{
/**
* @brief This namespace contains G-API CPU backend functions,
* structures, and symbols.
*/
namespace cpu
{
/**
* \addtogroup gapi_std_backends
* @{
*
* @brief G-API backends available in this OpenCV version
*
* G-API backends play a corner stone role in G-API execution
* stack. Every backend is hardware-oriented and thus can run its
* kernels efficiently on the target platform.
*
* Backends are usually "black boxes" for G-API users -- on the API
* side, all backends are represented as different objects of the
* same class cv::gapi::GBackend.
* User can manipulate with backends by specifying which kernels to use.
*
* @sa @ref gapi_hld
*/
/**
* @brief Get a reference to CPU (OpenCV) backend.
*
* This is the default backend in G-API at the moment, providing
* broader functional coverage but losing some graph model
* advantages. Provided mostly for reference and prototyping
* purposes.
*
* @sa gapi_std_backends
*/
GAPI_EXPORTS cv::gapi::GBackend backend();
/** @} */
class GOCVFunctor;
//! @cond IGNORED
template<typename K, typename Callable>
GOCVFunctor ocv_kernel(const Callable& c);
template<typename K, typename Callable>
GOCVFunctor ocv_kernel(Callable& c);
//! @endcond
} // namespace cpu
} // namespace gapi
// Represents arguments which are passed to a wrapped CPU function
// FIXME: put into detail?
class GAPI_EXPORTS GCPUContext
{
public:
// Generic accessor API
template<typename T>
const T& inArg(int input) { return m_args.at(input).get<T>(); }
// Syntax sugar
const cv::Mat& inMat(int input);
cv::Mat& outMatR(int output); // FIXME: Avoid cv::Mat m = ctx.outMatR()
const cv::Scalar& inVal(int input);
cv::Scalar& outValR(int output); // FIXME: Avoid cv::Scalar s = ctx.outValR()
cv::MediaFrame& outFrame(int output);
template<typename T> std::vector<T>& outVecR(int output) // FIXME: the same issue
{
return outVecRef(output).wref<T>();
}
template<typename T> T& outOpaqueR(int output) // FIXME: the same issue
{
return outOpaqueRef(output).wref<T>();
}
GArg state()
{
return m_state;
}
protected:
detail::VectorRef& outVecRef(int output);
detail::OpaqueRef& outOpaqueRef(int output);
std::vector<GArg> m_args;
GArg m_state;
//FIXME: avoid conversion of arguments from internal representation to OpenCV one on each call
//to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run,
//once on enter for input and output arguments, and once before return for output arguments only
std::unordered_map<std::size_t, GRunArgP> m_results;
friend class gimpl::GCPUExecutable;
friend class gimpl::render::ocv::GRenderExecutable;
};
class GAPI_EXPORTS GCPUKernel
{
public:
// This function is a kernel's execution entry point (does the processing work)
using RunF = std::function<void(GCPUContext &)>;
// This function is a stateful kernel's setup routine (configures state)
using SetupF = std::function<void(const GMetaArgs &, const GArgs &,
GArg &, const GCompileArgs &)>;
GCPUKernel();
GCPUKernel(const RunF& runF, const SetupF& setupF = nullptr);
RunF m_runF = nullptr;
SetupF m_setupF = nullptr;
bool m_isStateful = false;
};
// FIXME: This is an ugly ad-hoc implementation. TODO: refactor
namespace detail
{
template<class T> struct get_in;
template<> struct get_in<cv::GMat>
{
static cv::Mat get(GCPUContext &ctx, int idx) { return ctx.inMat(idx); }
};
template<> struct get_in<cv::GMatP>
{
static cv::Mat get(GCPUContext &ctx, int idx) { return get_in<cv::GMat>::get(ctx, idx); }
};
template<> struct get_in<cv::GFrame>
{
static cv::MediaFrame get(GCPUContext &ctx, int idx) { return ctx.inArg<cv::MediaFrame>(idx); }
};
template<> struct get_in<cv::GScalar>
{
static cv::Scalar get(GCPUContext &ctx, int idx) { return ctx.inVal(idx); }
};
template<typename U> struct get_in<cv::GArray<U> >
{
static const std::vector<U>& get(GCPUContext &ctx, int idx) { return ctx.inArg<VectorRef>(idx).rref<U>(); }
};
template<typename U> struct get_in<cv::GOpaque<U> >
{
static const U& get(GCPUContext &ctx, int idx) { return ctx.inArg<OpaqueRef>(idx).rref<U>(); }
};
//FIXME(dm): GArray<Mat>/GArray<GMat> conversion should be done more gracefully in the system
template<> struct get_in<cv::GArray<cv::GMat> >: public get_in<cv::GArray<cv::Mat> >
{
};
//FIXME(dm): GArray<Scalar>/GArray<GScalar> conversion should be done more gracefully in the system
template<> struct get_in<cv::GArray<cv::GScalar> >: public get_in<cv::GArray<cv::Scalar> >
{
};
// FIXME(dm): GArray<vector<U>>/GArray<GArray<U>> conversion should be done more gracefully in the system
template<typename U> struct get_in<cv::GArray<cv::GArray<U>> >: public get_in<cv::GArray<std::vector<U>> >
{
};
//FIXME(dm): GOpaque<Mat>/GOpaque<GMat> conversion should be done more gracefully in the system
template<> struct get_in<cv::GOpaque<cv::GMat> >: public get_in<cv::GOpaque<cv::Mat> >
{
};
//FIXME(dm): GOpaque<Scalar>/GOpaque<GScalar> conversion should be done more gracefully in the system
template<> struct get_in<cv::GOpaque<cv::GScalar> >: public get_in<cv::GOpaque<cv::Mat> >
{
};
template<class T> struct get_in
{
static T get(GCPUContext &ctx, int idx) { return ctx.inArg<T>(idx); }
};
struct tracked_cv_mat{
tracked_cv_mat(cv::Mat& m) : r{m}, original_data{m.data} {}
cv::Mat r;
uchar* original_data;
operator cv::Mat& (){ return r;}
void validate() const{
if (r.data != original_data)
{
util::throw_error
(std::logic_error
("OpenCV kernel output parameter was reallocated. \n"
"Incorrect meta data was provided ?"));
}
}
};
template<typename... Outputs>
void postprocess(Outputs&... outs)
{
struct
{
void operator()(tracked_cv_mat* bm) { bm->validate(); }
void operator()(...) { }
} validate;
//dummy array to unfold parameter pack
int dummy[] = { 0, (validate(&outs), 0)... };
cv::util::suppress_unused_warning(dummy);
}
template<class T> struct get_out;
template<> struct get_out<cv::GMat>
{
static tracked_cv_mat get(GCPUContext &ctx, int idx)
{
auto& r = ctx.outMatR(idx);
return {r};
}
};
template<> struct get_out<cv::GMatP>
{
static tracked_cv_mat get(GCPUContext &ctx, int idx)
{
return get_out<cv::GMat>::get(ctx, idx);
}
};
template<> struct get_out<cv::GScalar>
{
static cv::Scalar& get(GCPUContext &ctx, int idx)
{
return ctx.outValR(idx);
}
};
template<> struct get_out<cv::GFrame>
{
static cv::MediaFrame& get(GCPUContext &ctx, int idx)
{
return ctx.outFrame(idx);
}
};
template<typename U> struct get_out<cv::GArray<U>>
{
static std::vector<U>& get(GCPUContext &ctx, int idx)
{
return ctx.outVecR<U>(idx);
}
};
//FIXME(dm): GArray<Mat>/GArray<GMat> conversion should be done more gracefully in the system
template<> struct get_out<cv::GArray<cv::GMat> >: public get_out<cv::GArray<cv::Mat> >
{
};
// FIXME(dm): GArray<vector<U>>/GArray<GArray<U>> conversion should be done more gracefully in the system
template<typename U> struct get_out<cv::GArray<cv::GArray<U>> >: public get_out<cv::GArray<std::vector<U>> >
{
};
template<typename U> struct get_out<cv::GOpaque<U>>
{
static U& get(GCPUContext &ctx, int idx)
{
return ctx.outOpaqueR<U>(idx);
}
};
template<typename, typename>
struct OCVSetupHelper;
template<typename Impl, typename... Ins>
struct OCVSetupHelper<Impl, std::tuple<Ins...>>
{
// Using 'auto' return type and 'decltype' specifier in both 'setup_impl' versions
// to check existence of required 'Impl::setup' functions.
// While 'decltype' specifier accepts expression we pass expression with 'comma-operator'
// where first operand of comma-operator is call attempt to desired 'Impl::setup' and
// the second operand is 'void()' expression.
//
// SFINAE for 'Impl::setup' which accepts compile arguments.
template<int... IIs>
static auto setup_impl(const GMetaArgs &metaArgs, const GArgs &args,
GArg &state, const GCompileArgs &compileArgs,
detail::Seq<IIs...>) ->
decltype(Impl::setup(detail::get_in_meta<Ins>(metaArgs, args, IIs)...,
std::declval<typename std::add_lvalue_reference<
std::shared_ptr<typename Impl::State>
>::type
>(),
compileArgs)
, void())
{
// TODO: unique_ptr <-> shared_ptr conversion ?
// To check: Conversion is possible only if the state which should be passed to
// 'setup' user callback isn't required to have previous value
std::shared_ptr<typename Impl::State> stPtr;
Impl::setup(detail::get_in_meta<Ins>(metaArgs, args, IIs)..., stPtr, compileArgs);
state = GArg(stPtr);
}
// SFINAE for 'Impl::setup' which doesn't accept compile arguments.
template<int... IIs>
static auto setup_impl(const GMetaArgs &metaArgs, const GArgs &args,
GArg &state, const GCompileArgs &/* compileArgs */,
detail::Seq<IIs...>) ->
decltype(Impl::setup(detail::get_in_meta<Ins>(metaArgs, args, IIs)...,
std::declval<typename std::add_lvalue_reference<
std::shared_ptr<typename Impl::State>
>::type
>()
)
, void())
{
// The same comment as in 'setup' above.
std::shared_ptr<typename Impl::State> stPtr;
Impl::setup(detail::get_in_meta<Ins>(metaArgs, args, IIs)..., stPtr);
state = GArg(stPtr);
}
static void setup(const GMetaArgs &metaArgs, const GArgs &args,
GArg& state, const GCompileArgs &compileArgs)
{
setup_impl(metaArgs, args, state, compileArgs,
typename detail::MkSeq<sizeof...(Ins)>::type());
}
};
// OCVCallHelper is a helper class to call stateless OCV kernels and OCV kernel functors.
template<typename, typename, typename>
struct OCVCallHelper;
// FIXME: probably can be simplified with std::apply or analogue.
template<typename Impl, typename... Ins, typename... Outs>
struct OCVCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...>>
{
template<typename... Inputs>
struct call_and_postprocess
{
template<typename... Outputs>
static void call(Inputs&&... ins, Outputs&&... outs)
{
//not using a std::forward on outs is deliberate in order to
//cause compilation error, by trying to bind rvalue references to lvalue references
Impl::run(std::forward<Inputs>(ins)..., outs...);
postprocess(outs...);
}
template<typename... Outputs>
static void call(Impl& impl, Inputs&&... ins, Outputs&&... outs)
{
impl(std::forward<Inputs>(ins)..., outs...);
}
};
template<int... IIs, int... OIs>
static void call_impl(GCPUContext &ctx, detail::Seq<IIs...>, detail::Seq<OIs...>)
{
//Make sure that OpenCV kernels do not reallocate memory for output parameters
//by comparing it's state (data ptr) before and after the call.
//This is done by converting each output Mat into tracked_cv_mat object, and binding
//them to parameters of ad-hoc function
call_and_postprocess<decltype(get_in<Ins>::get(ctx, IIs))...>
::call(get_in<Ins>::get(ctx, IIs)..., get_out<Outs>::get(ctx, OIs)...);
}
template<int... IIs, int... OIs>
static void call_impl(cv::GCPUContext &ctx, Impl& impl,
detail::Seq<IIs...>, detail::Seq<OIs...>)
{
call_and_postprocess<decltype(get_in<Ins>::get(ctx, IIs))...>
::call(impl, get_in<Ins>::get(ctx, IIs)..., get_out<Outs>::get(ctx, OIs)...);
}
static void call(GCPUContext &ctx)
{
call_impl(ctx,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
// NB: Same as call but calling the object
// This necessary for kernel implementations that have a state
// and are represented as an object
static void callFunctor(cv::GCPUContext &ctx, Impl& impl)
{
call_impl(ctx, impl,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
};
// OCVStCallHelper is a helper class to call stateful OCV kernels.
template<typename, typename, typename>
struct OCVStCallHelper;
template<typename Impl, typename... Ins, typename... Outs>
struct OCVStCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...>> :
OCVCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...>>
{
template<typename... Inputs>
struct call_and_postprocess
{
template<typename... Outputs>
static void call(typename Impl::State& st, Inputs&&... ins, Outputs&&... outs)
{
Impl::run(std::forward<Inputs>(ins)..., outs..., st);
postprocess(outs...);
}
};
template<int... IIs, int... OIs>
static void call_impl(GCPUContext &ctx, detail::Seq<IIs...>, detail::Seq<OIs...>)
{
auto& st = *ctx.state().get<std::shared_ptr<typename Impl::State>>();
call_and_postprocess<decltype(get_in<Ins>::get(ctx, IIs))...>
::call(st, get_in<Ins>::get(ctx, IIs)..., get_out<Outs>::get(ctx, OIs)...);
}
static void call(GCPUContext &ctx)
{
call_impl(ctx,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
};
} // namespace detail
template<class Impl, class K>
class GCPUKernelImpl: public cv::detail::KernelTag
{
using CallHelper = cv::detail::OCVCallHelper<Impl, typename K::InArgs, typename K::OutArgs>;
public:
using API = K;
static cv::gapi::GBackend backend() { return cv::gapi::cpu::backend(); }
static cv::GCPUKernel kernel() { return GCPUKernel(&CallHelper::call); }
};
template<class Impl, class K, class S>
class GCPUStKernelImpl: public cv::detail::KernelTag
{
using StSetupHelper = detail::OCVSetupHelper<Impl, typename K::InArgs>;
using StCallHelper = detail::OCVStCallHelper<Impl, typename K::InArgs, typename K::OutArgs>;
public:
using API = K;
using State = S;
static cv::gapi::GBackend backend() { return cv::gapi::cpu::backend(); }
static cv::GCPUKernel kernel() { return GCPUKernel(&StCallHelper::call,
&StSetupHelper::setup); }
};
#define GAPI_OCV_KERNEL(Name, API) struct Name: public cv::GCPUKernelImpl<Name, API>
// TODO: Reuse Anatoliy's logic for support of types with commas in macro.
// Retrieve the common part from Anatoliy's logic to the separate place.
#define GAPI_OCV_KERNEL_ST(Name, API, State) \
struct Name: public cv::GCPUStKernelImpl<Name, API, State> \
/// @private
class gapi::cpu::GOCVFunctor : public gapi::GFunctor
{
public:
using Impl = std::function<void(GCPUContext &)>;
using Meta = cv::GKernel::M;
GOCVFunctor(const char* id, const Meta &meta, const Impl& impl)
: gapi::GFunctor(id), impl_{GCPUKernel(impl), meta}
{
}
GKernelImpl impl() const override { return impl_; }
gapi::GBackend backend() const override { return gapi::cpu::backend(); }
private:
GKernelImpl impl_;
};
//! @cond IGNORED
template<typename K, typename Callable>
gapi::cpu::GOCVFunctor gapi::cpu::ocv_kernel(Callable& c)
{
using P = cv::detail::OCVCallHelper<Callable, typename K::InArgs, typename K::OutArgs>;
return GOCVFunctor{ K::id()
, &K::getOutMeta
, std::bind(&P::callFunctor, std::placeholders::_1, std::ref(c))
};
}
template<typename K, typename Callable>
gapi::cpu::GOCVFunctor gapi::cpu::ocv_kernel(const Callable& c)
{
using P = cv::detail::OCVCallHelper<Callable, typename K::InArgs, typename K::OutArgs>;
return GOCVFunctor{ K::id()
, &K::getOutMeta
, std::bind(&P::callFunctor, std::placeholders::_1, c)
};
}
//! @endcond
} // namespace cv
#endif // OPENCV_GAPI_GCPUKERNEL_HPP

View File

@ -0,0 +1,27 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_CPU_IMGPROC_API_HPP
#define OPENCV_GAPI_CPU_IMGPROC_API_HPP
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
namespace imgproc {
namespace cpu {
GAPI_EXPORTS GKernelPackage kernels();
} // namespace cpu
} // namespace imgproc
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_CPU_IMGPROC_API_HPP

View File

@ -0,0 +1,48 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#ifndef OPENCV_GAPI_CPU_STEREO_API_HPP
#define OPENCV_GAPI_CPU_STEREO_API_HPP
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
namespace calib3d {
namespace cpu {
GAPI_EXPORTS GKernelPackage kernels();
/** @brief Structure for the Stereo operation initialization parameters.*/
struct GAPI_EXPORTS StereoInitParam {
StereoInitParam(int nD, int bS, double bL, double f):
numDisparities(nD), blockSize(bS), baseline(bL), focus(f) {}
StereoInitParam() = default;
int numDisparities = 0;
int blockSize = 21;
double baseline = 63.5;
double focus = 3.6;
};
} // namespace cpu
} // namespace calib3d
} // namespace gapi
namespace detail {
template<> struct CompileArgTag<cv::gapi::calib3d::cpu::StereoInitParam> {
static const char* tag() {
return "org.opencv.stereoInit";
}
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_CPU_STEREO_API_HPP

View File

@ -0,0 +1,25 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_CPU_VIDEO_API_HPP
#define OPENCV_GAPI_CPU_VIDEO_API_HPP
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
namespace video {
namespace cpu {
GAPI_EXPORTS GKernelPackage kernels();
} // namespace cpu
} // namespace video
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_CPU_VIDEO_API_HPP

View File

@ -0,0 +1,20 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_FLUID_CORE_HPP
#define OPENCV_GAPI_FLUID_CORE_HPP
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
namespace cv { namespace gapi { namespace core { namespace fluid {
GAPI_EXPORTS_W cv::gapi::GKernelPackage kernels();
}}}}
#endif // OPENCV_GAPI_FLUID_CORE_HPP

View File

@ -0,0 +1,154 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_FLUID_BUFFER_HPP
#define OPENCV_GAPI_FLUID_BUFFER_HPP
#include <list>
#include <numeric> // accumulate
#include <ostream> // ostream
#include <cstdint> // uint8_t
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/util/optional.hpp>
namespace cv {
namespace gapi {
namespace fluid {
struct Border
{
// This constructor is required to support existing kernels which are part of G-API
Border(int _type, cv::Scalar _val) : type(_type), value(_val) {};
int type;
cv::Scalar value;
};
using BorderOpt = util::optional<Border>;
bool operator == (const Border& b1, const Border& b2);
class GAPI_EXPORTS Buffer;
class GAPI_EXPORTS View
{
public:
struct Cache
{
std::vector<const uint8_t*> m_linePtrs;
GMatDesc m_desc;
int m_border_size = 0;
inline const uint8_t* linePtr(int index) const
{
// "out_of_window" check:
// user must not request the lines which are outside of specified kernel window
GAPI_DbgAssert(index >= -m_border_size
&& index < -m_border_size + static_cast<int>(m_linePtrs.size()));
return m_linePtrs[index + m_border_size];
}
};
const inline uint8_t* InLineB(int index) const // -(w-1)/2...0...+(w-1)/2 for Filters
{
return m_cache->linePtr(index);
}
template<typename T> const inline T* InLine(int i) const
{
const uint8_t* ptr = this->InLineB(i);
return reinterpret_cast<const T*>(ptr);
}
inline operator bool() const { return m_priv != nullptr; }
bool ready() const;
inline int length() const { return m_cache->m_desc.size.width; }
int y() const;
inline const GMatDesc& meta() const { return m_cache->m_desc; }
class GAPI_EXPORTS Priv; // internal use only
Priv& priv(); // internal use only
const Priv& priv() const; // internal use only
View();
View(std::unique_ptr<Priv>&& p);
View(View&& v);
View& operator=(View&& v);
~View();
private:
std::unique_ptr<Priv> m_priv;
const Cache* m_cache = nullptr;
};
class GAPI_EXPORTS Buffer
{
public:
struct Cache
{
std::vector<uint8_t*> m_linePtrs;
GMatDesc m_desc;
};
// Default constructor (executable creation stage,
// all following initialization performed in Priv::init())
Buffer();
// Scratch constructor (user kernels)
Buffer(const cv::GMatDesc &desc);
// Constructor for intermediate buffers (for tests)
Buffer(const cv::GMatDesc &desc,
int max_line_consumption, int border_size,
int skew,
int wlpi,
BorderOpt border);
// Constructor for in/out buffers (for tests)
Buffer(const cv::Mat &data, bool is_input);
~Buffer();
Buffer& operator=(Buffer&&);
inline uint8_t* OutLineB(int index = 0)
{
return m_cache->m_linePtrs[index];
}
template<typename T> inline T* OutLine(int index = 0)
{
uint8_t* ptr = this->OutLineB(index);
return reinterpret_cast<T*>(ptr);
}
int y() const;
int linesReady() const;
void debug(std::ostream &os) const;
inline int length() const { return m_cache->m_desc.size.width; }
int lpi() const; // LPI for WRITER
inline const GMatDesc& meta() const { return m_cache->m_desc; }
View mkView(int borderSize, bool ownStorage);
void addView(const View* v);
class GAPI_EXPORTS Priv; // internal use only
Priv& priv(); // internal use only
const Priv& priv() const; // internal use only
private:
std::unique_ptr<Priv> m_priv;
const Cache* m_cache;
};
} // namespace cv::gapi::fluid
} // namespace cv::gapi
} // namespace cv
#endif // OPENCV_GAPI_FLUID_BUFFER_HPP

View File

@ -0,0 +1,442 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019 Intel Corporation
#ifndef OPENCV_GAPI_FLUID_KERNEL_HPP
#define OPENCV_GAPI_FLUID_KERNEL_HPP
#include <vector>
#include <functional>
#include <map>
#include <unordered_map>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/fluid/gfluidbuffer.hpp>
// FIXME: namespace scheme for backends?
namespace cv {
namespace gapi
{
/**
* @brief This namespace contains G-API Fluid backend functions, structures, and symbols.
*/
namespace fluid
{
/**
* \addtogroup gapi_std_backends G-API Standard Backends
* @{
*/
/**
* @brief Get a reference to Fluid backend.
*
* @sa gapi_std_backends
*/
GAPI_EXPORTS cv::gapi::GBackend backend();
/** @} */
} // namespace fluid
} // namespace gapi
class GAPI_EXPORTS GFluidKernel
{
public:
enum class Kind
{
Filter,
Resize,
YUV420toRGB //Color conversion of 4:2:0 chroma sub-sampling formats (NV12, I420 ..etc) to RGB
};
// This function is a generic "doWork" callback
using F = std::function<void(const cv::GArgs&, const std::vector<gapi::fluid::Buffer*> &)>;
// This function is a generic "initScratch" callback
using IS = std::function<void(const cv::GMetaArgs &, const cv::GArgs&, gapi::fluid::Buffer &)>;
// This function is a generic "resetScratch" callback
using RS = std::function<void(gapi::fluid::Buffer &)>;
// This function describes kernel metadata inference rule.
using M = std::function<GMetaArgs(const GMetaArgs &, const GArgs &)>;
// This function is a generic "getBorder" callback (extracts border-related data from kernel's input parameters)
using B = std::function<gapi::fluid::BorderOpt(const GMetaArgs&, const GArgs&)>;
// This function is a generic "getWindow" callback (extracts window-related data from kernel's input parameters)
using GW = std::function<int(const GMetaArgs&, const GArgs&)>;
// FIXME: move implementations out of header file
GFluidKernel() {}
GFluidKernel(Kind k, int l, bool scratch, const F& f, const IS &is, const RS &rs, const B& b, const GW& win)
: m_kind(k)
, m_lpi(l)
, m_scratch(scratch)
, m_f(f)
, m_is(is)
, m_rs(rs)
, m_b(b)
, m_gw(win) {}
Kind m_kind;
const int m_lpi = -1;
const bool m_scratch = false;
const F m_f;
const IS m_is;
const RS m_rs;
const B m_b;
const GW m_gw;
};
// FIXME!!!
// This is the temporary and experimental API
// which should be replaced by runtime roi-based scheduling
/** \addtogroup gapi_compile_args
* @{
*/
/**
* @brief This structure allows to control the output image region
* which Fluid backend will produce in the graph.
*
* This feature is useful for external tiling and parallelism, but
* will be deprecated in the future releases.
*/
struct GFluidOutputRois
{
std::vector<cv::Rect> rois;
};
/**
* @brief This structure forces Fluid backend to generate multiple
* parallel output regions in the graph. These regions execute in parallel.
*
* This feature may be deprecated in the future releases.
*/
struct GFluidParallelOutputRois
{
std::vector<GFluidOutputRois> parallel_rois;
};
/**
* @brief This structure allows to customize the way how Fluid executes
* parallel regions.
*
* For example, user can utilize his own threading runtime via this parameter.
* The `parallel_for` member functor is called by the Fluid runtime with the
* following arguments:
*
* @param size Size of the parallel range to process
* @param f A function which should be called for every integer index
* in this range by the specified parallel_for implementation.
*
* This feature may be deprecated in the future releases.
*/
struct GFluidParallelFor
{
//this function accepts:
// - size of the "parallel" range as the first argument
// - and a function to be called on the range items, designated by item index
std::function<void(std::size_t size, std::function<void(std::size_t index)>)> parallel_for;
};
/** @} gapi_compile_args */
namespace detail
{
template<> struct CompileArgTag<GFluidOutputRois>
{
static const char* tag() { return "gapi.fluid.outputRois"; }
};
template<> struct CompileArgTag<GFluidParallelFor>
{
static const char* tag() { return "gapi.fluid.parallelFor"; }
};
template<> struct CompileArgTag<GFluidParallelOutputRois>
{
static const char* tag() { return "gapi.fluid.parallelOutputRois"; }
};
} // namespace detail
namespace detail
{
template<class T> struct fluid_get_in;
template<> struct fluid_get_in<cv::GMat>
{
static const cv::gapi::fluid::View& get(const cv::GArgs &in_args, int idx)
{
return *in_args[idx].unsafe_get<cv::gapi::fluid::View*>();
}
};
template<> struct fluid_get_in<cv::GScalar>
{
// FIXME: change to return by reference when moved to own::Scalar
static const cv::Scalar get(const cv::GArgs &in_args, int idx)
{
return in_args[idx].unsafe_get<cv::Scalar>();
}
};
template<typename U> struct fluid_get_in<cv::GArray<U>>
{
static const std::vector<U>& get(const cv::GArgs &in_args, int idx)
{
return in_args.at(idx).unsafe_get<cv::detail::VectorRef>().rref<U>();
}
};
template<typename U> struct fluid_get_in<cv::GOpaque<U>>
{
static const U& get(const cv::GArgs &in_args, int idx)
{
return in_args.at(idx).unsafe_get<cv::detail::OpaqueRef>().rref<U>();
}
};
template<class T> struct fluid_get_in
{
static const T& get(const cv::GArgs &in_args, int idx)
{
return in_args[idx].unsafe_get<T>();
}
};
template<bool, typename Impl, typename... Ins>
struct scratch_helper;
template<typename Impl, typename... Ins>
struct scratch_helper<true, Impl, Ins...>
{
// Init
template<int... IIs>
static void help_init_impl(const cv::GMetaArgs &metas,
const cv::GArgs &in_args,
gapi::fluid::Buffer &scratch_buf,
detail::Seq<IIs...>)
{
Impl::initScratch(get_in_meta<Ins>(metas, in_args, IIs)..., scratch_buf);
}
static void help_init(const cv::GMetaArgs &metas,
const cv::GArgs &in_args,
gapi::fluid::Buffer &b)
{
help_init_impl(metas, in_args, b, typename detail::MkSeq<sizeof...(Ins)>::type());
}
// Reset
static void help_reset(gapi::fluid::Buffer &b)
{
Impl::resetScratch(b);
}
};
template<typename Impl, typename... Ins>
struct scratch_helper<false, Impl, Ins...>
{
static void help_init(const cv::GMetaArgs &,
const cv::GArgs &,
gapi::fluid::Buffer &)
{
GAPI_Assert(false);
}
static void help_reset(gapi::fluid::Buffer &)
{
GAPI_Assert(false);
}
};
template<typename T> struct is_gmat_type
{
static const constexpr bool value = std::is_same<cv::GMat, T>::value;
};
template<bool CallCustomGetBorder, typename Impl, typename... Ins>
struct get_border_helper;
template<typename Impl, typename... Ins>
struct get_border_helper<true, Impl, Ins...>
{
template<int... IIs>
static gapi::fluid::BorderOpt get_border_impl(const GMetaArgs &metas,
const cv::GArgs &in_args,
cv::detail::Seq<IIs...>)
{
return util::make_optional(Impl::getBorder(cv::detail::get_in_meta<Ins>(metas, in_args, IIs)...));
}
static gapi::fluid::BorderOpt help(const GMetaArgs &metas,
const cv::GArgs &in_args)
{
return get_border_impl(metas, in_args, typename detail::MkSeq<sizeof...(Ins)>::type());
}
};
template<typename Impl, typename... Ins>
struct get_border_helper<false, Impl, Ins...>
{
static gapi::fluid::BorderOpt help(const cv::GMetaArgs &,
const cv::GArgs &)
{
return {};
}
};
template<bool CallCustomGetWindow, typename, typename... Ins>
struct get_window_helper;
template<typename Impl, typename... Ins>
struct get_window_helper<true, Impl, Ins...>
{
template<int... IIs>
static int get_window_impl(const GMetaArgs &metas,
const cv::GArgs &in_args,
cv::detail::Seq<IIs...>)
{
return Impl::getWindow(cv::detail::get_in_meta<Ins>(metas, in_args, IIs)...);
}
static int help(const GMetaArgs &metas, const cv::GArgs &in_args)
{
return get_window_impl(metas, in_args, typename detail::MkSeq<sizeof...(Ins)>::type());
}
};
template<typename Impl, typename... Ins>
struct get_window_helper<false, Impl, Ins...>
{
static int help(const cv::GMetaArgs &,
const cv::GArgs &)
{
return Impl::Window;
}
};
template<typename C, typename T>
struct has_Window
{
private:
template<class U>
static constexpr auto Check(U*) -> typename std::is_same<decltype(U::Window), T>::type;
template<typename>
static constexpr std::false_type Check(...);
typedef decltype(Check<C>(0)) Result;
public:
static constexpr bool value = Result::value;
};
template<bool hasWindow, typename Impl>
struct callCustomGetBorder;
template<typename Impl>
struct callCustomGetBorder<true, Impl>
{
static constexpr bool value = (Impl::Window != 1);
};
template<typename Impl>
struct callCustomGetBorder<false, Impl>
{
static constexpr bool value = true;
};
template<typename, typename, typename, bool UseScratch>
struct FluidCallHelper;
template<typename Impl, typename... Ins, typename... Outs, bool UseScratch>
struct FluidCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...>, UseScratch>
{
static_assert(all_satisfy<is_gmat_type, Outs...>::value, "return type must be GMat");
static_assert(contains<GMat, Ins...>::value, "input must contain at least one GMat");
// Execution dispatcher ////////////////////////////////////////////////////
template<int... IIs, int... OIs>
static void call_impl(const cv::GArgs &in_args,
const std::vector<gapi::fluid::Buffer*> &out_bufs,
detail::Seq<IIs...>,
detail::Seq<OIs...>)
{
Impl::run(fluid_get_in<Ins>::get(in_args, IIs)..., *out_bufs[OIs]...);
}
static void call(const cv::GArgs &in_args,
const std::vector<gapi::fluid::Buffer*> &out_bufs)
{
constexpr int numOuts = (sizeof...(Outs)) + (UseScratch ? 1 : 0);
call_impl(in_args, out_bufs,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<numOuts>::type());
}
// Scratch buffer initialization dispatcher ////////////////////////////////
static void init_scratch(const GMetaArgs &metas,
const cv::GArgs &in_args,
gapi::fluid::Buffer &b)
{
scratch_helper<UseScratch, Impl, Ins...>::help_init(metas, in_args, b);
}
// Scratch buffer reset dispatcher /////////////////////////////////////////
static void reset_scratch(gapi::fluid::Buffer &scratch_buf)
{
scratch_helper<UseScratch, Impl, Ins...>::help_reset(scratch_buf);
}
static gapi::fluid::BorderOpt getBorder(const GMetaArgs &metas, const cv::GArgs &in_args)
{
constexpr bool hasWindow = has_Window<Impl, const int>::value;
// User must provide "init" callback if Window != 1
// TODO: move to constexpr if when we enable C++17
return get_border_helper<callCustomGetBorder<hasWindow, Impl>::value, Impl, Ins...>::help(metas, in_args);
}
static int getWindow(const GMetaArgs &metas, const cv::GArgs &in_args)
{
constexpr bool callCustomGetWindow = !(has_Window<Impl, const int>::value);
return get_window_helper<callCustomGetWindow, Impl, Ins...>::help(metas, in_args);
}
};
} // namespace detail
template<class Impl, class K, bool UseScratch>
class GFluidKernelImpl : public cv::detail::KernelTag
{
static const int LPI = 1;
static const auto Kind = GFluidKernel::Kind::Filter;
using P = detail::FluidCallHelper<Impl, typename K::InArgs, typename K::OutArgs, UseScratch>;
public:
using API = K;
static GFluidKernel kernel()
{
// FIXME: call() and getOutMeta() needs to be renamed so it is clear these
// functions are internal wrappers, not user API
return GFluidKernel(Impl::Kind, Impl::LPI,
UseScratch,
&P::call, &P::init_scratch, &P::reset_scratch, &P::getBorder, &P::getWindow);
}
static cv::gapi::GBackend backend() { return cv::gapi::fluid::backend(); }
};
#define GAPI_FLUID_KERNEL(Name, API, Scratch) struct Name: public cv::GFluidKernelImpl<Name, API, Scratch>
} // namespace cv
#endif // OPENCV_GAPI_GCPUKERNEL_HPP

View File

@ -0,0 +1,20 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_FLUID_IMGPROC_HPP
#define OPENCV_GAPI_FLUID_IMGPROC_HPP
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
namespace cv { namespace gapi { namespace imgproc { namespace fluid {
GAPI_EXPORTS GKernelPackage kernels();
}}}}
#endif // OPENCV_GAPI_FLUID_IMGPROC_HPP

View File

@ -0,0 +1,309 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#ifndef OPENCV_GAPI_GARG_HPP
#define OPENCV_GAPI_GARG_HPP
#include <vector>
#include <unordered_map>
#include <type_traits>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/own/mat.hpp>
#include <opencv2/gapi/media.hpp>
#include <opencv2/gapi/util/util.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
#include <opencv2/gapi/garray.hpp>
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/gapi/gframe.hpp>
#include <opencv2/gapi/gtype_traits.hpp>
#include <opencv2/gapi/gmetaarg.hpp>
#include <opencv2/gapi/streaming/source.hpp>
#include <opencv2/gapi/rmat.hpp>
namespace cv {
class GArg;
namespace detail {
template<typename T>
using is_garg = std::is_same<GArg, typename std::decay<T>::type>;
}
// Parameter holder class for a node
// Depending on platform capabilities, can either support arbitrary types
// (as `boost::any`) or a limited number of types (as `boot::variant`).
// FIXME: put into "details" as a user shouldn't use it in his code
class GAPI_EXPORTS GArg
{
public:
GArg() {}
template<typename T, typename std::enable_if<!detail::is_garg<T>::value, int>::type = 0>
explicit GArg(const T &t)
: kind(detail::GTypeTraits<T>::kind)
, opaque_kind(detail::GOpaqueTraits<T>::kind)
, value(detail::wrap_gapi_helper<T>::wrap(t))
{
}
template<typename T, typename std::enable_if<!detail::is_garg<T>::value, int>::type = 0>
explicit GArg(T &&t)
: kind(detail::GTypeTraits<typename std::decay<T>::type>::kind)
, opaque_kind(detail::GOpaqueTraits<typename std::decay<T>::type>::kind)
, value(detail::wrap_gapi_helper<T>::wrap(t))
{
}
template<typename T> inline T& get()
{
return util::any_cast<typename std::remove_reference<T>::type>(value);
}
template<typename T> inline const T& get() const
{
return util::any_cast<typename std::remove_reference<T>::type>(value);
}
template<typename T> inline T& unsafe_get()
{
return util::unsafe_any_cast<typename std::remove_reference<T>::type>(value);
}
template<typename T> inline const T& unsafe_get() const
{
return util::unsafe_any_cast<typename std::remove_reference<T>::type>(value);
}
detail::ArgKind kind = detail::ArgKind::OPAQUE_VAL;
detail::OpaqueKind opaque_kind = detail::OpaqueKind::CV_UNKNOWN;
protected:
util::any value;
};
using GArgs = std::vector<GArg>;
// FIXME: Express as M<GProtoArg...>::type
// FIXME: Move to a separate file!
using GRunArgBase = util::variant<
#if !defined(GAPI_STANDALONE)
cv::UMat,
#endif // !defined(GAPI_STANDALONE)
cv::RMat,
cv::gapi::wip::IStreamSource::Ptr,
cv::Mat,
cv::Scalar,
cv::detail::VectorRef,
cv::detail::OpaqueRef,
cv::MediaFrame
>;
namespace detail {
template<typename,typename>
struct in_variant;
template<typename T, typename... Types>
struct in_variant<T, util::variant<Types...> >
: std::integral_constant<bool, cv::detail::contains<T, Types...>::value > {
};
} // namespace detail
struct GAPI_EXPORTS GRunArg: public GRunArgBase
{
// Metadata information here
using Meta = std::unordered_map<std::string, util::any>;
Meta meta;
// Mimic the old GRunArg semantics here, old of the times when
// GRunArg was an alias to variant<>
GRunArg();
GRunArg(const cv::GRunArg &arg);
GRunArg(cv::GRunArg &&arg);
GRunArg& operator= (const GRunArg &arg);
GRunArg& operator= (GRunArg &&arg);
template <typename T>
GRunArg(const T &t,
const Meta &m = Meta{},
typename std::enable_if< detail::in_variant<T, GRunArgBase>::value, int>::type = 0)
: GRunArgBase(t)
, meta(m)
{
}
template <typename T>
GRunArg(T &&t,
const Meta &m = Meta{},
typename std::enable_if< detail::in_variant<T, GRunArgBase>::value, int>::type = 0)
: GRunArgBase(std::move(t))
, meta(m)
{
}
template <typename T> auto operator= (const T &t)
-> typename std::enable_if< detail::in_variant<T, GRunArgBase>::value, cv::GRunArg>::type&
{
GRunArgBase::operator=(t);
return *this;
}
template <typename T> auto operator= (T&& t)
-> typename std::enable_if< detail::in_variant<T, GRunArgBase>::value, cv::GRunArg>::type&
{
GRunArgBase::operator=(std::move(t));
return *this;
}
};
using GRunArgs = std::vector<GRunArg>;
// TODO: Think about the addition operator
/**
* @brief This operator allows to complement the input vector at runtime.
*
* It's an ordinary overload of addition assignment operator.
*
* Example of usage:
* @snippet modules/gapi/samples/dynamic_graph.cpp GRunArgs usage
*
*/
inline GRunArgs& operator += (GRunArgs &lhs, const GRunArgs &rhs)
{
lhs.reserve(lhs.size() + rhs.size());
lhs.insert(lhs.end(), rhs.begin(), rhs.end());
return lhs;
}
namespace gapi
{
namespace wip
{
/**
* @brief This aggregate type represents all types which G-API can
* handle (via variant).
*
* It only exists to overcome C++ language limitations (where a
* `using`-defined class can't be forward-declared).
*/
struct GAPI_EXPORTS Data: public GRunArg
{
using GRunArg::GRunArg;
template <typename T>
Data& operator= (const T& t) { GRunArg::operator=(t); return *this; }
template <typename T>
Data& operator= (T&& t) { GRunArg::operator=(std::move(t)); return *this; }
};
} // namespace wip
} // namespace gapi
using GRunArgP = util::variant<
#if !defined(GAPI_STANDALONE)
cv::UMat*,
#endif // !defined(GAPI_STANDALONE)
cv::Mat*,
cv::RMat*,
cv::Scalar*,
cv::MediaFrame*,
cv::detail::VectorRef,
cv::detail::OpaqueRef
>;
using GRunArgsP = std::vector<GRunArgP>;
// TODO: Think about the addition operator
/**
* @brief This operator allows to complement the output vector at runtime.
*
* It's an ordinary overload of addition assignment operator.
*
* Example of usage:
* @snippet modules/gapi/samples/dynamic_graph.cpp GRunArgsP usage
*
*/
inline GRunArgsP& operator += (GRunArgsP &lhs, const GRunArgsP &rhs)
{
lhs.reserve(lhs.size() + rhs.size());
lhs.insert(lhs.end(), rhs.begin(), rhs.end());
return lhs;
}
namespace gapi
{
/**
* \addtogroup gapi_serialization
* @{
*
* @brief G-API functions and classes for serialization and deserialization.
*/
/** @brief Wraps deserialized output GRunArgs to GRunArgsP which can be used by GCompiled.
*
* Since it's impossible to get modifiable output arguments from deserialization
* it needs to be wrapped by this function.
*
* Example of usage:
* @snippet modules/gapi/samples/api_ref_snippets.cpp bind after deserialization
*
* @param out_args deserialized GRunArgs.
* @return the same GRunArgs wrapped in GRunArgsP.
* @see deserialize
*/
GAPI_EXPORTS cv::GRunArgsP bind(cv::GRunArgs &out_args);
/** @brief Wraps output GRunArgsP available during graph execution to GRunArgs which can be serialized.
*
* GRunArgsP is pointer-to-value, so to be serialized they need to be binded to real values
* which this function does.
*
* Example of usage:
* @snippet modules/gapi/samples/api_ref_snippets.cpp bind before serialization
*
* @param out output GRunArgsP available during graph execution.
* @return the same GRunArgsP wrapped in serializable GRunArgs.
* @see serialize
*/
GAPI_EXPORTS cv::GRunArg bind(cv::GRunArgP &out); // FIXME: think more about it
/** @} */
}
template<typename... Ts> inline GRunArgs gin(const Ts&... args)
{
return GRunArgs{ GRunArg(detail::wrap_host_helper<Ts>::wrap_in(args))... };
}
template<typename... Ts> inline GRunArgsP gout(Ts&... args)
{
return GRunArgsP{ GRunArgP(detail::wrap_host_helper<Ts>::wrap_out(args))... };
}
struct GTypeInfo;
using GTypesInfo = std::vector<GTypeInfo>;
// FIXME: Needed for python bridge, must be moved to more appropriate header
namespace detail {
struct ExtractArgsCallback
{
cv::GRunArgs operator()(const cv::GTypesInfo& info) const { return c(info); }
using CallBackT = std::function<cv::GRunArgs(const cv::GTypesInfo& info)>;
CallBackT c;
};
struct ExtractMetaCallback
{
cv::GMetaArgs operator()(const cv::GTypesInfo& info) const { return c(info); }
using CallBackT = std::function<cv::GMetaArgs(const cv::GTypesInfo& info)>;
CallBackT c;
};
void constructGraphOutputs(const cv::GTypesInfo &out_info,
cv::GRunArgs &args,
cv::GRunArgsP &outs);
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_GARG_HPP

View File

@ -0,0 +1,440 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GARRAY_HPP
#define OPENCV_GAPI_GARRAY_HPP
#include <functional>
#include <ostream>
#include <vector>
#include <memory>
#include <opencv2/gapi/own/exports.hpp>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/gmat.hpp> // flatten_g only!
#include <opencv2/gapi/gscalar.hpp> // flatten_g only!
namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
template<typename T> class GArray;
/**
* \addtogroup gapi_meta_args
* @{
*/
struct GAPI_EXPORTS_W_SIMPLE GArrayDesc
{
// FIXME: Body
// FIXME: Also implement proper operator== then
bool operator== (const GArrayDesc&) const { return true; }
};
template<typename U> GArrayDesc descr_of(const std::vector<U> &) { return {};}
GAPI_EXPORTS_W inline GArrayDesc empty_array_desc() {return {}; }
/** @} */
std::ostream& operator<<(std::ostream& os, const cv::GArrayDesc &desc);
namespace detail
{
// ConstructVec is a callback which stores information about T and is used by
// G-API runtime to construct arrays in host memory (T remains opaque for G-API).
// ConstructVec is carried into G-API internals by GArrayU.
// Currently it is suitable for Host (CPU) plugins only, real offload may require
// more information for manual memory allocation on-device.
class VectorRef;
using ConstructVec = std::function<void(VectorRef&)>;
// This is the base struct for GArrayU type holder
struct TypeHintBase{virtual ~TypeHintBase() = default;};
// This class holds type of initial GArray to be checked from GArrayU
template <typename T>
struct TypeHint final : public TypeHintBase{};
// This class strips type information from GArray<T> and makes it usable
// in the G-API graph compiler (expression unrolling, graph generation, etc).
// Part of GProtoArg.
class GAPI_EXPORTS GArrayU
{
public:
GArrayU(const GNode &n, std::size_t out); // Operation result constructor
template <typename T>
bool holds() const; // Check if was created from GArray<T>
GOrigin& priv(); // Internal use only
const GOrigin& priv() const; // Internal use only
protected:
GArrayU(); // Default constructor
GArrayU(const detail::VectorRef& vref); // Constant value constructor
template<class> friend class cv::GArray; // (available to GArray<T> only)
void setConstructFcn(ConstructVec &&cv); // Store T-aware constructor
template <typename T>
void specifyType(); // Store type of initial GArray<T>
template <typename T>
void storeKind();
void setKind(cv::detail::OpaqueKind);
std::shared_ptr<GOrigin> m_priv;
std::shared_ptr<TypeHintBase> m_hint;
};
template <typename T>
bool GArrayU::holds() const{
GAPI_Assert(m_hint != nullptr);
using U = typename std::decay<T>::type;
return dynamic_cast<TypeHint<U>*>(m_hint.get()) != nullptr;
};
template <typename T>
void GArrayU::specifyType(){
m_hint.reset(new TypeHint<typename std::decay<T>::type>);
};
template <typename T>
void GArrayU::storeKind(){
setKind(cv::detail::GOpaqueTraits<T>::kind);
};
// This class represents a typed STL vector reference.
// Depending on origins, this reference may be either "just a" reference to
// an object created externally, OR actually own the underlying object
// (be value holder).
class BasicVectorRef
{
public:
// These fields are set by the derived class(es)
std::size_t m_elemSize = 0ul;
cv::GArrayDesc m_desc;
virtual ~BasicVectorRef() {}
virtual void mov(BasicVectorRef &ref) = 0;
virtual const void* ptr() const = 0;
virtual std::size_t size() const = 0;
};
template<typename T> class VectorRefT final: public BasicVectorRef
{
using empty_t = util::monostate;
using ro_ext_t = const std::vector<T> *;
using rw_ext_t = std::vector<T> *;
using rw_own_t = std::vector<T> ;
util::variant<empty_t, ro_ext_t, rw_ext_t, rw_own_t> m_ref;
inline bool isEmpty() const { return util::holds_alternative<empty_t>(m_ref); }
inline bool isROExt() const { return util::holds_alternative<ro_ext_t>(m_ref); }
inline bool isRWExt() const { return util::holds_alternative<rw_ext_t>(m_ref); }
inline bool isRWOwn() const { return util::holds_alternative<rw_own_t>(m_ref); }
void init(const std::vector<T>* vec = nullptr)
{
m_elemSize = sizeof(T);
if (vec) m_desc = cv::descr_of(*vec);
}
public:
VectorRefT() { init(); }
virtual ~VectorRefT() {}
explicit VectorRefT(const std::vector<T>& vec) : m_ref(&vec) { init(&vec); }
explicit VectorRefT(std::vector<T>& vec) : m_ref(&vec) { init(&vec); }
explicit VectorRefT(std::vector<T>&& vec) : m_ref(std::move(vec)) { init(&vec); }
// Reset a VectorRefT. Called only for objects instantiated
// internally in G-API (e.g. temporary GArray<T>'s within a
// computation). Reset here means both initialization
// (creating an object) and reset (discarding its existing
// content before the next execution). Must never be called
// for external VectorRefTs.
void reset()
{
if (isEmpty())
{
std::vector<T> empty_vector;
m_desc = cv::descr_of(empty_vector);
m_ref = std::move(empty_vector);
GAPI_Assert(isRWOwn());
}
else if (isRWOwn())
{
util::get<rw_own_t>(m_ref).clear();
}
else GAPI_Assert(false); // shouldn't be called in *EXT modes
}
// Obtain a WRITE reference to underlying object
// Used by CPU kernel API wrappers when a kernel execution frame
// is created
std::vector<T>& wref()
{
GAPI_Assert(isRWExt() || isRWOwn());
if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
if (isRWOwn()) return util::get<rw_own_t>(m_ref);
util::throw_error(std::logic_error("Impossible happened"));
}
// Obtain a READ reference to underlying object
// Used by CPU kernel API wrappers when a kernel execution frame
// is created
const std::vector<T>& rref() const
{
// ANY vector can be accessed for reading, even if it declared for
// output. Example -- a GComputation from [in] to [out1,out2]
// where [out2] is a result of operation applied to [out1]:
//
// GComputation boundary
// . . . . . . .
// . .
// [in] ----> foo() ----> [out1]
// . . :
// . . . .:. . .
// . V .
// . bar() ---> [out2]
// . . . . . . . . . . . .
//
if (isROExt()) return *util::get<ro_ext_t>(m_ref);
if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
if (isRWOwn()) return util::get<rw_own_t>(m_ref);
util::throw_error(std::logic_error("Impossible happened"));
}
virtual void mov(BasicVectorRef &v) override {
VectorRefT<T> *tv = dynamic_cast<VectorRefT<T>*>(&v);
GAPI_Assert(tv != nullptr);
wref() = std::move(tv->wref());
}
virtual const void* ptr() const override { return &rref(); }
virtual std::size_t size() const override { return rref().size(); }
};
// This class strips type information from VectorRefT<> and makes it usable
// in the G-API executables (carrying run-time data/information to kernels).
// Part of GRunArg.
// Its methods are typed proxies to VectorRefT<T>.
// VectorRef maintains "reference" semantics so two copies of VectoRef refer
// to the same underlying object.
// FIXME: Put a good explanation on why cv::OutputArray doesn't fit this role
class VectorRef
{
std::shared_ptr<BasicVectorRef> m_ref;
cv::detail::OpaqueKind m_kind;
template<typename T> inline void check() const
{
GAPI_DbgAssert(dynamic_cast<VectorRefT<T>*>(m_ref.get()) != nullptr);
GAPI_Assert(sizeof(T) == m_ref->m_elemSize);
}
public:
VectorRef() = default;
template<typename T> explicit VectorRef(const std::vector<T>& vec)
: m_ref(new VectorRefT<T>(vec))
, m_kind(GOpaqueTraits<T>::kind)
{}
template<typename T> explicit VectorRef(std::vector<T>& vec)
: m_ref(new VectorRefT<T>(vec))
, m_kind(GOpaqueTraits<T>::kind)
{}
template<typename T> explicit VectorRef(std::vector<T>&& vec)
: m_ref(new VectorRefT<T>(std::move(vec)))
, m_kind(GOpaqueTraits<T>::kind)
{}
cv::detail::OpaqueKind getKind() const
{
return m_kind;
}
template<typename T> void reset()
{
if (!m_ref) m_ref.reset(new VectorRefT<T>());
check<T>();
storeKind<T>();
static_cast<VectorRefT<T>&>(*m_ref).reset();
}
template <typename T>
void storeKind()
{
m_kind = cv::detail::GOpaqueTraits<T>::kind;
}
template<typename T> std::vector<T>& wref()
{
check<T>();
return static_cast<VectorRefT<T>&>(*m_ref).wref();
}
template<typename T> const std::vector<T>& rref() const
{
check<T>();
return static_cast<VectorRefT<T>&>(*m_ref).rref();
}
// Check if was created for/from std::vector<T>
template <typename T> bool holds() const
{
if (!m_ref) return false;
using U = typename std::decay<T>::type;
return dynamic_cast<VectorRefT<U>*>(m_ref.get()) != nullptr;
}
void mov(VectorRef &v)
{
m_ref->mov(*v.m_ref);
}
cv::GArrayDesc descr_of() const
{
return m_ref->m_desc;
}
std::size_t size() const
{
return m_ref->size();
}
// May be used to uniquely identify this object internally
const void *ptr() const { return m_ref->ptr(); }
};
// Helper (FIXME: work-around?)
// stripping G types to their host types
// like cv::GArray<GMat> would still map to std::vector<cv::Mat>
// but not to std::vector<cv::GMat>
#if defined(GAPI_STANDALONE)
# define FLATTEN_NS cv::gapi::own
#else
# define FLATTEN_NS cv
#endif
template<class T> struct flatten_g;
template<> struct flatten_g<cv::GMat> { using type = FLATTEN_NS::Mat; };
template<> struct flatten_g<cv::GScalar> { using type = FLATTEN_NS::Scalar; };
template<class T> struct flatten_g<GArray<T>> { using type = std::vector<T>; };
template<class T> struct flatten_g { using type = T; };
#undef FLATTEN_NS
// FIXME: the above mainly duplicates "ProtoToParam" thing from gtyped.hpp
// but I decided not to include gtyped here - probably worth moving that stuff
// to some common place? (DM)
} // namespace detail
/** \addtogroup gapi_data_objects
* @{
*/
/**
* @brief `cv::GArray<T>` template class represents a list of objects
* of class `T` in the graph.
*
* `cv::GArray<T>` describes a functional relationship between
* operations consuming and producing arrays of objects of class
* `T`. The primary purpose of `cv::GArray<T>` is to represent a
* dynamic list of objects -- where the size of the list is not known
* at the graph construction or compile time. Examples include: corner
* and feature detectors (`cv::GArray<cv::Point>`), object detection
* and tracking results (`cv::GArray<cv::Rect>`). Programmers can use
* their own types with `cv::GArray<T>` in the custom operations.
*
* Similar to `cv::GScalar`, `cv::GArray<T>` may be value-initialized
* -- in this case a graph-constant value is associated with the object.
*
* `GArray<T>` is a virtual counterpart of `std::vector<T>`, which is
* usually used to represent the `GArray<T>` data in G-API during the
* execution.
*
* @sa `cv::GOpaque<T>`
*/
template<typename T> class GArray
{
public:
// Host type (or Flat type) - the type this GArray is actually
// specified to.
/// @private
using HT = typename detail::flatten_g<typename std::decay<T>::type>::type;
/**
* @brief Constructs a value-initialized `cv::GArray<T>`
*
* `cv::GArray<T>` objects may have their values
* be associated at graph construction time. It is useful when
* some operation has a `cv::GArray<T>` input which doesn't change during
* the program execution, and is set only once. In this case,
* there is no need to declare such `cv::GArray<T>` as a graph input.
*
* @note The value of `cv::GArray<T>` may be overwritten by assigning some
* other `cv::GArray<T>` to the object using `operator=` -- on the
* assigment, the old association or value is discarded.
*
* @param v a std::vector<T> to associate with this
* `cv::GArray<T>` object. Vector data is copied into the
* `cv::GArray<T>` (no reference to the passed data is held).
*/
explicit GArray(const std::vector<HT>& v) // Constant value constructor
: m_ref(detail::GArrayU(detail::VectorRef(v))) { putDetails(); }
/**
* @overload
* @brief Constructs a value-initialized `cv::GArray<T>`
*
* @param v a std::vector<T> to associate with this
* `cv::GArray<T>` object. Vector data is moved into the `cv::GArray<T>`.
*/
explicit GArray(std::vector<HT>&& v) // Move-constructor
: m_ref(detail::GArrayU(detail::VectorRef(std::move(v)))) { putDetails(); }
/**
* @brief Constructs an empty `cv::GArray<T>`
*
* Normally, empty G-API data objects denote a starting point of
* the graph. When an empty `cv::GArray<T>` is assigned to a result
* of some operation, it obtains a functional link to this
* operation (and is not empty anymore).
*/
GArray() { putDetails(); } // Empty constructor
/// @private
explicit GArray(detail::GArrayU &&ref) // GArrayU-based constructor
: m_ref(ref) { putDetails(); } // (used by GCall, not for users)
/// @private
detail::GArrayU strip() const {
return m_ref;
}
/// @private
static void VCtor(detail::VectorRef& vref) {
vref.reset<HT>();
}
private:
void putDetails() {
m_ref.setConstructFcn(&VCtor);
m_ref.specifyType<HT>(); // FIXME: to unify those 2 to avoid excessive dynamic_cast
m_ref.storeKind<HT>(); //
}
detail::GArrayU m_ref;
};
/** @} */
} // namespace cv
#endif // OPENCV_GAPI_GARRAY_HPP

View File

@ -0,0 +1,63 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_GASYNC_CONTEXT_HPP
#define OPENCV_GAPI_GASYNC_CONTEXT_HPP
#if !defined(GAPI_STANDALONE)
# include <opencv2/core/cvdef.h>
#else // Without OpenCV
# include <opencv2/gapi/own/cvdefs.hpp>
#endif // !defined(GAPI_STANDALONE)
#include <opencv2/gapi/own/exports.hpp>
namespace cv {
namespace gapi{
/**
* @brief This namespace contains experimental G-API functionality,
* functions or structures in this namespace are subjects to change or
* removal in the future releases. This namespace also contains
* functions which API is not stabilized yet.
*/
namespace wip {
/**
* @brief A class to group async requests to cancel them in a single shot.
*
* GAsyncContext is passed as an argument to async() and async_apply() functions
*/
class GAPI_EXPORTS GAsyncContext{
std::atomic<bool> cancelation_requested = {false};
public:
/**
* @brief Start cancellation process for an associated request.
*
* User still has to wait for each individual request (either via callback or according std::future object) to make sure it actually canceled.
*
* @return true if it was a first request to cancel the context
*/
bool cancel();
/**
* @brief Returns true if cancellation was requested for this context.
*
* @return true if cancellation was requested for this context
*/
bool isCanceled() const;
};
class GAPI_EXPORTS GAsyncCanceled : public std::exception {
public:
virtual const char* what() const noexcept CV_OVERRIDE;
};
} // namespace wip
} // namespace gapi
} // namespace cv
#endif //OPENCV_GAPI_GASYNC_CONTEXT_HPP

View File

@ -0,0 +1,78 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GCALL_HPP
#define OPENCV_GAPI_GCALL_HPP
#include <opencv2/gapi/garg.hpp> // GArg
#include <opencv2/gapi/gmat.hpp> // GMat
#include <opencv2/gapi/gscalar.hpp> // GScalar
#include <opencv2/gapi/gframe.hpp> // GFrame
#include <opencv2/gapi/garray.hpp> // GArray<T>
#include <opencv2/gapi/gopaque.hpp> // GOpaque<T>
namespace cv {
struct GKernel;
// The whole idea of this class is to represent an operation
// which is applied to arguments. This is part of public API,
// since it is what users should use to define kernel interfaces.
class GAPI_EXPORTS GCall final
{
public:
class Priv;
explicit GCall(const GKernel &k);
~GCall();
template<typename... Ts>
GCall& pass(Ts&&... args)
{
setArgs({cv::GArg(std::move(args))...});
return *this;
}
// A generic yield method - obtain a link to operator's particular GMat output
GMat yield (int output = 0);
GMatP yieldP (int output = 0);
GScalar yieldScalar(int output = 0);
GFrame yieldFrame (int output = 0);
template<class T> GArray<T> yieldArray(int output = 0)
{
return GArray<T>(yieldArray(output));
}
template<class T> GOpaque<T> yieldOpaque(int output = 0)
{
return GOpaque<T>(yieldOpaque(output));
}
// Internal use only
Priv& priv();
const Priv& priv() const;
// GKernel and params can be modified, it's needed for infer<Generic>,
// because information about output shapes doesn't exist in compile time
GKernel& kernel();
cv::util::any& params();
void setArgs(std::vector<GArg> &&args);
protected:
std::shared_ptr<Priv> m_priv;
// Public versions return a typed array or opaque, those are implementation details
detail::GArrayU yieldArray(int output = 0);
detail::GOpaqueU yieldOpaque(int output = 0);
};
} // namespace cv
#endif // OPENCV_GAPI_GCALL_HPP

View File

@ -0,0 +1,287 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GCOMMON_HPP
#define OPENCV_GAPI_GCOMMON_HPP
#include <functional> // std::hash
#include <vector> // std::vector
#include <type_traits> // decay
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/gapi/util/optional.hpp>
#include <opencv2/gapi/own/exports.hpp>
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/render/render_types.hpp>
#include <opencv2/gapi/s11n/base.hpp>
namespace cv {
class GMat; // FIXME: forward declaration for GOpaqueTraits
namespace detail
{
// This is a trait-like structure to mark backend-specific compile arguments
// with tags
template<typename T> struct CompileArgTag;
// These structures are tags which separate kernels and transformations
struct KernelTag
{};
struct TransformTag
{};
// This enum is utilized mostly by GArray and GOpaque to store and recognize their internal data
// types (aka Host type). Also it is widely used during serialization routine.
enum class OpaqueKind: int
{
CV_UNKNOWN, // Unknown, generic, opaque-to-GAPI data type unsupported in graph seriallization
CV_BOOL, // bool user G-API data
CV_INT, // int user G-API data
CV_INT64, // int64_t user G-API data
CV_DOUBLE, // double user G-API data
CV_FLOAT, // float user G-API data
CV_UINT64, // uint64_t user G-API data
CV_STRING, // std::string user G-API data
CV_POINT, // cv::Point user G-API data
CV_POINT2F, // cv::Point2f user G-API data
CV_SIZE, // cv::Size user G-API data
CV_RECT, // cv::Rect user G-API data
CV_SCALAR, // cv::Scalar user G-API data
CV_MAT, // cv::Mat user G-API data
CV_DRAW_PRIM, // cv::gapi::wip::draw::Prim user G-API data
};
// Type traits helper which simplifies the extraction of kind from type
template<typename T> struct GOpaqueTraits;
template<typename T> struct GOpaqueTraits { static constexpr const OpaqueKind kind = OpaqueKind::CV_UNKNOWN; };
template<> struct GOpaqueTraits<int> { static constexpr const OpaqueKind kind = OpaqueKind::CV_INT; };
template<> struct GOpaqueTraits<int64_t> { static constexpr const OpaqueKind kind = OpaqueKind::CV_INT64; };
template<> struct GOpaqueTraits<double> { static constexpr const OpaqueKind kind = OpaqueKind::CV_DOUBLE; };
template<> struct GOpaqueTraits<float> { static constexpr const OpaqueKind kind = OpaqueKind::CV_FLOAT; };
template<> struct GOpaqueTraits<uint64_t> { static constexpr const OpaqueKind kind = OpaqueKind::CV_UINT64; };
template<> struct GOpaqueTraits<bool> { static constexpr const OpaqueKind kind = OpaqueKind::CV_BOOL; };
template<> struct GOpaqueTraits<std::string> { static constexpr const OpaqueKind kind = OpaqueKind::CV_STRING; };
template<> struct GOpaqueTraits<cv::Size> { static constexpr const OpaqueKind kind = OpaqueKind::CV_SIZE; };
template<> struct GOpaqueTraits<cv::Scalar> { static constexpr const OpaqueKind kind = OpaqueKind::CV_SCALAR; };
template<> struct GOpaqueTraits<cv::Point> { static constexpr const OpaqueKind kind = OpaqueKind::CV_POINT; };
template<> struct GOpaqueTraits<cv::Point2f> { static constexpr const OpaqueKind kind = OpaqueKind::CV_POINT2F; };
template<> struct GOpaqueTraits<cv::Mat> { static constexpr const OpaqueKind kind = OpaqueKind::CV_MAT; };
template<> struct GOpaqueTraits<cv::Rect> { static constexpr const OpaqueKind kind = OpaqueKind::CV_RECT; };
template<> struct GOpaqueTraits<cv::GMat> { static constexpr const OpaqueKind kind = OpaqueKind::CV_MAT; };
template<> struct GOpaqueTraits<cv::gapi::wip::draw::Prim>
{ static constexpr const OpaqueKind kind = OpaqueKind::CV_DRAW_PRIM; };
using GOpaqueTraitsArrayTypes = std::tuple<int, double, float, uint64_t, bool, std::string, cv::Size, cv::Scalar, cv::Point, cv::Point2f,
cv::Mat, cv::Rect, cv::gapi::wip::draw::Prim>;
// GOpaque is not supporting cv::Mat and cv::Scalar since there are GScalar and GMat types
using GOpaqueTraitsOpaqueTypes = std::tuple<int, double, float, uint64_t, bool, std::string, cv::Size, cv::Point, cv::Point2f, cv::Rect,
cv::gapi::wip::draw::Prim>;
} // namespace detail
// This definition is here because it is reused by both public(?) and internal
// modules. Keeping it here wouldn't expose public details (e.g., API-level)
// to components which are internal and operate on a lower-level entities
// (e.g., compiler, backends).
// FIXME: merge with ArgKind?
// FIXME: replace with variant[format desc]?
enum class GShape: int
{
GMAT,
GSCALAR,
GARRAY,
GOPAQUE,
GFRAME,
};
namespace gapi {
namespace s11n {
namespace detail {
template<typename T> struct wrap_serialize;
} // namespace detail
} // namespace s11n
} // namespace gapi
struct GCompileArg;
namespace detail {
template<typename T>
using is_compile_arg = std::is_same<GCompileArg, typename std::decay<T>::type>;
} // namespace detail
// CompileArg is an unified interface over backend-specific compilation
// information
// FIXME: Move to a separate file?
/** \addtogroup gapi_compile_args
* @{
*
* @brief Compilation arguments: data structures controlling the
* compilation process
*
* G-API comes with a number of graph compilation options which can be
* passed to cv::GComputation::apply() or
* cv::GComputation::compile(). Known compilation options are listed
* in this page, while extra backends may introduce their own
* compilation options (G-API transparently accepts _everything_ which
* can be passed to cv::compile_args(), it depends on underlying
* backends if an option would be interpreted or not).
*
* For example, if an example computation is executed like this:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp graph_decl_apply
*
* Extra parameter specifying which kernels to compile with can be
* passed like this:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp apply_with_param
*/
/**
* @brief Represents an arbitrary compilation argument.
*
* Any value can be wrapped into cv::GCompileArg, but only known ones
* (to G-API or its backends) can be interpreted correctly.
*
* Normally objects of this class shouldn't be created manually, use
* cv::compile_args() function which automatically wraps everything
* passed in (a variadic template parameter pack) into a vector of
* cv::GCompileArg objects.
*/
struct GCompileArg
{
public:
// NB: Required for pythnon bindings
GCompileArg() = default;
std::string tag;
// FIXME: use decay in GArg/other trait-based wrapper before leg is shot!
template<typename T, typename std::enable_if<!detail::is_compile_arg<T>::value, int>::type = 0>
explicit GCompileArg(T &&t)
: tag(detail::CompileArgTag<typename std::decay<T>::type>::tag())
, serializeF(cv::gapi::s11n::detail::has_S11N_spec<T>::value ?
&cv::gapi::s11n::detail::wrap_serialize<T>::serialize :
nullptr)
, arg(t)
{
}
template<typename T> T& get()
{
return util::any_cast<T>(arg);
}
template<typename T> const T& get() const
{
return util::any_cast<T>(arg);
}
void serialize(cv::gapi::s11n::IOStream& os) const
{
if (serializeF)
{
serializeF(os, *this);
}
}
private:
std::function<void(cv::gapi::s11n::IOStream&, const GCompileArg&)> serializeF;
util::any arg;
};
using GCompileArgs = std::vector<GCompileArg>;
inline cv::GCompileArgs& operator += ( cv::GCompileArgs &lhs,
const cv::GCompileArgs &rhs)
{
lhs.reserve(lhs.size() + rhs.size());
lhs.insert(lhs.end(), rhs.begin(), rhs.end());
return lhs;
}
/**
* @brief Wraps a list of arguments (a parameter pack) into a vector of
* compilation arguments (cv::GCompileArg).
*/
template<typename... Ts> GCompileArgs compile_args(Ts&&... args)
{
return GCompileArgs{ GCompileArg(args)... };
}
namespace gapi
{
/**
* @brief Retrieves particular compilation argument by its type from
* cv::GCompileArgs
*/
template<typename T>
inline cv::util::optional<T> getCompileArg(const cv::GCompileArgs &args)
{
for (auto &compile_arg : args)
{
if (compile_arg.tag == cv::detail::CompileArgTag<T>::tag())
{
return cv::util::optional<T>(compile_arg.get<T>());
}
}
return cv::util::optional<T>();
}
namespace s11n {
namespace detail {
template<typename T> struct wrap_serialize
{
static void serialize(IOStream& os, const GCompileArg& arg)
{
using DT = typename std::decay<T>::type;
S11N<DT>::serialize(os, arg.get<DT>());
}
};
} // namespace detail
} // namespace s11n
} // namespace gapi
/**
* @brief Ask G-API to dump compiled graph in Graphviz format under
* the given file name.
*
* Specifies a graph dump path (path to .dot file to be generated).
* G-API will dump a .dot file under specified path during a
* compilation process if this flag is passed.
*/
struct graph_dump_path
{
std::string m_dump_path;
};
/** @} */
namespace detail
{
template<> struct CompileArgTag<cv::graph_dump_path>
{
static const char* tag() { return "gapi.graph_dump_path"; }
};
}
} // namespace cv
// std::hash overload for GShape
namespace std
{
template<> struct hash<cv::GShape>
{
size_t operator() (cv::GShape sh) const
{
return std::hash<int>()(static_cast<int>(sh));
}
};
} // namespace std
#endif // OPENCV_GAPI_GCOMMON_HPP

View File

@ -0,0 +1,232 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GCOMPILED_HPP
#define OPENCV_GAPI_GCOMPILED_HPP
#include <vector>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/garg.hpp>
namespace cv {
// This class represents a compiled computation.
// In theory (and ideally), it can be used w/o the rest of APIs.
// In theory (and ideally), it can be serialized/deserialized.
// It can enable scenarious like deployment to an autonomous devince, FuSa, etc.
//
// Currently GCompiled assumes all GMats you used to pass data to G-API
// are valid and not destroyed while you use a GCompiled object.
//
// FIXME: In future, there should be a way to name I/O objects and specify it
// to GCompiled externally (for example, when it is loaded on the target system).
/**
* \addtogroup gapi_main_classes
* @{
*/
/**
* @brief Represents a compiled computation (graph). Can only be used
* with image / data formats & resolutions it was compiled for, with
* some exceptions.
*
* This class represents a product of graph compilation (calling
* cv::GComputation::compile()). Objects of this class actually do
* data processing, and graph execution is incapsulated into objects
* of this class. Execution model itself depends on kernels and
* backends which were using during the compilation, see @ref
* gapi_compile_args for details.
*
* In a general case, GCompiled objects can be applied to data only in
* that formats/resolutions they were compiled for (see @ref
* gapi_meta_args). However, if the underlying backends allow, a
* compiled object can be _reshaped_ to handle data (images) of
* different resolution, though formats and types must remain the same.
*
* GCompiled is very similar to `std::function<>` in its semantics --
* running it looks like a function call in the user code.
*
* At the moment, GCompiled objects are not reentrant -- generally,
* the objects are stateful since graph execution itself is a stateful
* process and this state is now maintained in GCompiled's own memory
* (not on the process stack).
*
* At the same time, two different GCompiled objects produced from the
* single cv::GComputation are completely independent and can be used
* concurrently.
*
* @sa GStreamingCompiled
*/
class GAPI_EXPORTS GCompiled
{
public:
/// @private
class GAPI_EXPORTS Priv;
/**
* @brief Constructs an empty object
*/
GCompiled();
/**
* @brief Run the compiled computation, a generic version.
*
* @param ins vector of inputs to process.
* @param outs vector of outputs to produce.
*
* Input/output vectors must have the same number of elements as
* defined in the cv::GComputation protocol (at the moment of its
* construction). Shapes of elements also must conform to protocol
* (e.g. cv::Mat needs to be passed where cv::GMat has been
* declared as input, and so on). Run-time exception is generated
* otherwise.
*
* Objects in output vector may remain empty (like cv::Mat) --
* G-API will automatically initialize output objects to proper formats.
*
* @note Don't construct GRunArgs/GRunArgsP objects manually, use
* cv::gin()/cv::gout() wrappers instead.
*/
void operator() (GRunArgs &&ins, GRunArgsP &&outs); // Generic arg-to-arg
#if !defined(GAPI_STANDALONE)
/**
* @brief Execute an unary computation
*
* @overload
* @param in input cv::Mat for unary computation
* @param out output cv::Mat for unary computation
* process.
*/
void operator() (cv::Mat in, cv::Mat &out); // Unary overload
/**
* @brief Execute an unary computation
*
* @overload
* @param in input cv::Mat for unary computation
* @param out output cv::Scalar for unary computation
* process.
*/
void operator() (cv::Mat in, cv::Scalar &out); // Unary overload (scalar)
/**
* @brief Execute a binary computation
*
* @overload
* @param in1 first input cv::Mat for binary computation
* @param in2 second input cv::Mat for binary computation
* @param out output cv::Mat for binary computation
* process.
*/
void operator() (cv::Mat in1, cv::Mat in2, cv::Mat &out); // Binary overload
/**
* @brief Execute an binary computation
*
* @overload
* @param in1 first input cv::Mat for binary computation
* @param in2 second input cv::Mat for binary computation
* @param out output cv::Scalar for binary computation
* process.
*/
void operator() (cv::Mat in1, cv::Mat in2, cv::Scalar &out); // Binary overload (scalar)
/**
* @brief Execute a computation with arbitrary number of
* inputs/outputs.
*
* @overload
* @param ins vector of input cv::Mat objects to process by the
* computation.
* @param outs vector of output cv::Mat objects to produce by the
* computation.
*
* Numbers of elements in ins/outs vectors must match numbers of
* inputs/outputs which were used to define the source GComputation.
*/
void operator() (const std::vector<cv::Mat> &ins, // Compatibility overload
const std::vector<cv::Mat> &outs);
#endif // !defined(GAPI_STANDALONE)
/// @private
Priv& priv();
/**
* @brief Check if compiled object is valid (non-empty)
*
* @return true if the object is runnable (valid), false otherwise
*/
explicit operator bool () const;
/**
* @brief Vector of metadata this graph was compiled for.
*
* @return Unless _reshape_ is not supported, return value is the
* same vector which was passed to cv::GComputation::compile() to
* produce this compiled object. Otherwise, it is the latest
* metadata vector passed to reshape() (if that call was
* successful).
*/
const GMetaArgs& metas() const; // Meta passed to compile()
/**
* @brief Vector of metadata descriptions of graph outputs
*
* @return vector with formats/resolutions of graph's output
* objects, auto-inferred from input metadata vector by
* operations which form this computation.
*
* @note GCompiled objects produced from the same
* cv::GComputiation graph with different input metas may return
* different values in this vector.
*/
const GMetaArgs& outMetas() const;
/**
* @brief Check if the underlying backends support reshape or not.
*
* @return true if supported, false otherwise.
*/
bool canReshape() const;
/**
* @brief Reshape a compiled graph to support new image
* resolutions.
*
* Throws an exception if an error occurs.
*
* @param inMetas new metadata to reshape on. Vector size and
* metadata shapes must match the computation's protocol.
* @param args compilation arguments to use.
*/
// FIXME: Why it requires compile args?
void reshape(const GMetaArgs& inMetas, const GCompileArgs& args);
/**
* @brief Prepare inner kernels states for a new video-stream.
*
* GCompiled objects may be used to process video streams frame by frame.
* In this case, a GCompiled is called on every image frame individually.
* Starting OpenCV 4.4, some kernels in the graph may have their internal
* states (see GAPI_OCV_KERNEL_ST for the OpenCV backend).
* In this case, if user starts processing another video stream with
* this GCompiled, this method needs to be called to let kernels re-initialize
* their internal states to a new video stream.
*/
void prepareForNewStream();
protected:
/// @private
std::shared_ptr<Priv> m_priv;
};
/** @} */
}
#endif // OPENCV_GAPI_GCOMPILED_HPP

View File

@ -0,0 +1,73 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_GCOMPILED_ASYNC_HPP
#define OPENCV_GAPI_GCOMPILED_ASYNC_HPP
#include <future> //for std::future
#include <exception> //for std::exception_ptr
#include <functional> //for std::function
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/own/exports.hpp>
namespace cv {
//fwd declaration
class GCompiled;
namespace gapi{
namespace wip {
class GAsyncContext;
/**
These functions asynchronously (i.e. probably on a separate thread of execution) call GCompiled::operator() member function of their first argument with copies of rest of arguments (except callback) passed in.
The difference between the function is the way to get the completion notification (via callback or a waiting on std::future object)
If exception is occurred during execution of apply it is transferred to the callback (via function parameter) or passed to future (and will be thrown on call to std::future::get)
N.B. :
Input arguments are copied on call to async function (actually on call to cv::gin) and thus do not have to outlive the actual completion of asynchronous activity.
While output arguments are "captured" by reference(pointer) and therefore _must_ outlive the asynchronous activity
(i.e. live at least until callback is called or future is unblocked)
@param gcmpld Compiled computation (graph) to start asynchronously
@param callback Callback to be called when execution of gcmpld is done
@param ins Input parameters for gcmpld
@param outs Output parameters for gcmpld
*/
GAPI_EXPORTS void async(GCompiled& gcmpld, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs);
/** @overload
@param gcmpld Compiled computation (graph) to run asynchronously
@param callback Callback to be called when execution of gcmpld is done
@param ins Input parameters for gcmpld
@param outs Output parameters for gcmpld
@param ctx Context this request belongs to
@see async GAsyncContext
*/
GAPI_EXPORTS void async(GCompiled& gcmpld, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GAsyncContext& ctx);
/** @overload
@param gcmpld Compiled computation (graph) to run asynchronously
@param ins Input parameters for gcmpld
@param outs Output parameters for gcmpld
@return std::future<void> object to wait for completion of async operation
@see async
*/
GAPI_EXPORTS std::future<void> async(GCompiled& gcmpld, GRunArgs &&ins, GRunArgsP &&outs);
/**
@param gcmpld Compiled computation (graph) to run asynchronously
@param ins Input parameters for gcmpld
@param outs Output parameters for gcmpld
@param ctx Context this request belongs to
@return std::future<void> object to wait for completion of async operation
@see async GAsyncContext
*/
GAPI_EXPORTS std::future<void> async(GCompiled& gcmpld, GRunArgs &&ins, GRunArgsP &&outs, GAsyncContext& ctx);
} // namespace wip
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GCOMPILED_ASYNC_HPP

View File

@ -0,0 +1,139 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019 Intel Corporation
#ifndef OPENCV_GAPI_GCOMPOUNDKERNEL_HPP
#define OPENCV_GAPI_GCOMPOUNDKERNEL_HPP
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/garg.hpp>
namespace cv {
namespace gapi
{
namespace compound
{
// FIXME User does not need to know about this function
// Needs that user may define compound kernels(as cpu kernels)
GAPI_EXPORTS cv::gapi::GBackend backend();
} // namespace compound
} // namespace gapi
namespace detail
{
struct GCompoundContext
{
explicit GCompoundContext(const GArgs& in_args);
template<typename T>
const T& inArg(int input) { return m_args.at(input).get<T>(); }
GArgs m_args;
GArgs m_results;
};
class GAPI_EXPORTS GCompoundKernel
{
// Compound kernel must use all of it's inputs
public:
using F = std::function<void(GCompoundContext& ctx)>;
explicit GCompoundKernel(const F& f);
void apply(GCompoundContext& ctx);
protected:
F m_f;
};
template<typename T> struct get_compound_in
{
static T get(GCompoundContext &ctx, int idx) { return ctx.inArg<T>(idx); }
};
template<typename U> struct get_compound_in<cv::GArray<U>>
{
static cv::GArray<U> get(GCompoundContext &ctx, int idx)
{
auto array = cv::GArray<U>();
ctx.m_args[idx] = GArg(array);
return array;
}
};
template<typename U> struct get_compound_in<cv::GOpaque<U>>
{
static cv::GOpaque<U> get(GCompoundContext &ctx, int idx)
{
auto opaq = cv::GOpaque<U>();
ctx.m_args[idx] = GArg(opaq);
return opaq;
}
};
template<> struct get_compound_in<cv::GMatP>
{
static cv::GMatP get(GCompoundContext &ctx, int idx)
{
auto mat = cv::GMatP();
ctx.m_args[idx] = GArg(mat);
return mat;
}
};
template<typename, typename, typename>
struct GCompoundCallHelper;
template<typename Impl, typename... Ins, typename... Outs>
struct GCompoundCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
{
template<int... IIs, int... OIs>
static void expand_impl(GCompoundContext &ctx, detail::Seq<IIs...>, detail::Seq<OIs...>)
{
auto result = Impl::expand(get_compound_in<Ins>::get(ctx, IIs)...);
auto tuple_return = tuple_wrap_helper<decltype(result)>::get(std::move(result));
ctx.m_results = { cv::GArg(std::get<OIs>(tuple_return))... };
}
static void expand(GCompoundContext &ctx)
{
expand_impl(ctx,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
};
template<class Impl, class K>
class GCompoundKernelImpl: public cv::detail::GCompoundCallHelper<Impl, typename K::InArgs, typename K::OutArgs>,
public cv::detail::KernelTag
{
using P = cv::detail::GCompoundCallHelper<Impl, typename K::InArgs, typename K::OutArgs>;
public:
using API = K;
static cv::gapi::GBackend backend() { return cv::gapi::compound::backend(); }
static GCompoundKernel kernel() { return GCompoundKernel(&P::expand); }
};
} // namespace detail
/**
* Declares a new compound kernel. See this
* [documentation chapter](@ref gapi_kernel_compound)
* on compound kernels for more details.
*
* @param Name type name for new kernel
* @param API the interface this kernel implements
*/
#define GAPI_COMPOUND_KERNEL(Name, API) \
struct Name: public cv::detail::GCompoundKernelImpl<Name, API>
} // namespace cv
#endif // OPENCV_GAPI_GCOMPOUNDKERNEL_HPP

View File

@ -0,0 +1,580 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GCOMPUTATION_HPP
#define OPENCV_GAPI_GCOMPUTATION_HPP
#include <functional>
#include <opencv2/gapi/util/util.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/gproto.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/gcompiled.hpp>
#include <opencv2/gapi/gstreaming.hpp>
namespace cv {
namespace detail
{
// FIXME: move to algorithm, cover with separate tests
// FIXME: replace with O(1) version (both memory and compilation time)
template<typename...>
struct last_type;
template<typename T>
struct last_type<T> { using type = T;};
template<typename T, typename... Ts>
struct last_type<T, Ts...> { using type = typename last_type<Ts...>::type; };
template<typename... Ts>
using last_type_t = typename last_type<Ts...>::type;
}
// Forward-declare the serialization objects
namespace gapi {
namespace s11n {
struct IIStream;
struct IOStream;
} // namespace s11n
} // namespace gapi
/**
* \addtogroup gapi_main_classes
* @{
*
* @brief G-API classes for constructed and compiled graphs.
*/
/**
* @brief GComputation class represents a captured computation
* graph. GComputation objects form boundaries for expression code
* user writes with G-API, allowing to compile and execute it.
*
* G-API computations are defined with input/output data
* objects. G-API will track automatically which operations connect
* specified outputs to the inputs, forming up a call graph to be
* executed. The below example expresses calculation of Sobel operator
* for edge detection (\f$G = \sqrt{G_x^2 + G_y^2}\f$):
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp graph_def
*
* Full pipeline can be now captured with this object declaration:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp graph_cap_full
*
* Input/output data objects on which a call graph should be
* reconstructed are passed using special wrappers cv::GIn and
* cv::GOut. G-API will track automatically which operations form a
* path from inputs to outputs and build the execution graph appropriately.
*
* Note that cv::GComputation doesn't take ownership on data objects
* it is defined. Moreover, multiple GComputation objects may be
* defined on the same expressions, e.g. a smaller pipeline which
* expects that image gradients are already pre-calculated may be
* defined like this:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp graph_cap_sub
*
* The resulting graph would expect two inputs and produce one
* output. In this case, it doesn't matter if gx/gy data objects are
* results of cv::gapi::Sobel operators -- G-API will stop unrolling
* expressions and building the underlying graph one reaching this
* data objects.
*
* The way how GComputation is defined is important as its definition
* specifies graph _protocol_ -- the way how the graph should be
* used. Protocol is defined by number of inputs, number of outputs,
* and shapes of inputs and outputs.
*
* In the above example, sobelEdge expects one Mat on input and
* produces one Mat; while sobelEdgeSub expects two Mats on input and
* produces one Mat. GComputation's protocol defines how other
* computation methods should be used -- cv::GComputation::compile() and
* cv::GComputation::apply(). For example, if a graph is defined on
* two GMat inputs, two cv::Mat objects have to be passed to apply()
* for execution. GComputation checks protocol correctness in runtime
* so passing a different number of objects in apply() or passing
* cv::Scalar instead of cv::Mat there would compile well as a C++
* source but raise an exception in run-time. G-API also comes with a
* typed wrapper cv::GComputationT<> which introduces this type-checking in
* compile-time.
*
* cv::GComputation itself is a thin object which just captures what
* the graph is. The compiled graph (which actually process data) is
* represented by class GCompiled. Use compile() method to generate a
* compiled graph with given compile options. cv::GComputation can
* also be used to process data with implicit graph compilation
* on-the-fly, see apply() for details.
*
* GComputation is a reference-counted object -- once defined, all its
* copies will refer to the same instance.
*
* @sa GCompiled
*/
class GAPI_EXPORTS_W GComputation
{
public:
class Priv;
typedef std::function<GComputation()> Generator;
// Various constructors enable different ways to define a computation: /////
// 1. Generic constructors
/**
* @brief Define a computation using a generator function.
*
* Graph can be defined in-place directly at the moment of its
* construction with a lambda:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp graph_gen
*
* This may be useful since all temporary objects (cv::GMats) and
* namespaces can be localized to scope of lambda, without
* contaminating the parent scope with probably unnecessary objects
* and information.
*
* @param gen generator function which returns a cv::GComputation,
* see Generator.
*/
GComputation(const Generator& gen); // Generator
// overload
/**
* @brief Generic GComputation constructor.
*
* Constructs a new graph with a given protocol, specified as a
* flow of operations connecting input/output objects. Throws if
* the passed boundaries are invalid, e.g. if there's no
* functional dependency (path) between given outputs and inputs.
*
* @param ins Input data vector.
* @param outs Output data vector.
*
* @note Don't construct GProtoInputArgs/GProtoOutputArgs objects
* directly, use cv::GIn()/cv::GOut() wrapper functions instead.
*
* @sa @ref gapi_data_objects
*/
GAPI_WRAP GComputation(GProtoInputArgs &&ins,
GProtoOutputArgs &&outs); // Arg-to-arg overload
// 2. Syntax sugar and compatibility overloads
/**
* @brief Defines an unary (one input -- one output) computation
*
* @overload
* @param in input GMat of the defined unary computation
* @param out output GMat of the defined unary computation
*/
GAPI_WRAP GComputation(GMat in, GMat out); // Unary overload
/**
* @brief Defines an unary (one input -- one output) computation
*
* @overload
* @param in input GMat of the defined unary computation
* @param out output GScalar of the defined unary computation
*/
GAPI_WRAP GComputation(GMat in, GScalar out); // Unary overload (scalar)
/**
* @brief Defines a binary (two inputs -- one output) computation
*
* @overload
* @param in1 first input GMat of the defined binary computation
* @param in2 second input GMat of the defined binary computation
* @param out output GMat of the defined binary computation
*/
GAPI_WRAP GComputation(GMat in1, GMat in2, GMat out); // Binary overload
/**
* @brief Defines a binary (two inputs -- one output) computation
*
* @overload
* @param in1 first input GMat of the defined binary computation
* @param in2 second input GMat of the defined binary computation
* @param out output GScalar of the defined binary computation
*/
GComputation(GMat in1, GMat in2, GScalar out); // Binary
// overload
// (scalar)
/**
* @brief Defines a computation with arbitrary input/output number.
*
* @overload
* @param ins vector of inputs GMats for this computation
* @param outs vector of outputs GMats for this computation
*
* Use this overload for cases when number of computation
* inputs/outputs is not known in compile-time -- e.g. when graph
* is programmatically generated to build an image pyramid with
* the given number of levels, etc.
*/
GComputation(const std::vector<GMat> &ins, // Compatibility overload
const std::vector<GMat> &outs);
// Various versions of apply(): ////////////////////////////////////////////
// 1. Generic apply()
/**
* @brief Compile graph on-the-fly and immediately execute it on
* the inputs data vectors.
*
* Number of input/output data objects must match GComputation's
* protocol, also types of host data objects (cv::Mat, cv::Scalar)
* must match the shapes of data objects from protocol (cv::GMat,
* cv::GScalar). If there's a mismatch, a run-time exception will
* be generated.
*
* Internally, a cv::GCompiled object is created for the given
* input format configuration, which then is executed on the input
* data immediately. cv::GComputation caches compiled objects
* produced within apply() -- if this method would be called next
* time with the same input parameters (image formats, image
* resolution, etc), the underlying compiled graph will be reused
* without recompilation. If new metadata doesn't match the cached
* one, the underlying compiled graph is regenerated.
*
* @note compile() always triggers a compilation process and
* produces a new GCompiled object regardless if a similar one has
* been cached via apply() or not.
*
* @param ins vector of input data to process. Don't create
* GRunArgs object manually, use cv::gin() wrapper instead.
* @param outs vector of output data to fill results in. cv::Mat
* objects may be empty in this vector, G-API will automatically
* initialize it with the required format & dimensions. Don't
* create GRunArgsP object manually, use cv::gout() wrapper instead.
* @param args a list of compilation arguments to pass to the
* underlying compilation process. Don't create GCompileArgs
* object manually, use cv::compile_args() wrapper instead.
*
* @sa @ref gapi_data_objects, @ref gapi_compile_args
*/
void apply(GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {}); // Arg-to-arg overload
/// @private -- Exclude this function from OpenCV documentation
GAPI_WRAP GRunArgs apply(const cv::detail::ExtractArgsCallback &callback,
GCompileArgs &&args = {});
/// @private -- Exclude this function from OpenCV documentation
void apply(const std::vector<cv::Mat>& ins, // Compatibility overload
const std::vector<cv::Mat>& outs,
GCompileArgs &&args = {});
// 2. Syntax sugar and compatibility overloads
#if !defined(GAPI_STANDALONE)
/**
* @brief Execute an unary computation (with compilation on the fly)
*
* @overload
* @param in input cv::Mat for unary computation
* @param out output cv::Mat for unary computation
* @param args compilation arguments for underlying compilation
* process.
*/
void apply(cv::Mat in, cv::Mat &out, GCompileArgs &&args = {}); // Unary overload
/**
* @brief Execute an unary computation (with compilation on the fly)
*
* @overload
* @param in input cv::Mat for unary computation
* @param out output cv::Scalar for unary computation
* @param args compilation arguments for underlying compilation
* process.
*/
void apply(cv::Mat in, cv::Scalar &out, GCompileArgs &&args = {}); // Unary overload (scalar)
/**
* @brief Execute a binary computation (with compilation on the fly)
*
* @overload
* @param in1 first input cv::Mat for binary computation
* @param in2 second input cv::Mat for binary computation
* @param out output cv::Mat for binary computation
* @param args compilation arguments for underlying compilation
* process.
*/
void apply(cv::Mat in1, cv::Mat in2, cv::Mat &out, GCompileArgs &&args = {}); // Binary overload
/**
* @brief Execute an binary computation (with compilation on the fly)
*
* @overload
* @param in1 first input cv::Mat for binary computation
* @param in2 second input cv::Mat for binary computation
* @param out output cv::Scalar for binary computation
* @param args compilation arguments for underlying compilation
* process.
*/
void apply(cv::Mat in1, cv::Mat in2, cv::Scalar &out, GCompileArgs &&args = {}); // Binary overload (scalar)
/**
* @brief Execute a computation with arbitrary number of
* inputs/outputs (with compilation on-the-fly).
*
* @overload
* @param ins vector of input cv::Mat objects to process by the
* computation.
* @param outs vector of output cv::Mat objects to produce by the
* computation.
* @param args compilation arguments for underlying compilation
* process.
*
* Numbers of elements in ins/outs vectors must match numbers of
* inputs/outputs which were used to define this GComputation.
*/
void apply(const std::vector<cv::Mat>& ins, // Compatibility overload
std::vector<cv::Mat>& outs,
GCompileArgs &&args = {});
#endif // !defined(GAPI_STANDALONE)
// Various versions of compile(): //////////////////////////////////////////
// 1. Generic compile() - requires metas to be passed as vector
/**
* @brief Compile the computation for specific input format(s).
*
* This method triggers compilation process and produces a new
* GCompiled object which then can process data of the given
* format. Passing data with different format to the compiled
* computation will generate a run-time exception.
*
* @param in_metas vector of input metadata configuration. Grab
* metadata from real data objects (like cv::Mat or cv::Scalar)
* using cv::descr_of(), or create it on your own.
* @param args compilation arguments for this compilation
* process. Compilation arguments directly affect what kind of
* executable object would be produced, e.g. which kernels (and
* thus, devices) would be used to execute computation.
*
* @return GCompiled, an executable computation compiled
* specifically for the given input parameters.
*
* @sa @ref gapi_compile_args
*/
GCompiled compile(GMetaArgs &&in_metas, GCompileArgs &&args = {});
// 2. Syntax sugar - variadic list of metas, no extra compile args
// FIXME: SFINAE looks ugly in the generated documentation
/**
* @overload
*
* Takes a variadic parameter pack with metadata
* descriptors for which a compiled object needs to be produced.
*
* @return GCompiled, an executable computation compiled
* specifically for the given input parameters.
*/
template<typename... Ts>
auto compile(const Ts&... metas) ->
typename std::enable_if<detail::are_meta_descrs<Ts...>::value, GCompiled>::type
{
return compile(GMetaArgs{GMetaArg(metas)...}, GCompileArgs());
}
// 3. Syntax sugar - variadic list of metas, extra compile args
// (seems optional parameters don't work well when there's an variadic template
// comes first)
//
// Ideally it should look like:
//
// template<typename... Ts>
// GCompiled compile(const Ts&... metas, GCompileArgs &&args)
//
// But not all compilers can handle this (and seems they shouldn't be able to).
// FIXME: SFINAE looks ugly in the generated documentation
/**
* @overload
*
* Takes a variadic parameter pack with metadata
* descriptors for which a compiled object needs to be produced,
* followed by GCompileArgs object representing compilation
* arguments for this process.
*
* @return GCompiled, an executable computation compiled
* specifically for the given input parameters.
*/
template<typename... Ts>
auto compile(const Ts&... meta_and_compile_args) ->
typename std::enable_if<detail::are_meta_descrs_but_last<Ts...>::value
&& std::is_same<GCompileArgs, detail::last_type_t<Ts...> >::value,
GCompiled>::type
{
//FIXME: wrapping meta_and_compile_args into a tuple to unwrap them inside a helper function is the overkill
return compile(std::make_tuple(meta_and_compile_args...),
typename detail::MkSeq<sizeof...(Ts)-1>::type());
}
// FIXME: Document properly in the Doxygen format
// Video-oriented pipeline compilation:
// 1. A generic version
/**
* @brief Compile the computation for streaming mode.
*
* This method triggers compilation process and produces a new
* GStreamingCompiled object which then can process video stream
* data of the given format. Passing a stream in a different
* format to the compiled computation will generate a run-time
* exception.
*
* @param in_metas vector of input metadata configuration. Grab
* metadata from real data objects (like cv::Mat or cv::Scalar)
* using cv::descr_of(), or create it on your own.
*
* @param args compilation arguments for this compilation
* process. Compilation arguments directly affect what kind of
* executable object would be produced, e.g. which kernels (and
* thus, devices) would be used to execute computation.
*
* @return GStreamingCompiled, a streaming-oriented executable
* computation compiled specifically for the given input
* parameters.
*
* @sa @ref gapi_compile_args
*/
GAPI_WRAP GStreamingCompiled compileStreaming(GMetaArgs &&in_metas, GCompileArgs &&args = {});
/**
* @brief Compile the computation for streaming mode.
*
* This method triggers compilation process and produces a new
* GStreamingCompiled object which then can process video stream
* data in any format. Underlying mechanisms will be adjusted to
* every new input video stream automatically, but please note that
* _not all_ existing backends support this (see reshape()).
*
* @param args compilation arguments for this compilation
* process. Compilation arguments directly affect what kind of
* executable object would be produced, e.g. which kernels (and
* thus, devices) would be used to execute computation.
*
* @return GStreamingCompiled, a streaming-oriented executable
* computation compiled for any input image format.
*
* @sa @ref gapi_compile_args
*/
GAPI_WRAP GStreamingCompiled compileStreaming(GCompileArgs &&args = {});
/// @private -- Exclude this function from OpenCV documentation
GAPI_WRAP GStreamingCompiled compileStreaming(const cv::detail::ExtractMetaCallback &callback,
GCompileArgs &&args = {});
// 2. Direct metadata version
/**
* @overload
*
* Takes a variadic parameter pack with metadata
* descriptors for which a compiled object needs to be produced.
*
* @return GStreamingCompiled, a streaming-oriented executable
* computation compiled specifically for the given input
* parameters.
*/
template<typename... Ts>
auto compileStreaming(const Ts&... metas) ->
typename std::enable_if<detail::are_meta_descrs<Ts...>::value, GStreamingCompiled>::type
{
return compileStreaming(GMetaArgs{GMetaArg(metas)...}, GCompileArgs());
}
// 2. Direct metadata + compile arguments version
/**
* @overload
*
* Takes a variadic parameter pack with metadata
* descriptors for which a compiled object needs to be produced,
* followed by GCompileArgs object representing compilation
* arguments for this process.
*
* @return GStreamingCompiled, a streaming-oriented executable
* computation compiled specifically for the given input
* parameters.
*/
template<typename... Ts>
auto compileStreaming(const Ts&... meta_and_compile_args) ->
typename std::enable_if<detail::are_meta_descrs_but_last<Ts...>::value
&& std::is_same<GCompileArgs, detail::last_type_t<Ts...> >::value,
GStreamingCompiled>::type
{
//FIXME: wrapping meta_and_compile_args into a tuple to unwrap them inside a helper function is the overkill
return compileStreaming(std::make_tuple(meta_and_compile_args...),
typename detail::MkSeq<sizeof...(Ts)-1>::type());
}
// Internal use only
/// @private
Priv& priv();
/// @private
const Priv& priv() const;
/// @private
explicit GComputation(cv::gapi::s11n::IIStream &);
/// @private
void serialize(cv::gapi::s11n::IOStream &) const;
protected:
// 4. Helper methods for (3)
/// @private
template<typename... Ts, int... IIs>
GCompiled compile(const std::tuple<Ts...> &meta_and_compile_args, detail::Seq<IIs...>)
{
GMetaArgs meta_args = {GMetaArg(std::get<IIs>(meta_and_compile_args))...};
GCompileArgs comp_args = std::get<sizeof...(Ts)-1>(meta_and_compile_args);
return compile(std::move(meta_args), std::move(comp_args));
}
template<typename... Ts, int... IIs>
GStreamingCompiled compileStreaming(const std::tuple<Ts...> &meta_and_compile_args, detail::Seq<IIs...>)
{
GMetaArgs meta_args = {GMetaArg(std::get<IIs>(meta_and_compile_args))...};
GCompileArgs comp_args = std::get<sizeof...(Ts)-1>(meta_and_compile_args);
return compileStreaming(std::move(meta_args), std::move(comp_args));
}
void recompile(GMetaArgs&& in_metas, GCompileArgs &&args);
/// @private
std::shared_ptr<Priv> m_priv;
};
/** @} */
namespace gapi
{
// FIXME: all these standalone functions need to be added to some
// common documentation section
/**
* @brief Define an tagged island (subgraph) within a computation.
*
* Declare an Island tagged with `name` and defined from `ins` to `outs`
* (exclusively, as ins/outs are data objects, and regioning is done on
* operations level).
* Throws if any operation between `ins` and `outs` are already assigned
* to another island.
*
* Islands allow to partition graph into subgraphs, fine-tuning
* the way it is scheduled by the underlying executor.
*
* @param name name of the Island to create
* @param ins vector of input data objects where the subgraph
* begins
* @param outs vector of output data objects where the subgraph
* ends.
*
* The way how an island is defined is similar to how
* cv::GComputation is defined on input/output data objects.
* Same rules apply here as well -- if there's no functional
* dependency between inputs and outputs or there's not enough
* input data objects were specified to properly calculate all
* outputs, an exception is thrown.
*
* Use cv::GIn() / cv::GOut() to specify input/output vectors.
*/
void GAPI_EXPORTS island(const std::string &name,
GProtoInputArgs &&ins,
GProtoOutputArgs &&outs);
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GCOMPUTATION_HPP

View File

@ -0,0 +1,69 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_GCOMPUTATION_ASYNC_HPP
#define OPENCV_GAPI_GCOMPUTATION_ASYNC_HPP
#include <future> //for std::future
#include <exception> //for std::exception_ptr
#include <functional> //for std::function
#include <opencv2/gapi/garg.hpp> //for GRunArgs, GRunArgsP
#include <opencv2/gapi/gcommon.hpp> //for GCompileArgs
#include <opencv2/gapi/own/exports.hpp>
namespace cv {
//fwd declaration
class GComputation;
namespace gapi {
namespace wip {
class GAsyncContext;
/** In contrast to async() functions, these do call GComputation::apply() member function of the GComputation passed in.
@param gcomp Computation (graph) to run asynchronously
@param callback Callback to be called when execution of gcomp is done
@param ins Input parameters for gcomp
@param outs Output parameters for gcomp
@param args Compile arguments to pass to GComputation::apply()
@see async
*/
GAPI_EXPORTS void async_apply(GComputation& gcomp, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {});
/** @overload
@param gcomp Computation (graph) to run asynchronously
@param callback Callback to be called when execution of gcomp is done
@param ins Input parameters for gcomp
@param outs Output parameters for gcomp
@param args Compile arguments to pass to GComputation::apply()
@param ctx Context this request belongs to
@see async_apply async GAsyncContext
*/
GAPI_EXPORTS void async_apply(GComputation& gcomp, std::function<void(std::exception_ptr)>&& callback, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args, GAsyncContext& ctx);
/** @overload
@param gcomp Computation (graph) to run asynchronously
@param ins Input parameters for gcomp
@param outs Output parameters for gcomp
@param args Compile arguments to pass to GComputation::apply()
@return std::future<void> object to wait for completion of async operation
@see async_apply async
*/
GAPI_EXPORTS std::future<void> async_apply(GComputation& gcomp, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args = {});
/** @overload
@param gcomp Computation (graph) to run asynchronously
@param ins Input parameters for gcomp
@param outs Output parameters for gcomp
@param args Compile arguments to pass to GComputation::apply()
@param ctx Context this request belongs to
@return std::future<void> object to wait for completion of async operation
@see async_apply async GAsyncContext
*/
GAPI_EXPORTS std::future<void> async_apply(GComputation& gcomp, GRunArgs &&ins, GRunArgsP &&outs, GCompileArgs &&args, GAsyncContext& ctx);
} // namespace wip
} // namespace gapi
} // namespace cv
#endif //OPENCV_GAPI_GCOMPUTATION_ASYNC_HPP

View File

@ -0,0 +1,112 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_GFRAME_HPP
#define OPENCV_GAPI_GFRAME_HPP
#include <ostream>
#include <memory> // std::shared_ptr
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/gcommon.hpp> // GShape
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/own/assert.hpp>
// TODO GAPI_EXPORTS or so
namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
/** \addtogroup gapi_data_objects
* @{
*/
/**
* @brief GFrame class represents an image or media frame in the graph.
*
* GFrame doesn't store any data itself, instead it describes a
* functional relationship between operations consuming and producing
* GFrame objects.
*
* GFrame is introduced to handle various media formats (e.g., NV12 or
* I420) under the same type. Various image formats may differ in the
* number of planes (e.g. two for NV12, three for I420) and the pixel
* layout inside. GFrame type allows to handle these media formats in
* the graph uniformly -- the graph structure will not change if the
* media format changes, e.g. a different camera or decoder is used
* with the same graph. G-API provides a number of operations which
* operate directly on GFrame, like `infer<>()` or
* renderFrame(); these operations are expected to handle different
* media formats inside. There is also a number of accessor
* operations like BGR(), Y(), UV() -- these operations provide
* access to frame's data in the familiar cv::GMat form, which can be
* used with the majority of the existing G-API operations. These
* accessor functions may perform color space converion on the fly if
* the image format of the GFrame they are applied to differs from the
* operation's semantic (e.g. the BGR() accessor is called on an NV12
* image frame).
*
* GFrame is a virtual counterpart of cv::MediaFrame.
*
* @sa cv::MediaFrame, cv::GFrameDesc, BGR(), Y(), UV(), infer<>().
*/
class GAPI_EXPORTS_W_SIMPLE GFrame
{
public:
/**
* @brief Constructs an empty GFrame
*
* Normally, empty G-API data objects denote a starting point of
* the graph. When an empty GFrame is assigned to a result of some
* operation, it obtains a functional link to this operation (and
* is not empty anymore).
*/
GAPI_WRAP GFrame(); // Empty constructor
/// @private
GFrame(const GNode &n, std::size_t out); // Operation result constructor
/// @private
GOrigin& priv(); // Internal use only
/// @private
const GOrigin& priv() const; // Internal use only
private:
std::shared_ptr<GOrigin> m_priv;
};
/** @} */
enum class MediaFormat: int
{
BGR = 0,
NV12,
};
/**
* \addtogroup gapi_meta_args
* @{
*/
struct GAPI_EXPORTS GFrameDesc
{
MediaFormat fmt;
cv::Size size;
bool operator== (const GFrameDesc &) const;
};
static inline GFrameDesc empty_gframe_desc() { return GFrameDesc{}; }
/** @} */
class MediaFrame;
GAPI_EXPORTS GFrameDesc descr_of(const MediaFrame &frame);
GAPI_EXPORTS std::ostream& operator<<(std::ostream& os, const cv::GFrameDesc &desc);
} // namespace cv
#endif // OPENCV_GAPI_GFRAME_HPP

View File

@ -0,0 +1,749 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#ifndef OPENCV_GAPI_GKERNEL_HPP
#define OPENCV_GAPI_GKERNEL_HPP
#include <functional>
#include <iostream>
#include <string> // string
#include <type_traits> // false_type, true_type
#include <unordered_map> // map (for GKernelPackage)
#include <utility> // tuple
#include <opencv2/gapi/gcommon.hpp> // CompileArgTag
#include <opencv2/gapi/util/util.hpp> // Seq
#include <opencv2/gapi/gcall.hpp>
#include <opencv2/gapi/garg.hpp> // GArg
#include <opencv2/gapi/gmetaarg.hpp> // GMetaArg
#include <opencv2/gapi/gtype_traits.hpp> // GTypeTraits
#include <opencv2/gapi/util/compiler_hints.hpp> //suppress_unused_warning
#include <opencv2/gapi/gtransform.hpp>
namespace cv {
struct GTypeInfo
{
GShape shape;
cv::detail::OpaqueKind kind;
detail::HostCtor ctor;
};
using GShapes = std::vector<GShape>;
using GKinds = std::vector<cv::detail::OpaqueKind>;
using GCtors = std::vector<detail::HostCtor>;
using GTypesInfo = std::vector<GTypeInfo>;
// GKernel describes kernel API to the system
// FIXME: add attributes of a kernel, (e.g. number and types
// of inputs, etc)
struct GAPI_EXPORTS GKernel
{
using M = std::function<GMetaArgs(const GMetaArgs &, const GArgs &)>;
std::string name; // kernel ID, defined by its API (signature)
std::string tag; // some (implementation-specific) tag
M outMeta; // generic adaptor to API::outMeta(...)
GShapes outShapes; // types (shapes) kernel's outputs
GKinds inKinds; // kinds of kernel's inputs (fixme: below)
GCtors outCtors; // captured constructors for template output types
};
// TODO: It's questionable if inKinds should really be here. Instead,
// this information could come from meta.
// GKernelImpl describes particular kernel implementation to the system
struct GAPI_EXPORTS GKernelImpl
{
util::any opaque; // backend-specific opaque info
GKernel::M outMeta; // for deserialized graphs, the outMeta is taken here
};
template<typename, typename> class GKernelTypeM;
namespace detail
{
////////////////////////////////////////////////////////////////////////////
// yield() is used in graph construction time as a generic method to obtain
// lazy "return value" of G-API operations
//
template<typename T> struct Yield;
template<> struct Yield<cv::GMat>
{
static inline cv::GMat yield(cv::GCall &call, int i) { return call.yield(i); }
};
template<> struct Yield<cv::GMatP>
{
static inline cv::GMatP yield(cv::GCall &call, int i) { return call.yieldP(i); }
};
template<> struct Yield<cv::GScalar>
{
static inline cv::GScalar yield(cv::GCall &call, int i) { return call.yieldScalar(i); }
};
template<typename U> struct Yield<cv::GArray<U> >
{
static inline cv::GArray<U> yield(cv::GCall &call, int i) { return call.yieldArray<U>(i); }
};
template<typename U> struct Yield<cv::GOpaque<U> >
{
static inline cv::GOpaque<U> yield(cv::GCall &call, int i) { return call.yieldOpaque<U>(i); }
};
template<> struct Yield<GFrame>
{
static inline cv::GFrame yield(cv::GCall &call, int i) { return call.yieldFrame(i); }
};
////////////////////////////////////////////////////////////////////////////
// Helper classes which brings outputMeta() marshalling to kernel
// implementations
//
// 1. MetaType establishes G#Type -> G#Meta mapping between G-API dynamic
// types and its metadata descriptor types.
// This mapping is used to transform types to call outMeta() callback.
template<typename T> struct MetaType;
template<> struct MetaType<cv::GMat> { using type = GMatDesc; };
template<> struct MetaType<cv::GMatP> { using type = GMatDesc; };
template<> struct MetaType<cv::GFrame> { using type = GFrameDesc; };
template<> struct MetaType<cv::GScalar> { using type = GScalarDesc; };
template<typename U> struct MetaType<cv::GArray<U> > { using type = GArrayDesc; };
template<typename U> struct MetaType<cv::GOpaque<U> > { using type = GOpaqueDesc; };
template<typename T> struct MetaType { using type = T; }; // opaque args passed as-is
// FIXME: Move it to type traits?
// 2. Hacky test based on MetaType to check if we operate on G-* type or not
template<typename T> using is_nongapi_type = std::is_same<T, typename MetaType<T>::type>;
// 3. Two ways to transform input arguments to its meta - for G-* and non-G* types:
template<typename T>
typename std::enable_if<!is_nongapi_type<T>::value, typename MetaType<T>::type>
::type get_in_meta(const GMetaArgs &in_meta, const GArgs &, int idx)
{
return util::get<typename MetaType<T>::type>(in_meta.at(idx));
}
template<typename T>
typename std::enable_if<is_nongapi_type<T>::value, T>
::type get_in_meta(const GMetaArgs &, const GArgs &in_args, int idx)
{
return in_args.at(idx).template get<T>();
}
// 4. The MetaHelper itself: an entity which generates outMeta() call
// based on kernel signature, with arguments properly substituted.
// 4.1 - case for multiple return values
// FIXME: probably can be simplified with std::apply or analogue.
template<typename, typename, typename>
struct MetaHelper;
template<typename K, typename... Ins, typename... Outs>
struct MetaHelper<K, std::tuple<Ins...>, std::tuple<Outs...> >
{
template<int... IIs, int... OIs>
static GMetaArgs getOutMeta_impl(const GMetaArgs &in_meta,
const GArgs &in_args,
detail::Seq<IIs...>,
detail::Seq<OIs...>)
{
// FIXME: decay?
using R = std::tuple<typename MetaType<Outs>::type...>;
const R r = K::outMeta( get_in_meta<Ins>(in_meta, in_args, IIs)... );
return GMetaArgs{ GMetaArg(std::get<OIs>(r))... };
}
// FIXME: help users identify how outMeta must look like (via default impl w/static_assert?)
static GMetaArgs getOutMeta(const GMetaArgs &in_meta,
const GArgs &in_args)
{
return getOutMeta_impl(in_meta,
in_args,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
};
// 4.1 - case for a single return value
// FIXME: How to avoid duplication here?
template<typename K, typename... Ins, typename Out>
struct MetaHelper<K, std::tuple<Ins...>, Out >
{
template<int... IIs>
static GMetaArgs getOutMeta_impl(const GMetaArgs &in_meta,
const GArgs &in_args,
detail::Seq<IIs...>)
{
// FIXME: decay?
using R = typename MetaType<Out>::type;
const R r = K::outMeta( get_in_meta<Ins>(in_meta, in_args, IIs)... );
return GMetaArgs{ GMetaArg(r) };
}
// FIXME: help users identify how outMeta must look like (via default impl w/static_assert?)
static GMetaArgs getOutMeta(const GMetaArgs &in_meta,
const GArgs &in_args)
{
return getOutMeta_impl(in_meta,
in_args,
typename detail::MkSeq<sizeof...(Ins)>::type());
}
};
////////////////////////////////////////////////////////////////////////////
// Helper class to introduce tags to calls. By default there's no tag
struct NoTag {
static constexpr const char *tag() { return ""; }
};
} // namespace detail
// GKernelType and GKernelTypeM are base classes which implement typed ::on()
// method based on kernel signature. GKernelTypeM stands for multiple-return-value kernels
//
// G_TYPED_KERNEL and G_TYPED_KERNEL_M macros inherit user classes from GKernelType and
// GKernelTypeM respectively.
template<typename K, typename... R, typename... Args>
class GKernelTypeM<K, std::function<std::tuple<R...>(Args...)> >
: public detail::MetaHelper<K, std::tuple<Args...>, std::tuple<R...>>
, public detail::NoTag
{
template<int... IIs>
static std::tuple<R...> yield(cv::GCall &call, detail::Seq<IIs...>)
{
return std::make_tuple(detail::Yield<R>::yield(call, IIs)...);
}
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R...>;
// TODO: Args&&... here?
static std::tuple<R...> on(Args... args)
{
cv::GCall call(GKernel{ K::id()
, K::tag()
, &K::getOutMeta
, {detail::GTypeTraits<R>::shape...}
, {detail::GTypeTraits<Args>::op_kind...}
, {detail::GObtainCtor<R>::get()...}});
call.pass(args...); // TODO: std::forward() here?
return yield(call, typename detail::MkSeq<sizeof...(R)>::type());
}
};
template<typename, typename> class GKernelType;
template<typename K, typename R, typename... Args>
class GKernelType<K, std::function<R(Args...)> >
: public detail::MetaHelper<K, std::tuple<Args...>, R>
, public detail::NoTag
{
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R>;
static R on(Args... args)
{
cv::GCall call(GKernel{ K::id()
, K::tag()
, &K::getOutMeta
, {detail::GTypeTraits<R>::shape}
, {detail::GTypeTraits<Args>::op_kind...}
, {detail::GObtainCtor<R>::get()}});
call.pass(args...);
return detail::Yield<R>::yield(call, 0);
}
};
namespace detail {
// This tiny class eliminates the semantic difference between
// GKernelType and GKernelTypeM.
template<typename, typename> class KernelTypeMedium;
template<typename K, typename... R, typename... Args>
class KernelTypeMedium<K, std::function<std::tuple<R...>(Args...)>> :
public cv::GKernelTypeM<K, std::function<std::tuple<R...>(Args...)>> {};
template<typename K, typename R, typename... Args>
class KernelTypeMedium<K, std::function<R(Args...)>> :
public cv::GKernelType<K, std::function<R(Args...)>> {};
} // namespace detail
} // namespace cv
// FIXME: I don't know a better way so far. Feel free to suggest one
// The problem is that every typed kernel should have ::id() but body
// of the class is defined by user (with outMeta, other stuff)
//! @cond IGNORED
#define G_ID_HELPER_CLASS(Class) Class##IdHelper
#define G_ID_HELPER_BODY(Class, Id) \
struct G_ID_HELPER_CLASS(Class) \
{ \
static constexpr const char * id() {return Id;} \
}; \
//! @endcond
#define GET_G_TYPED_KERNEL(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, NAME, ...) NAME
#define COMBINE_SIGNATURE(...) __VA_ARGS__
// Ensure correct __VA_ARGS__ expansion on Windows
#define __WRAP_VAARGS(x) x
/**
* Helper for G_TYPED_KERNEL declares a new G-API Operation. See [Kernel API](@ref gapi_kernel_api)
* for more details.
*
* @param Class type name for this operation.
* @param API an `std::function<>`-like signature for the operation;
* return type is a single value or a tuple of multiple values.
* @param Id string identifier for the operation. Must be unique.
*/
#define G_TYPED_KERNEL_HELPER(Class, API, Id) \
G_ID_HELPER_BODY(Class, Id) \
struct Class final: public cv::detail::KernelTypeMedium<Class, std::function API >, \
public G_ID_HELPER_CLASS(Class)
// {body} is to be defined by user
#define G_TYPED_KERNEL_HELPER_2(Class, _1, _2, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2), Id)
#define G_TYPED_KERNEL_HELPER_3(Class, _1, _2, _3, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3), Id)
#define G_TYPED_KERNEL_HELPER_4(Class, _1, _2, _3, _4, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4), Id)
#define G_TYPED_KERNEL_HELPER_5(Class, _1, _2, _3, _4, _5, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5), Id)
#define G_TYPED_KERNEL_HELPER_6(Class, _1, _2, _3, _4, _5, _6, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6), Id)
#define G_TYPED_KERNEL_HELPER_7(Class, _1, _2, _3, _4, _5, _6, _7, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6, _7), Id)
#define G_TYPED_KERNEL_HELPER_8(Class, _1, _2, _3, _4, _5, _6, _7, _8, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6, _7, _8), Id)
#define G_TYPED_KERNEL_HELPER_9(Class, _1, _2, _3, _4, _5, _6, _7, _8, _9, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6, _7, _8, _9), Id)
#define G_TYPED_KERNEL_HELPER_10(Class, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, Id) \
G_TYPED_KERNEL_HELPER(Class, COMBINE_SIGNATURE(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10), Id)
/**
* Declares a new G-API Operation. See [Kernel API](@ref gapi_kernel_api)
* for more details.
*
* @param Class type name for this operation.
*/
#define G_TYPED_KERNEL(Class, ...) __WRAP_VAARGS(GET_G_TYPED_KERNEL(__VA_ARGS__, \
G_TYPED_KERNEL_HELPER_10, \
G_TYPED_KERNEL_HELPER_9, \
G_TYPED_KERNEL_HELPER_8, \
G_TYPED_KERNEL_HELPER_7, \
G_TYPED_KERNEL_HELPER_6, \
G_TYPED_KERNEL_HELPER_5, \
G_TYPED_KERNEL_HELPER_4, \
G_TYPED_KERNEL_HELPER_3, \
G_TYPED_KERNEL_HELPER_2, \
G_TYPED_KERNEL_HELPER)(Class, __VA_ARGS__)) \
/**
* Declares a new G-API Operation. See [Kernel API](@ref gapi_kernel_api) for more details.
*
* @deprecated This macro is deprecated in favor of `G_TYPED_KERNEL` that is used for declaring any
* G-API Operation.
*
* @param Class type name for this operation.
*/
#define G_TYPED_KERNEL_M G_TYPED_KERNEL
#define G_API_OP G_TYPED_KERNEL
#define G_API_OP_M G_API_OP
namespace cv
{
namespace gapi
{
// Prework: model "Device" API before it gets to G-API headers.
// FIXME: Don't mix with internal Backends class!
/// @private
class GAPI_EXPORTS GBackend
{
public:
class Priv;
// TODO: make it template (call `new` within??)
GBackend();
explicit GBackend(std::shared_ptr<Priv> &&p);
Priv& priv();
const Priv& priv() const;
std::size_t hash() const;
bool operator== (const GBackend &rhs) const;
private:
std::shared_ptr<Priv> m_priv;
};
inline bool operator != (const GBackend &lhs, const GBackend &rhs)
{
return !(lhs == rhs);
}
} // namespace gapi
} // namespace cv
namespace std
{
template<> struct hash<cv::gapi::GBackend>
{
std::size_t operator() (const cv::gapi::GBackend &b) const
{
return b.hash();
}
};
} // namespace std
namespace cv {
namespace gapi {
/// @private
class GFunctor
{
public:
virtual cv::GKernelImpl impl() const = 0;
virtual cv::gapi::GBackend backend() const = 0;
const char* id() const { return m_id; }
virtual ~GFunctor() = default;
protected:
GFunctor(const char* id) : m_id(id) { };
private:
const char* m_id;
};
/** \addtogroup gapi_compile_args
* @{
*/
// FIXME: Hide implementation
/**
* @brief A container class for heterogeneous kernel
* implementation collections and graph transformations.
*
* GKernelPackage is a special container class which stores kernel
* _implementations_ and graph _transformations_. Objects of this class
* are created and passed to cv::GComputation::compile() to specify
* which kernels to use and which transformations to apply in the
* compiled graph. GKernelPackage may contain kernels of
* different backends, e.g. be heterogeneous.
*
* The most easy way to create a kernel package is to use function
* cv::gapi::kernels(). This template functions takes kernel
* implementations in form of type list (variadic template) and
* generates a kernel package atop of that.
*
* Kernel packages can be also generated programmatically, starting
* with an empty package (created with the default constructor)
* and then by populating it with kernels via call to
* GKernelPackage::include(). Note this method is also a template
* one since G-API kernel and transformation implementations are _types_,
* not objects.
*
* Finally, two kernel packages can be combined into a new one
* with function cv::gapi::combine().
*/
class GAPI_EXPORTS_W_SIMPLE GKernelPackage
{
/// @private
using M = std::unordered_map<std::string, std::pair<GBackend, GKernelImpl>>;
/// @private
M m_id_kernels;
/// @private
std::vector<GTransform> m_transformations;
protected:
/// @private
// Remove ALL implementations of the given API (identified by ID)
void removeAPI(const std::string &id);
/// @private
// Partial include() specialization for kernels
template <typename KImpl>
typename std::enable_if<(std::is_base_of<cv::detail::KernelTag, KImpl>::value), void>::type
includeHelper()
{
auto backend = KImpl::backend();
auto kernel_id = KImpl::API::id();
auto kernel_impl = GKernelImpl{KImpl::kernel(), &KImpl::API::getOutMeta};
removeAPI(kernel_id);
m_id_kernels[kernel_id] = std::make_pair(backend, kernel_impl);
}
/// @private
// Partial include() specialization for transformations
template <typename TImpl>
typename std::enable_if<(std::is_base_of<cv::detail::TransformTag, TImpl>::value), void>::type
includeHelper()
{
m_transformations.emplace_back(TImpl::transformation());
}
public:
void include(const GFunctor& functor)
{
m_id_kernels[functor.id()] = std::make_pair(functor.backend(), functor.impl());
}
/**
* @brief Returns total number of kernels
* in the package (across all backends included)
*
* @return a number of kernels in the package
*/
std::size_t size() const;
/**
* @brief Returns vector of transformations included in the package
*
* @return vector of transformations included in the package
*/
const std::vector<GTransform>& get_transformations() const;
/**
* @brief Returns vector of kernel ids included in the package
*
* @return vector of kernel ids included in the package
*/
std::vector<std::string> get_kernel_ids() const;
/**
* @brief Test if a particular kernel _implementation_ KImpl is
* included in this kernel package.
*
* @sa includesAPI()
*
* @note cannot be applied to transformations
*
* @return true if there is such kernel, false otherwise.
*/
template<typename KImpl>
bool includes() const
{
static_assert(std::is_base_of<cv::detail::KernelTag, KImpl>::value,
"includes() can be applied to kernels only");
auto kernel_it = m_id_kernels.find(KImpl::API::id());
return kernel_it != m_id_kernels.end() &&
kernel_it->second.first == KImpl::backend();
}
/**
* @brief Remove all kernels associated with the given backend
* from the package.
*
* Does nothing if there's no kernels of this backend in the package.
*
* @param backend backend which kernels to remove
*/
void remove(const GBackend& backend);
/**
* @brief Remove all kernels implementing the given API from
* the package.
*
* Does nothing if there's no kernels implementing the given interface.
*/
template<typename KAPI>
void remove()
{
removeAPI(KAPI::id());
}
// FIXME: Rename to includes() and distinguish API/impl case by
// statically?
/**
* Check if package contains ANY implementation of a kernel API
* by API type.
*/
template<typename KAPI>
bool includesAPI() const
{
return includesAPI(KAPI::id());
}
/// @private
bool includesAPI(const std::string &id) const;
// FIXME: The below comment is wrong, and who needs this function?
/**
* @brief Find a kernel (by its API)
*
* Returns implementation corresponding id.
* Throws if nothing found.
*
* @return Backend which hosts matching kernel implementation.
*
*/
template<typename KAPI>
GBackend lookup() const
{
return lookup(KAPI::id()).first;
}
/// @private
std::pair<cv::gapi::GBackend, cv::GKernelImpl>
lookup(const std::string &id) const;
// FIXME: No overwrites allowed?
/**
* @brief Put a new kernel implementation or a new transformation
* KImpl into the package.
*/
template<typename KImpl>
void include()
{
includeHelper<KImpl>();
}
/**
* @brief Adds a new kernel based on it's backend and id into the kernel package
*
* @param backend backend associated with the kernel
* @param kernel_id a name/id of the kernel
*/
void include(const cv::gapi::GBackend& backend, const std::string& kernel_id)
{
removeAPI(kernel_id);
m_id_kernels[kernel_id] = std::make_pair(backend, GKernelImpl{{}, {}});
}
/**
* @brief Lists all backends which are included into package
*
* @return vector of backends
*/
std::vector<GBackend> backends() const;
// TODO: Doxygen bug -- it wants me to place this comment
// here, not below.
/**
* @brief Create a new package based on `lhs` and `rhs`.
*
* @param lhs "Left-hand-side" package in the process
* @param rhs "Right-hand-side" package in the process
* @return a new kernel package.
*/
friend GAPI_EXPORTS GKernelPackage combine(const GKernelPackage &lhs,
const GKernelPackage &rhs);
};
/**
* @brief Create a kernel package object containing kernels
* and transformations specified in variadic template argument.
*
* In G-API, kernel implementations and transformations are _types_.
* Every backend has its own kernel API (like GAPI_OCV_KERNEL() and
* GAPI_FLUID_KERNEL()) but all of that APIs define a new type for
* each kernel implementation.
*
* Use this function to pass kernel implementations (defined in
* either way) and transformations to the system. Example:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp kernels_snippet
*
* Note that kernels() itself is a function returning object, not
* a type, so having `()` at the end is important -- it must be a
* function call.
*/
template<typename... KK> GKernelPackage kernels()
{
// FIXME: currently there is no check that transformations' signatures are unique
// and won't be any intersection in graph compilation stage
static_assert(cv::detail::all_unique<typename KK::API...>::value, "Kernels API must be unique");
GKernelPackage pkg;
// For those who wonder - below is a trick to call a number of
// methods based on parameter pack (zeroes just help hiding these
// calls into a sequence which helps to expand this parameter pack).
// Just note that `f(),a` always equals to `a` (with f() called!)
// and parentheses are used to hide function call in the expanded sequence.
// Leading 0 helps to handle case when KK is an empty list (kernels<>()).
int unused[] = { 0, (pkg.include<KK>(), 0)... };
cv::util::suppress_unused_warning(unused);
return pkg;
};
template<typename... FF>
GKernelPackage kernels(FF&... functors)
{
GKernelPackage pkg;
int unused[] = { 0, (pkg.include(functors), 0)... };
cv::util::suppress_unused_warning(unused);
return pkg;
};
/** @} */
// FYI - this function is already commented above
GAPI_EXPORTS GKernelPackage combine(const GKernelPackage &lhs,
const GKernelPackage &rhs);
/**
* @brief Combines multiple G-API kernel packages into one
*
* @overload
*
* This function successively combines the passed kernel packages using a right fold.
* Calling `combine(a, b, c)` is equal to `combine(a, combine(b, c))`.
*
* @return The resulting kernel package
*/
template<typename... Ps>
GKernelPackage combine(const GKernelPackage &a, const GKernelPackage &b, Ps&&... rest)
{
return combine(a, combine(b, rest...));
}
/** \addtogroup gapi_compile_args
* @{
*/
/**
* @brief cv::use_only() is a special combinator which hints G-API to use only
* kernels specified in cv::GComputation::compile() (and not to extend kernels available by
* default with that package).
*/
struct GAPI_EXPORTS use_only
{
GKernelPackage pkg;
};
/** @} */
} // namespace gapi
namespace detail
{
template<> struct CompileArgTag<cv::gapi::GKernelPackage>
{
static const char* tag() { return "gapi.kernel_package"; }
};
template<> struct CompileArgTag<cv::gapi::use_only>
{
static const char* tag() { return "gapi.use_only"; }
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_GKERNEL_HPP

View File

@ -0,0 +1,279 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GMAT_HPP
#define OPENCV_GAPI_GMAT_HPP
#include <ostream>
#include <memory> // std::shared_ptr
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/gcommon.hpp> // GShape
#include <opencv2/gapi/own/assert.hpp>
// TODO GAPI_EXPORTS or so
namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
/** \addtogroup gapi_data_objects
* @{
*
* @brief G-API data objects used to build G-API expressions.
*
* These objects do not own any particular data (except compile-time
* associated values like with cv::GScalar or `cv::GArray<T>`) and are
* used only to construct graphs.
*
* Every graph in G-API starts and ends with data objects.
*
* Once constructed and compiled, G-API operates with regular host-side
* data instead. Refer to the below table to find the mapping between
* G-API and regular data types when passing input and output data
* structures to G-API:
*
* G-API data type | I/O data type
* ------------------ | -------------
* cv::GMat | cv::Mat, cv::UMat, cv::RMat
* cv::GScalar | cv::Scalar
* `cv::GArray<T>` | std::vector<T>
* `cv::GOpaque<T>` | T
* cv::GFrame | cv::MediaFrame
*/
/**
* @brief GMat class represents image or tensor data in the
* graph.
*
* GMat doesn't store any data itself, instead it describes a
* functional relationship between operations consuming and producing
* GMat objects.
*
* GMat is a virtual counterpart of Mat and UMat, but it
* doesn't mean G-API use Mat or UMat objects internally to represent
* GMat objects -- the internal data representation may be
* backend-specific or optimized out at all.
*
* @sa Mat, GMatDesc
*/
class GAPI_EXPORTS_W_SIMPLE GMat
{
public:
/**
* @brief Constructs an empty GMat
*
* Normally, empty G-API data objects denote a starting point of
* the graph. When an empty GMat is assigned to a result of some
* operation, it obtains a functional link to this operation (and
* is not empty anymore).
*/
GAPI_WRAP GMat(); // Empty constructor
/// @private
GMat(const GNode &n, std::size_t out); // Operation result constructor
/// @private
GOrigin& priv(); // Internal use only
/// @private
const GOrigin& priv() const; // Internal use only
private:
std::shared_ptr<GOrigin> m_priv;
};
class GAPI_EXPORTS GMatP : public GMat
{
public:
using GMat::GMat;
};
class RMat;
/** @} */
/**
* \addtogroup gapi_meta_args
* @{
*/
struct GAPI_EXPORTS_W_SIMPLE GMatDesc
{
// FIXME: Default initializers in C++14
GAPI_PROP int depth;
GAPI_PROP int chan;
GAPI_PROP cv::Size size; // NB.: no multi-dimensional cases covered yet
GAPI_PROP bool planar;
GAPI_PROP std::vector<int> dims; // FIXME: Maybe it's real questionable to have it here
GAPI_WRAP GMatDesc(int d, int c, cv::Size s, bool p = false)
: depth(d), chan(c), size(s), planar(p) {}
GAPI_WRAP GMatDesc(int d, const std::vector<int> &dd)
: depth(d), chan(-1), size{-1,-1}, planar(false), dims(dd) {}
GAPI_WRAP GMatDesc(int d, std::vector<int> &&dd)
: depth(d), chan(-1), size{-1,-1}, planar(false), dims(std::move(dd)) {}
GAPI_WRAP GMatDesc() : GMatDesc(-1, -1, {-1,-1}) {}
inline bool operator== (const GMatDesc &rhs) const
{
return depth == rhs.depth
&& chan == rhs.chan
&& size == rhs.size
&& planar == rhs.planar
&& dims == rhs.dims;
}
inline bool operator!= (const GMatDesc &rhs) const
{
return !(*this == rhs);
}
bool isND() const { return !dims.empty(); }
// Checks if the passed mat can be described by this descriptor
// (it handles the case when
// 1-channel mat can be reinterpreted as is (1-channel mat)
// and as a 3-channel planar mat with height divided by 3)
bool canDescribe(const cv::Mat& mat) const;
bool canDescribe(const cv::RMat& mat) const;
// Meta combinator: return a new GMatDesc which differs in size by delta
// (all other fields are taken unchanged from this GMatDesc)
// FIXME: a better name?
GAPI_WRAP GMatDesc withSizeDelta(cv::Size delta) const
{
GMatDesc desc(*this);
desc.size += delta;
return desc;
}
// Meta combinator: return a new GMatDesc which differs in size by delta
// (all other fields are taken unchanged from this GMatDesc)
//
// This is an overload.
GAPI_WRAP GMatDesc withSizeDelta(int dx, int dy) const
{
return withSizeDelta(cv::Size{dx,dy});
}
GAPI_WRAP GMatDesc withSize(cv::Size sz) const
{
GMatDesc desc(*this);
desc.size = sz;
return desc;
}
// Meta combinator: return a new GMatDesc with specified data depth.
// (all other fields are taken unchanged from this GMatDesc)
GAPI_WRAP GMatDesc withDepth(int ddepth) const
{
GAPI_Assert(CV_MAT_CN(ddepth) == 1 || ddepth == -1);
GMatDesc desc(*this);
if (ddepth != -1) desc.depth = ddepth;
return desc;
}
// Meta combinator: return a new GMatDesc with specified data depth
// and number of channels.
// (all other fields are taken unchanged from this GMatDesc)
GAPI_WRAP GMatDesc withType(int ddepth, int dchan) const
{
GAPI_Assert(CV_MAT_CN(ddepth) == 1 || ddepth == -1);
GMatDesc desc = withDepth(ddepth);
desc.chan = dchan;
return desc;
}
// Meta combinator: return a new GMatDesc with planar flag set
// (no size changes are performed, only channel interpretation is changed
// (interleaved -> planar)
GAPI_WRAP GMatDesc asPlanar() const
{
GAPI_Assert(planar == false);
GMatDesc desc(*this);
desc.planar = true;
return desc;
}
// Meta combinator: return a new GMatDesc
// reinterpreting 1-channel input as planar image
// (size height is divided by plane number)
GAPI_WRAP GMatDesc asPlanar(int planes) const
{
GAPI_Assert(planar == false);
GAPI_Assert(chan == 1);
GAPI_Assert(planes > 1);
GAPI_Assert(size.height % planes == 0);
GMatDesc desc(*this);
desc.size.height /= planes;
desc.chan = planes;
return desc.asPlanar();
}
// Meta combinator: return a new GMatDesc with planar flag set to false
// (no size changes are performed, only channel interpretation is changed
// (planar -> interleaved)
GAPI_WRAP GMatDesc asInterleaved() const
{
GAPI_Assert(planar == true);
GMatDesc desc(*this);
desc.planar = false;
return desc;
}
};
static inline GMatDesc empty_gmat_desc() { return GMatDesc{-1,-1,{-1,-1}}; }
namespace gapi { namespace detail {
/** Checks GMatDesc fields if the passed matrix is a set of n-dimentional points.
@param in GMatDesc to check.
@param n expected dimensionality.
@return the amount of points. In case input matrix can't be described as vector of points
of expected dimensionality, returns -1.
*/
int checkVector(const GMatDesc& in, const size_t n);
/** @overload
Checks GMatDesc fields if the passed matrix can be described as a set of points of any
dimensionality.
@return array of two elements in form of std::vector<int>: the amount of points
and their calculated dimensionality. In case input matrix can't be described as vector of points,
returns {-1, -1}.
*/
std::vector<int> checkVector(const GMatDesc& in);
}} // namespace gapi::detail
#if !defined(GAPI_STANDALONE)
GAPI_EXPORTS GMatDesc descr_of(const cv::UMat &mat);
#endif // !defined(GAPI_STANDALONE)
//Fwd declarations
namespace gapi { namespace own {
class Mat;
GAPI_EXPORTS GMatDesc descr_of(const Mat &mat);
}}//gapi::own
GAPI_EXPORTS GMatDesc descr_of(const RMat &mat);
#if !defined(GAPI_STANDALONE)
GAPI_EXPORTS GMatDesc descr_of(const cv::Mat &mat);
#else
using gapi::own::descr_of;
#endif
/** @} */
GAPI_EXPORTS std::ostream& operator<<(std::ostream& os, const cv::GMatDesc &desc);
} // namespace cv
#endif // OPENCV_GAPI_GMAT_HPP

View File

@ -0,0 +1,80 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GMETAARG_HPP
#define OPENCV_GAPI_GMETAARG_HPP
#include <vector>
#include <type_traits>
#include <opencv2/gapi/util/util.hpp>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
#include <opencv2/gapi/garray.hpp>
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/gapi/gframe.hpp>
namespace cv
{
// FIXME: Rename to GMeta?
// FIXME: user shouldn't deal with it - put to detail?
// GMetaArg is an union type over descriptions of G-types which can serve as
// GComputation's in/output slots.
//
// GMetaArg objects are passed as arguments to GComputation::compile()
// to specify which data a compiled computation should be specialized on.
// For manual compile(), user must supply this metadata, in case of apply()
// this metadata is taken from arguments computation should operate on.
//
// The first type (monostate) is equal to "uninitialized"/"unresolved" meta.
using GMetaArg = util::variant
< util::monostate
, GMatDesc
, GScalarDesc
, GArrayDesc
, GOpaqueDesc
, GFrameDesc
>;
GAPI_EXPORTS std::ostream& operator<<(std::ostream& os, const GMetaArg &);
using GMetaArgs = std::vector<GMetaArg>;
namespace detail
{
// These traits are used by GComputation::compile()
// FIXME: is_constructible<T> doesn't work as variant doesn't do any SFINAE
// in its current template constructor
template<typename T> struct is_meta_descr : std::false_type {};
template<> struct is_meta_descr<GMatDesc> : std::true_type {};
template<> struct is_meta_descr<GScalarDesc> : std::true_type {};
template<> struct is_meta_descr<GArrayDesc> : std::true_type {};
template<> struct is_meta_descr<GOpaqueDesc> : std::true_type {};
template<typename... Ts>
using are_meta_descrs = all_satisfy<is_meta_descr, Ts...>;
template<typename... Ts>
using are_meta_descrs_but_last = all_satisfy<is_meta_descr, typename all_but_last<Ts...>::type>;
} // namespace detail
// Note: descr_of(std::vector<..>) returns a GArrayDesc, while
// descrs_of(std::vector<..>) returns an array of Meta args!
class UMat;
GAPI_EXPORTS cv::GMetaArgs descrs_of(const std::vector<cv::Mat> &vec);
GAPI_EXPORTS cv::GMetaArgs descrs_of(const std::vector<cv::UMat> &vec);
namespace gapi { namespace own {
GAPI_EXPORTS cv::GMetaArgs descrs_of(const std::vector<Mat> &vec);
}} // namespace gapi::own
} // namespace cv
#endif // OPENCV_GAPI_GMETAARG_HPP

View File

@ -0,0 +1,369 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2020 Intel Corporation
#ifndef OPENCV_GAPI_GOPAQUE_HPP
#define OPENCV_GAPI_GOPAQUE_HPP
#include <functional>
#include <ostream>
#include <memory>
#include <opencv2/gapi/own/exports.hpp>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/util/type_traits.hpp>
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/gcommon.hpp> // OpaqueKind
#include <opencv2/gapi/garray.hpp> // TypeHintBase
namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
template<typename T> class GOpaque;
/**
* \addtogroup gapi_meta_args
* @{
*/
struct GAPI_EXPORTS_W_SIMPLE GOpaqueDesc
{
// FIXME: Body
// FIXME: Also implement proper operator== then
bool operator== (const GOpaqueDesc&) const { return true; }
};
template<typename U> GOpaqueDesc descr_of(const U &) { return {};}
GAPI_EXPORTS_W inline GOpaqueDesc empty_gopaque_desc() {return {}; }
/** @} */
std::ostream& operator<<(std::ostream& os, const cv::GOpaqueDesc &desc);
namespace detail
{
// ConstructOpaque is a callback which stores information about T and is used by
// G-API runtime to construct an object in host memory (T remains opaque for G-API).
// ConstructOpaque is carried into G-API internals by GOpaqueU.
// Currently it is suitable for Host (CPU) plugins only, real offload may require
// more information for manual memory allocation on-device.
class OpaqueRef;
using ConstructOpaque = std::function<void(OpaqueRef&)>;
// FIXME: garray.hpp already contains hint classes (for actual T type verification),
// need to think where it can be moved (currently opaque uses it from garray)
// This class strips type information from GOpaque<T> and makes it usable
// in the G-API graph compiler (expression unrolling, graph generation, etc).
// Part of GProtoArg.
class GAPI_EXPORTS GOpaqueU
{
public:
GOpaqueU(const GNode &n, std::size_t out); // Operation result constructor
template <typename T>
bool holds() const; // Check if was created from GOpaque<T>
GOrigin& priv(); // Internal use only
const GOrigin& priv() const; // Internal use only
protected:
GOpaqueU(); // Default constructor
template<class> friend class cv::GOpaque; // (available for GOpaque<T> only)
void setConstructFcn(ConstructOpaque &&cv); // Store T-aware constructor
template <typename T>
void specifyType(); // Store type of initial GOpaque<T>
template <typename T>
void storeKind();
void setKind(cv::detail::OpaqueKind);
std::shared_ptr<GOrigin> m_priv;
std::shared_ptr<TypeHintBase> m_hint;
};
template <typename T>
bool GOpaqueU::holds() const{
GAPI_Assert(m_hint != nullptr);
using U = util::decay_t<T>;
return dynamic_cast<TypeHint<U>*>(m_hint.get()) != nullptr;
};
template <typename T>
void GOpaqueU::specifyType(){
m_hint.reset(new TypeHint<util::decay_t<T>>);
};
template <typename T>
void GOpaqueU::storeKind(){
// FIXME: Add assert here on cv::Mat and cv::Scalar?
setKind(cv::detail::GOpaqueTraits<T>::kind);
};
// This class represents a typed object reference.
// Depending on origins, this reference may be either "just a" reference to
// an object created externally, OR actually own the underlying object
// (be value holder).
class BasicOpaqueRef
{
public:
cv::GOpaqueDesc m_desc;
virtual ~BasicOpaqueRef() {}
virtual void mov(BasicOpaqueRef &ref) = 0;
virtual const void* ptr() const = 0;
virtual void set(const cv::util::any &a) = 0;
};
template<typename T> class OpaqueRefT final: public BasicOpaqueRef
{
using empty_t = util::monostate;
using ro_ext_t = const T *;
using rw_ext_t = T *;
using rw_own_t = T ;
util::variant<empty_t, ro_ext_t, rw_ext_t, rw_own_t> m_ref;
inline bool isEmpty() const { return util::holds_alternative<empty_t>(m_ref); }
inline bool isROExt() const { return util::holds_alternative<ro_ext_t>(m_ref); }
inline bool isRWExt() const { return util::holds_alternative<rw_ext_t>(m_ref); }
inline bool isRWOwn() const { return util::holds_alternative<rw_own_t>(m_ref); }
void init(const T* obj = nullptr)
{
if (obj) m_desc = cv::descr_of(*obj);
}
public:
OpaqueRefT() { init(); }
virtual ~OpaqueRefT() {}
explicit OpaqueRefT(const T& obj) : m_ref(&obj) { init(&obj); }
explicit OpaqueRefT( T& obj) : m_ref(&obj) { init(&obj); }
explicit OpaqueRefT( T&& obj) : m_ref(std::move(obj)) { init(&obj); }
// Reset a OpaqueRefT. Called only for objects instantiated
// internally in G-API (e.g. temporary GOpaque<T>'s within a
// computation). Reset here means both initialization
// (creating an object) and reset (discarding its existing
// content before the next execution). Must never be called
// for external OpaqueRefTs.
void reset()
{
if (isEmpty())
{
T empty_obj{};
m_desc = cv::descr_of(empty_obj);
m_ref = std::move(empty_obj);
GAPI_Assert(isRWOwn());
}
else if (isRWOwn())
{
util::get<rw_own_t>(m_ref) = {};
}
else GAPI_Assert(false); // shouldn't be called in *EXT modes
}
// Obtain a WRITE reference to underlying object
// Used by CPU kernel API wrappers when a kernel execution frame
// is created
T& wref()
{
GAPI_Assert(isRWExt() || isRWOwn());
if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
if (isRWOwn()) return util::get<rw_own_t>(m_ref);
util::throw_error(std::logic_error("Impossible happened"));
}
// Obtain a READ reference to underlying object
// Used by CPU kernel API wrappers when a kernel execution frame
// is created
const T& rref() const
{
// ANY object can be accessed for reading, even if it declared for
// output. Example -- a GComputation from [in] to [out1,out2]
// where [out2] is a result of operation applied to [out1]:
//
// GComputation boundary
// . . . . . . .
// . .
// [in] ----> foo() ----> [out1]
// . . :
// . . . .:. . .
// . V .
// . bar() ---> [out2]
// . . . . . . . . . . . .
//
if (isROExt()) return *util::get<ro_ext_t>(m_ref);
if (isRWExt()) return *util::get<rw_ext_t>(m_ref);
if (isRWOwn()) return util::get<rw_own_t>(m_ref);
util::throw_error(std::logic_error("Impossible happened"));
}
virtual void mov(BasicOpaqueRef &v) override {
OpaqueRefT<T> *tv = dynamic_cast<OpaqueRefT<T>*>(&v);
GAPI_Assert(tv != nullptr);
wref() = std::move(tv->wref());
}
virtual const void* ptr() const override { return &rref(); }
virtual void set(const cv::util::any &a) override {
wref() = util::any_cast<T>(a);
}
};
// This class strips type information from OpaqueRefT<> and makes it usable
// in the G-API executables (carrying run-time data/information to kernels).
// Part of GRunArg.
// Its methods are typed proxies to OpaqueRefT<T>.
// OpaqueRef maintains "reference" semantics so two copies of OpaqueRef refer
// to the same underlying object.
class OpaqueRef
{
std::shared_ptr<BasicOpaqueRef> m_ref;
cv::detail::OpaqueKind m_kind;
template<typename T> inline void check() const
{
GAPI_DbgAssert(dynamic_cast<OpaqueRefT<T>*>(m_ref.get()) != nullptr);
}
public:
OpaqueRef() = default;
template<
typename T,
typename = util::are_different_t<OpaqueRef, T>
>
// FIXME: probably won't work with const object
explicit OpaqueRef(T&& obj) :
m_ref(new OpaqueRefT<util::decay_t<T>>(std::forward<T>(obj))),
m_kind(GOpaqueTraits<util::decay_t<T>>::kind) {}
cv::detail::OpaqueKind getKind() const
{
return m_kind;
}
template<typename T> void reset()
{
if (!m_ref) m_ref.reset(new OpaqueRefT<T>());
check<T>();
storeKind<T>();
static_cast<OpaqueRefT<T>&>(*m_ref).reset();
}
template <typename T>
void storeKind()
{
m_kind = cv::detail::GOpaqueTraits<T>::kind;
}
template<typename T> T& wref()
{
check<T>();
return static_cast<OpaqueRefT<T>&>(*m_ref).wref();
}
template<typename T> const T& rref() const
{
check<T>();
return static_cast<OpaqueRefT<T>&>(*m_ref).rref();
}
void mov(OpaqueRef &v)
{
m_ref->mov(*v.m_ref);
}
cv::GOpaqueDesc descr_of() const
{
return m_ref->m_desc;
}
// May be used to uniquely identify this object internally
const void *ptr() const { return m_ref->ptr(); }
// Introduced for in-graph meta handling
OpaqueRef& operator= (const cv::util::any &a)
{
m_ref->set(a);
return *this;
}
};
} // namespace detail
/** \addtogroup gapi_data_objects
* @{
*/
/**
* @brief `cv::GOpaque<T>` template class represents an object of
* class `T` in the graph.
*
* `cv::GOpaque<T>` describes a functional relationship between operations
* consuming and producing object of class `T`. `cv::GOpaque<T>` is
* designed to extend G-API with user-defined data types, which are
* often required with user-defined operations. G-API can't apply any
* optimizations to user-defined types since these types are opaque to
* the framework. However, there is a number of G-API operations
* declared with `cv::GOpaque<T>` as a return type,
* e.g. cv::gapi::streaming::timestamp() or cv::gapi::streaming::size().
*
* @sa `cv::GArray<T>`
*/
template<typename T> class GOpaque
{
public:
// Host type (or Flat type) - the type this GOpaque is actually
// specified to.
/// @private
using HT = typename detail::flatten_g<util::decay_t<T>>::type;
/**
* @brief Constructs an empty `cv::GOpaque<T>`
*
* Normally, empty G-API data objects denote a starting point of
* the graph. When an empty `cv::GOpaque<T>` is assigned to a result
* of some operation, it obtains a functional link to this
* operation (and is not empty anymore).
*/
GOpaque() { putDetails(); } // Empty constructor
/// @private
explicit GOpaque(detail::GOpaqueU &&ref) // GOpaqueU-based constructor
: m_ref(ref) { putDetails(); } // (used by GCall, not for users)
/// @private
detail::GOpaqueU strip() const {
return m_ref;
}
/// @private
static void Ctor(detail::OpaqueRef& ref) {
ref.reset<HT>();
}
private:
void putDetails() {
m_ref.setConstructFcn(&Ctor);
m_ref.specifyType<HT>();
m_ref.storeKind<HT>();
}
detail::GOpaqueU m_ref;
};
/** @} */
} // namespace cv
#endif // OPENCV_GAPI_GOPAQUE_HPP

View File

@ -0,0 +1,159 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GPROTO_HPP
#define OPENCV_GAPI_GPROTO_HPP
#include <type_traits>
#include <vector>
#include <ostream>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
#include <opencv2/gapi/garray.hpp>
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/gmetaarg.hpp>
namespace cv {
// FIXME: user shouldn't deal with it - put to detail?
// GProtoArg is an union type over G-types which can serve as
// GComputation's in/output slots. In other words, GProtoArg
// wraps any type which can serve as G-API exchange type.
//
// In Runtime, GProtoArgs are substituted with appropriate GRunArgs.
//
// GProtoArg objects are constructed in-place when user describes
// (captures) computations, user doesn't interact with these types
// directly.
using GProtoArg = util::variant
< GMat
, GMatP
, GFrame
, GScalar
, detail::GArrayU // instead of GArray<T>
, detail::GOpaqueU // instead of GOpaque<T>
>;
using GProtoArgs = std::vector<GProtoArg>;
namespace detail
{
template<typename... Ts> inline GProtoArgs packArgs(Ts... args)
{
return GProtoArgs{ GProtoArg(wrap_gapi_helper<Ts>::wrap(args))... };
}
}
template<class Tag>
struct GIOProtoArgs
{
public:
// NB: Used by python wrapper
GIOProtoArgs() = default;
explicit GIOProtoArgs(const GProtoArgs& args) : m_args(args) {}
explicit GIOProtoArgs(GProtoArgs &&args) : m_args(std::move(args)) {}
GProtoArgs m_args;
// TODO: Think about the addition operator
/**
* @brief This operator allows to complement the proto vectors at runtime.
*
* It's an ordinary overload of addition assignment operator.
*
* Example of usage:
* @snippet modules/gapi/samples/dynamic_graph.cpp GIOProtoArgs usage
*
*/
template<typename Tg>
friend GIOProtoArgs<Tg>& operator += (GIOProtoArgs<Tg> &lhs, const GIOProtoArgs<Tg> &rhs);
};
template<typename Tg>
cv::GIOProtoArgs<Tg>& operator += (cv::GIOProtoArgs<Tg> &lhs, const cv::GIOProtoArgs<Tg> &rhs)
{
lhs.m_args.reserve(lhs.m_args.size() + rhs.m_args.size());
lhs.m_args.insert(lhs.m_args.end(), rhs.m_args.begin(), rhs.m_args.end());
return lhs;
}
struct In_Tag{};
struct Out_Tag{};
using GProtoInputArgs = GIOProtoArgs<In_Tag>;
using GProtoOutputArgs = GIOProtoArgs<Out_Tag>;
// Perfect forwarding
template<typename... Ts> inline GProtoInputArgs GIn(Ts&&... ts)
{
return GProtoInputArgs(detail::packArgs(std::forward<Ts>(ts)...));
}
template<typename... Ts> inline GProtoOutputArgs GOut(Ts&&... ts)
{
return GProtoOutputArgs(detail::packArgs(std::forward<Ts>(ts)...));
}
namespace detail
{
// Extract elements form tuple
// FIXME: Someday utilize a generic tuple_to_vec<> routine
template<typename... Ts, int... Indexes>
static GProtoOutputArgs getGOut_impl(const std::tuple<Ts...>& ts, detail::Seq<Indexes...>)
{
return GProtoOutputArgs{ detail::packArgs(std::get<Indexes>(ts)...)};
}
}
template<typename... Ts> inline GProtoOutputArgs GOut(const std::tuple<Ts...>& ts)
{
// TODO: think of std::forward(ts)
return detail::getGOut_impl(ts, typename detail::MkSeq<sizeof...(Ts)>::type());
}
// Takes rvalue as input arg
template<typename... Ts> inline GProtoOutputArgs GOut(std::tuple<Ts...>&& ts)
{
// TODO: think of std::forward(ts)
return detail::getGOut_impl(ts, typename detail::MkSeq<sizeof...(Ts)>::type());
}
// Extract run-time arguments from node origin
// Can be used to extract constant values associated with G-objects
// (like GScalar) at graph construction time
GRunArg value_of(const GOrigin &origin);
// Transform run-time computation arguments into a collection of metadata
// extracted from that arguments
GMetaArg GAPI_EXPORTS descr_of(const GRunArg &arg );
GMetaArgs GAPI_EXPORTS descr_of(const GRunArgs &args);
// Transform run-time operation result argument into metadata extracted from that argument
// Used to compare the metadata, which generated at compile time with the metadata result operation in run time
GMetaArg GAPI_EXPORTS descr_of(const GRunArgP& argp);
// Checks if run-time computation argument can be described by metadata
bool GAPI_EXPORTS can_describe(const GMetaArg& meta, const GRunArg& arg);
bool GAPI_EXPORTS can_describe(const GMetaArgs& metas, const GRunArgs& args);
// Checks if run-time computation result argument can be described by metadata.
// Used to check if the metadata generated at compile time
// coincides with output arguments passed to computation in cpu and ocl backends
bool GAPI_EXPORTS can_describe(const GMetaArg& meta, const GRunArgP& argp);
// Validates input arguments
void GAPI_EXPORTS validate_input_arg(const GRunArg& arg);
void GAPI_EXPORTS validate_input_args(const GRunArgs& args);
} // namespace cv
#endif // OPENCV_GAPI_GPROTO_HPP

View File

@ -0,0 +1,27 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GPU_CORE_API_HPP
#define OPENCV_GAPI_GPU_CORE_API_HPP
/** @file
* @deprecated Use <opencv2/gapi/ocl/core.hpp> instead.
*/
#include <opencv2/gapi/ocl/core.hpp>
namespace cv {
namespace gapi {
namespace core {
namespace gpu {
using namespace ocl;
} // namespace gpu
} // namespace core
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GPU_CORE_API_HPP

View File

@ -0,0 +1,18 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GGPUKERNEL_HPP
#define OPENCV_GAPI_GGPUKERNEL_HPP
/** @file
* @deprecated Use <opencv2/gapi/ocl/goclkernel.hpp> instead.
*/
#include <opencv2/gapi/ocl/goclkernel.hpp>
#define GAPI_GPU_KERNEL GAPI_OCL_KERNEL
#endif // OPENCV_GAPI_GGPUKERNEL_HPP

View File

@ -0,0 +1,28 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GPU_IMGPROC_API_HPP
#define OPENCV_GAPI_GPU_IMGPROC_API_HPP
/** @file
* @deprecated Use <opencv2/gapi/ocl/imgproc.hpp> instead.
*/
#include <opencv2/gapi/ocl/imgproc.hpp>
namespace cv {
namespace gapi {
namespace imgproc {
namespace gpu {
using namespace ocl;
} // namespace gpu
} // namespace imgproc
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GPU_IMGPROC_API_HPP

View File

@ -0,0 +1,140 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GSCALAR_HPP
#define OPENCV_GAPI_GSCALAR_HPP
#include <ostream>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/gcommon.hpp> // GShape
#include <opencv2/gapi/util/optional.hpp>
namespace cv
{
// Forward declaration; GNode and GOrigin are an internal
// (user-inaccessible) classes.
class GNode;
struct GOrigin;
/** \addtogroup gapi_data_objects
* @{
*/
/**
* @brief GScalar class represents cv::Scalar data in the graph.
*
* GScalar may be associated with a cv::Scalar value, which becomes
* its constant value bound in graph compile time. cv::GScalar describes a
* functional relationship between operations consuming and producing
* GScalar objects.
*
* GScalar is a virtual counterpart of cv::Scalar, which is usually used
* to represent the GScalar data in G-API during the execution.
*
* @sa Scalar
*/
class GAPI_EXPORTS_W_SIMPLE GScalar
{
public:
/**
* @brief Constructs an empty GScalar
*
* Normally, empty G-API data objects denote a starting point of
* the graph. When an empty GScalar is assigned to a result of some
* operation, it obtains a functional link to this operation (and
* is not empty anymore).
*/
GAPI_WRAP GScalar();
/**
* @brief Constructs a value-initialized GScalar
*
* In contrast with GMat (which can be either an explicit graph input
* or a result of some operation), GScalars may have their values
* be associated at graph construction time. It is useful when
* some operation has a GScalar input which doesn't change during
* the program execution, and is set only once. In this case,
* there is no need to declare such GScalar as a graph input.
*
* @note The value of GScalar may be overwritten by assigning some
* other GScalar to the object using `operator=` -- on the
* assigment, the old GScalar value is discarded.
*
* @param s a cv::Scalar value to associate with this GScalar object.
*/
explicit GScalar(const cv::Scalar& s);
/**
* @overload
* @brief Constructs a value-initialized GScalar
*
* @param s a cv::Scalar value to associate with this GScalar object.
*/
explicit GScalar(cv::Scalar&& s); // Constant value move-constructor from cv::Scalar
/**
* @overload
* @brief Constructs a value-initialized GScalar
*
* @param v0 A `double` value to associate with this GScalar. Note
* that only the first component of a four-component cv::Scalar is
* set to this value, with others remain zeros.
*
* This constructor overload is not marked `explicit` and can be
* used in G-API expression code like this:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp gscalar_implicit
*
* Here operator+(GMat,GScalar) is used to wrap cv::gapi::addC()
* and a value-initialized GScalar is created on the fly.
*
* @overload
*/
GScalar(double v0); // Constant value constructor from double
/// @private
GScalar(const GNode &n, std::size_t out); // Operation result constructor
/// @private
GOrigin& priv(); // Internal use only
/// @private
const GOrigin& priv() const; // Internal use only
private:
std::shared_ptr<GOrigin> m_priv;
};
/** @} */
/**
* \addtogroup gapi_meta_args
* @{
*/
struct GAPI_EXPORTS_W_SIMPLE GScalarDesc
{
// NB.: right now it is empty
inline bool operator== (const GScalarDesc &) const
{
return true; // NB: implement this method if GScalar meta appears
}
inline bool operator!= (const GScalarDesc &rhs) const
{
return !(*this == rhs);
}
};
GAPI_EXPORTS_W inline GScalarDesc empty_scalar_desc() { return GScalarDesc(); }
GAPI_EXPORTS GScalarDesc descr_of(const cv::Scalar &scalar);
std::ostream& operator<<(std::ostream& os, const cv::GScalarDesc &desc);
} // namespace cv
#endif // OPENCV_GAPI_GSCALAR_HPP

View File

@ -0,0 +1,430 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2021 Intel Corporation
#ifndef OPENCV_GAPI_GSTREAMING_COMPILED_HPP
#define OPENCV_GAPI_GSTREAMING_COMPILED_HPP
#include <memory>
#include <vector>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/util/optional.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/streaming/source.hpp>
namespace cv {
template<class T> using optional = cv::util::optional<T>;
namespace detail {
template<typename T> struct wref_spec {
using type = T;
};
template<typename T> struct wref_spec<std::vector<T> > {
using type = T;
};
template<typename RefHolder>
struct OptRef {
struct OptHolder {
virtual void mov(RefHolder &h) = 0;
virtual void reset() = 0;
virtual ~OptHolder() = default;
using Ptr = std::shared_ptr<OptHolder>;
};
template<class T> struct Holder final: OptHolder {
std::reference_wrapper<cv::optional<T> > m_opt_ref;
explicit Holder(cv::optional<T>& opt) : m_opt_ref(std::ref(opt)) {
}
virtual void mov(RefHolder &h) override {
using U = typename wref_spec<T>::type;
m_opt_ref.get() = cv::util::make_optional(std::move(h.template wref<U>()));
}
virtual void reset() override {
m_opt_ref.get().reset();
}
};
template<class T>
explicit OptRef(cv::optional<T>& t) : m_opt{new Holder<T>(t)} {}
void mov(RefHolder &h) { m_opt->mov(h); }
void reset() { m_opt->reset();}
private:
typename OptHolder::Ptr m_opt;
};
using OptionalVectorRef = OptRef<cv::detail::VectorRef>;
using OptionalOpaqueRef = OptRef<cv::detail::OpaqueRef>;
} // namespace detail
// TODO: Keep it in sync with GRunArgP (derive the type automatically?)
using GOptRunArgP = util::variant<
optional<cv::Mat>*,
optional<cv::RMat>*,
optional<cv::MediaFrame>*,
optional<cv::Scalar>*,
cv::detail::OptionalVectorRef,
cv::detail::OptionalOpaqueRef
>;
using GOptRunArgsP = std::vector<GOptRunArgP>;
using GOptRunArg = util::variant<
optional<cv::Mat>,
optional<cv::RMat>,
optional<cv::MediaFrame>,
optional<cv::Scalar>,
optional<cv::detail::VectorRef>,
optional<cv::detail::OpaqueRef>
>;
using GOptRunArgs = std::vector<GOptRunArg>;
namespace detail {
template<typename T> inline GOptRunArgP wrap_opt_arg(optional<T>& arg) {
// By default, T goes to an OpaqueRef. All other types are specialized
return GOptRunArgP{OptionalOpaqueRef(arg)};
}
template<typename T> inline GOptRunArgP wrap_opt_arg(optional<std::vector<T> >& arg) {
return GOptRunArgP{OptionalVectorRef(arg)};
}
template<> inline GOptRunArgP wrap_opt_arg(optional<cv::Mat> &m) {
return GOptRunArgP{&m};
}
template<> inline GOptRunArgP wrap_opt_arg(optional<cv::RMat> &m) {
return GOptRunArgP{&m};
}
template<> inline GOptRunArgP wrap_opt_arg(optional<cv::MediaFrame> &f) {
return GOptRunArgP{&f};
}
template<> inline GOptRunArgP wrap_opt_arg(optional<cv::Scalar> &s) {
return GOptRunArgP{&s};
}
} // namespace detail
// Now cv::gout() may produce an empty vector (see "dynamic graphs"), so
// there may be a conflict between these two. State here that Opt version
// _must_ have at least one input for this overload
template<typename T, typename... Ts>
inline GOptRunArgsP gout(optional<T>&arg, optional<Ts>&... args)
{
return GOptRunArgsP{ detail::wrap_opt_arg(arg), detail::wrap_opt_arg(args)... };
}
/**
* \addtogroup gapi_main_classes
* @{
*/
/**
* @brief Represents a computation (graph) compiled for streaming.
*
* This class represents a product of graph compilation (calling
* cv::GComputation::compileStreaming()). Objects of this class
* actually do stream processing, and the whole pipeline execution
* complexity is incapsulated into objects of this class. Execution
* model has two levels: at the very top, the execution of a
* heterogeneous graph is aggressively pipelined; at the very bottom
* the execution of every internal block is determined by its
* associated backend. Backends are selected based on kernel packages
* passed via compilation arguments ( see @ref gapi_compile_args,
* GNetworkPackage, GKernelPackage for details).
*
* GStreamingCompiled objects have a "player" semantics -- there are
* methods like start() and stop(). GStreamingCompiled has a full
* control over a videostream and so is stateful. You need to specify the
* input stream data using setSource() and then call start() to
* actually start processing. After that, use pull() or try_pull() to
* obtain next processed data frame from the graph in a blocking or
* non-blocking way, respectively.
*
* Currently a single GStreamingCompiled can process only one video
* streat at time. Produce multiple GStreamingCompiled objects to run the
* same graph on multiple video streams.
*
* @sa GCompiled
*/
class GAPI_EXPORTS_W_SIMPLE GStreamingCompiled
{
public:
class GAPI_EXPORTS Priv;
GAPI_WRAP GStreamingCompiled();
// FIXME: More overloads?
/**
* @brief Specify the input data to GStreamingCompiled for
* processing, a generic version.
*
* Use gin() to create an input parameter vector.
*
* Input vectors must have the same number of elements as defined
* in the cv::GComputation protocol (at the moment of its
* construction). Shapes of elements also must conform to protocol
* (e.g. cv::Mat needs to be passed where cv::GMat has been
* declared as input, and so on). Run-time exception is generated
* on type mismatch.
*
* In contrast with regular GCompiled, user can also pass an
* object of type GVideoCapture for a GMat parameter of the parent
* GComputation. The compiled pipeline will start fetching data
* from that GVideoCapture and feeding it into the
* pipeline. Pipeline stops when a GVideoCapture marks end of the
* stream (or when stop() is called).
*
* Passing a regular Mat for a GMat parameter makes it "infinite"
* source -- pipeline may run forever feeding with this Mat until
* stopped explicitly.
*
* Currently only a single GVideoCapture is supported as input. If
* the parent GComputation is declared with multiple input GMat's,
* one of those can be specified as GVideoCapture but all others
* must be regular Mat objects.
*
* Throws if pipeline is already running. Use stop() and then
* setSource() to run the graph on a new video stream.
*
* @note This method is not thread-safe (with respect to the user
* side) at the moment. Protect the access if
* start()/stop()/setSource() may be called on the same object in
* multiple threads in your application.
*
* @param ins vector of inputs to process.
* @sa gin
*/
void setSource(GRunArgs &&ins);
/// @private -- Exclude this function from OpenCV documentation
GAPI_WRAP void setSource(const cv::detail::ExtractArgsCallback& callback);
/**
* @brief Specify an input video stream for a single-input
* computation pipeline.
*
* Throws if pipeline is already running. Use stop() and then
* setSource() to run the graph on a new video stream.
*
* @overload
* @param s a shared pointer to IStreamSource representing the
* input video stream.
*/
void setSource(const gapi::wip::IStreamSource::Ptr& s);
/**
* @brief Constructs and specifies an input video stream for a
* single-input computation pipeline with the given parameters.
*
* Throws if pipeline is already running. Use stop() and then
* setSource() to run the graph on a new video stream.
*
* @overload
* @param args arguments used to contruct and initialize a stream
* source.
*/
template<typename T, typename... Args>
void setSource(Args&&... args) {
setSource(cv::gapi::wip::make_src<T>(std::forward<Args>(args)...));
}
/**
* @brief Start the pipeline execution.
*
* Use pull()/try_pull() to obtain data. Throws an exception if
* a video source was not specified.
*
* setSource() must be called first, even if the pipeline has been
* working already and then stopped (explicitly via stop() or due
* stream completion)
*
* @note This method is not thread-safe (with respect to the user
* side) at the moment. Protect the access if
* start()/stop()/setSource() may be called on the same object in
* multiple threads in your application.
*/
GAPI_WRAP void start();
/**
* @brief Get the next processed frame from the pipeline.
*
* Use gout() to create an output parameter vector.
*
* Output vectors must have the same number of elements as defined
* in the cv::GComputation protocol (at the moment of its
* construction). Shapes of elements also must conform to protocol
* (e.g. cv::Mat needs to be passed where cv::GMat has been
* declared as output, and so on). Run-time exception is generated
* on type mismatch.
*
* This method writes new data into objects passed via output
* vector. If there is no data ready yet, this method blocks. Use
* try_pull() if you need a non-blocking version.
*
* @param outs vector of output parameters to obtain.
* @return true if next result has been obtained,
* false marks end of the stream.
*/
bool pull(cv::GRunArgsP &&outs);
// NB: Used from python
/// @private -- Exclude this function from OpenCV documentation
GAPI_WRAP std::tuple<bool, cv::util::variant<cv::GRunArgs, cv::GOptRunArgs>> pull();
/**
* @brief Get some next available data from the pipeline.
*
* This method takes a vector of cv::optional object. An object is
* assigned to some value if this value is available (ready) at
* the time of the call, and resets the object to empty() if it is
* not.
*
* This is a blocking method which guarantees that some data has
* been written to the output vector on return.
*
* Using this method only makes sense if the graph has
* desynchronized parts (see cv::gapi::desync). If there is no
* desynchronized parts in the graph, the behavior of this
* method is identical to the regular pull() (all data objects are
* produced synchronously in the output vector).
*
* Use gout() to create an output parameter vector.
*
* Output vectors must have the same number of elements as defined
* in the cv::GComputation protocol (at the moment of its
* construction). Shapes of elements also must conform to protocol
* (e.g. cv::optional<cv::Mat> needs to be passed where cv::GMat
* has been declared as output, and so on). Run-time exception is
* generated on type mismatch.
*
* This method writes new data into objects passed via output
* vector. If there is no data ready yet, this method blocks. Use
* try_pull() if you need a non-blocking version.
*
* @param outs vector of output parameters to obtain.
* @return true if next result has been obtained,
* false marks end of the stream.
*
* @sa cv::gapi::desync
*/
bool pull(cv::GOptRunArgsP &&outs);
/**
* @brief Try to get the next processed frame from the pipeline.
*
* Use gout() to create an output parameter vector.
*
* This method writes new data into objects passed via output
* vector. If there is no data ready yet, the output vector
* remains unchanged and false is returned.
*
* @return true if data has been obtained, and false if it was
* not. Note: false here doesn't mark the end of the stream.
*/
bool try_pull(cv::GRunArgsP &&outs);
/**
* @brief Stop (abort) processing the pipeline.
*
* Note - it is not pause but a complete stop. Calling start()
* will cause G-API to start processing the stream from the early beginning.
*
* Throws if the pipeline is not running.
*/
GAPI_WRAP void stop();
/**
* @brief Test if the pipeline is running.
*
* @note This method is not thread-safe (with respect to the user
* side) at the moment. Protect the access if
* start()/stop()/setSource() may be called on the same object in
* multiple threads in your application.
*
* @return true if the current stream is not over yet.
*/
GAPI_WRAP bool running() const;
/// @private
Priv& priv();
/**
* @brief Check if compiled object is valid (non-empty)
*
* @return true if the object is runnable (valid), false otherwise
*/
explicit operator bool () const;
/**
* @brief Vector of metadata this graph was compiled for.
*
* @return Unless _reshape_ is not supported, return value is the
* same vector which was passed to cv::GComputation::compile() to
* produce this compiled object. Otherwise, it is the latest
* metadata vector passed to reshape() (if that call was
* successful).
*/
const GMetaArgs& metas() const; // Meta passed to compile()
/**
* @brief Vector of metadata descriptions of graph outputs
*
* @return vector with formats/resolutions of graph's output
* objects, auto-inferred from input metadata vector by
* operations which form this computation.
*
* @note GCompiled objects produced from the same
* cv::GComputiation graph with different input metas may return
* different values in this vector.
*/
const GMetaArgs& outMetas() const;
protected:
/// @private
std::shared_ptr<Priv> m_priv;
};
/** @} */
namespace gapi {
/**
* @brief This namespace contains G-API functions, structures, and
* symbols related to the Streaming execution mode.
*
* Some of the operations defined in this namespace (e.g. size(),
* BGR(), etc.) can be used in the traditional execution mode too.
*/
namespace streaming {
/**
* @brief Specify queue capacity for streaming execution.
*
* In the streaming mode the pipeline steps are connected with queues
* and this compile argument controls every queue's size.
*/
struct GAPI_EXPORTS_W_SIMPLE queue_capacity
{
GAPI_WRAP
explicit queue_capacity(size_t cap = 1) : capacity(cap) { };
GAPI_PROP_RW
size_t capacity;
};
/** @} */
} // namespace streaming
} // namespace gapi
namespace detail
{
template<> struct CompileArgTag<cv::gapi::streaming::queue_capacity>
{
static const char* tag() { return "gapi.queue_capacity"; }
};
}
}
#endif // OPENCV_GAPI_GSTREAMING_COMPILED_HPP

View File

@ -0,0 +1,103 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_GTRANSFORM_HPP
#define OPENCV_GAPI_GTRANSFORM_HPP
#include <functional>
#include <type_traits>
#include <utility>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/util/util.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/gtype_traits.hpp>
#include <opencv2/gapi/util/compiler_hints.hpp>
#include <opencv2/gapi/gcomputation.hpp>
namespace cv
{
struct GAPI_EXPORTS GTransform
{
// FIXME: consider another simplified
// class instead of GComputation
using F = std::function<GComputation()>;
std::string description;
F pattern;
F substitute;
GTransform(const std::string& d, const F &p, const F &s) : description(d), pattern(p), substitute(s){};
};
namespace detail
{
template <typename, typename, typename>
struct TransHelper;
template <typename K, typename... Ins, typename Out>
struct TransHelper<K, std::tuple<Ins...>, Out>
{
template <typename Callable, int... IIs, int... OIs>
static GComputation invoke(Callable f, Seq<IIs...>, Seq<OIs...>)
{
const std::tuple<Ins...> ins;
const auto r = tuple_wrap_helper<Out>::get(f(std::get<IIs>(ins)...));
return GComputation(cv::GIn(std::get<IIs>(ins)...),
cv::GOut(std::get<OIs>(r)...));
}
static GComputation get_pattern()
{
return invoke(K::pattern, typename MkSeq<sizeof...(Ins)>::type(),
typename MkSeq<std::tuple_size<typename tuple_wrap_helper<Out>::type>::value>::type());
}
static GComputation get_substitute()
{
return invoke(K::substitute, typename MkSeq<sizeof...(Ins)>::type(),
typename MkSeq<std::tuple_size<typename tuple_wrap_helper<Out>::type>::value>::type());
}
};
} // namespace detail
template <typename, typename>
class GTransformImpl;
template <typename K, typename R, typename... Args>
class GTransformImpl<K, std::function<R(Args...)>> : public cv::detail::TransHelper<K, std::tuple<Args...>, R>,
public cv::detail::TransformTag
{
public:
// FIXME: currently there is no check that transformations' signatures are unique
// and won't be any intersection in graph compilation stage
using API = K;
static GTransform transformation()
{
return GTransform(K::descr(), &K::get_pattern, &K::get_substitute);
}
};
} // namespace cv
#define G_DESCR_HELPER_CLASS(Class) Class##DescrHelper
#define G_DESCR_HELPER_BODY(Class, Descr) \
namespace detail \
{ \
struct G_DESCR_HELPER_CLASS(Class) \
{ \
static constexpr const char *descr() { return Descr; }; \
}; \
}
#define GAPI_TRANSFORM(Class, API, Descr) \
G_DESCR_HELPER_BODY(Class, Descr) \
struct Class final : public cv::GTransformImpl<Class, std::function API>, \
public detail::G_DESCR_HELPER_CLASS(Class)
#endif // OPENCV_GAPI_GTRANSFORM_HPP

View File

@ -0,0 +1,220 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GTYPE_TRAITS_HPP
#define OPENCV_GAPI_GTYPE_TRAITS_HPP
#include <vector>
#include <type_traits>
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
#include <opencv2/gapi/garray.hpp>
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/gapi/gframe.hpp>
#include <opencv2/gapi/streaming/source.hpp>
#include <opencv2/gapi/media.hpp>
#include <opencv2/gapi/gcommon.hpp>
namespace cv
{
namespace detail
{
// FIXME: These traits and enum and possible numerous switch(kind)
// block may be replaced with a special Handler<T> object or with
// a double dispatch
enum class ArgKind: int
{
OPAQUE_VAL, // Unknown, generic, opaque-to-GAPI data type - STATIC
// Note: OPAQUE is sometimes defined in Win sys headers
#if !defined(OPAQUE) && !defined(CV_DOXYGEN)
OPAQUE = OPAQUE_VAL, // deprecated value used for compatibility, use OPAQUE_VAL instead
#endif
GOBJREF, // <internal> reference to object
GMAT, // a cv::GMat
GMATP, // a cv::GMatP
GFRAME, // a cv::GFrame
GSCALAR, // a cv::GScalar
GARRAY, // a cv::GArrayU (note - exactly GArrayU, not GArray<T>!)
GOPAQUE, // a cv::GOpaqueU (note - exactly GOpaqueU, not GOpaque<T>!)
};
// Describe G-API types (G-types) with traits. Mostly used by
// cv::GArg to store meta information about types passed into
// operation arguments. Please note that cv::GComputation is
// defined on GProtoArgs, not GArgs!
template<typename T> struct GTypeTraits;
template<typename T> struct GTypeTraits
{
static constexpr const ArgKind kind = ArgKind::OPAQUE_VAL;
static constexpr const OpaqueKind op_kind = OpaqueKind::CV_UNKNOWN;
};
template<> struct GTypeTraits<cv::GMat>
{
static constexpr const ArgKind kind = ArgKind::GMAT;
static constexpr const GShape shape = GShape::GMAT;
static constexpr const OpaqueKind op_kind = OpaqueKind::CV_UNKNOWN;
};
template<> struct GTypeTraits<cv::GMatP>
{
static constexpr const ArgKind kind = ArgKind::GMATP;
static constexpr const GShape shape = GShape::GMAT;
static constexpr const OpaqueKind op_kind = OpaqueKind::CV_UNKNOWN;
};
template<> struct GTypeTraits<cv::GFrame>
{
static constexpr const ArgKind kind = ArgKind::GFRAME;
static constexpr const GShape shape = GShape::GFRAME;
static constexpr const OpaqueKind op_kind = OpaqueKind::CV_UNKNOWN;
};
template<> struct GTypeTraits<cv::GScalar>
{
static constexpr const ArgKind kind = ArgKind::GSCALAR;
static constexpr const GShape shape = GShape::GSCALAR;
static constexpr const OpaqueKind op_kind = OpaqueKind::CV_UNKNOWN;
};
template<class T> struct GTypeTraits<cv::GArray<T> >
{
static constexpr const ArgKind kind = ArgKind::GARRAY;
static constexpr const GShape shape = GShape::GARRAY;
static constexpr const OpaqueKind op_kind = GOpaqueTraits<T>::kind;
using host_type = std::vector<T>;
using strip_type = cv::detail::VectorRef;
static cv::detail::GArrayU wrap_value(const cv::GArray<T> &t) { return t.strip();}
static cv::detail::VectorRef wrap_in (const std::vector<T> &t) { return detail::VectorRef(t); }
static cv::detail::VectorRef wrap_out ( std::vector<T> &t) { return detail::VectorRef(t); }
};
template<class T> struct GTypeTraits<cv::GOpaque<T> >
{
static constexpr const ArgKind kind = ArgKind::GOPAQUE;
static constexpr const GShape shape = GShape::GOPAQUE;
static constexpr const OpaqueKind op_kind = GOpaqueTraits<T>::kind;
using host_type = T;
using strip_type = cv::detail::OpaqueRef;
static cv::detail::GOpaqueU wrap_value(const cv::GOpaque<T> &t) { return t.strip();}
static cv::detail::OpaqueRef wrap_in (const T &t) { return detail::OpaqueRef(t); }
static cv::detail::OpaqueRef wrap_out ( T &t) { return detail::OpaqueRef(t); }
};
// Tests if Trait for type T requires extra marshalling ("custom wrap") or not.
// If Traits<T> has wrap_value() defined, it does.
template<class T> struct has_custom_wrap
{
template<class,class> class check;
template<typename C> static std::true_type test(check<C, decltype(&GTypeTraits<C>::wrap_value)> *);
template<typename C> static std::false_type test(...);
using type = decltype(test<T>(nullptr));
static const constexpr bool value = std::is_same<std::true_type, decltype(test<T>(nullptr))>::value;
};
// Resolve a Host type back to its associated G-Type.
// FIXME: Probably it can be avoided
// FIXME: GMatP is not present here.
// (Actually these traits is used only to check
// if associated G-type has custom wrap functions
// and GMat behavior is correct for GMatP)
template<typename T> struct GTypeOf;
#if !defined(GAPI_STANDALONE)
template<> struct GTypeOf<cv::UMat> { using type = cv::GMat; };
#endif // !defined(GAPI_STANDALONE)
template<> struct GTypeOf<cv::Mat> { using type = cv::GMat; };
template<> struct GTypeOf<cv::RMat> { using type = cv::GMat; };
template<> struct GTypeOf<cv::Scalar> { using type = cv::GScalar; };
template<typename U> struct GTypeOf<std::vector<U> > { using type = cv::GArray<U>; };
template<typename U> struct GTypeOf { using type = cv::GOpaque<U>;};
template<> struct GTypeOf<cv::MediaFrame> { using type = cv::GFrame; };
// FIXME: This is not quite correct since IStreamSource may produce not only Mat but also Scalar
// and vector data. TODO: Extend the type dispatching on these types too.
template<> struct GTypeOf<cv::gapi::wip::IStreamSource::Ptr> { using type = cv::GMat;};
template<class T> using g_type_of_t = typename GTypeOf<T>::type;
// Marshalling helper for G-types and its Host types. Helps G-API
// to store G types in internal generic containers for further
// processing. Implements the following callbacks:
//
// * wrap() - converts user-facing G-type into an internal one
// for internal storage.
// Used when G-API operation is instantiated (G<Kernel>::on(),
// etc) during expressing a pipeline. Mostly returns input
// value "as is" except the case when G-type is a template. For
// template G-classes, calls custom wrap() from Traits.
// The value returned by wrap() is then wrapped into GArg() and
// stored in G-API metadata.
//
// Example:
// - cv::GMat arguments are passed as-is.
// - integers, pointers, STL containers, user types are passed as-is.
// - cv::GArray<T> is converted to cv::GArrayU.
//
// * wrap_in() / wrap_out() - convert Host type associated with
// G-type to internal representation type.
//
// - For "simple" (non-template) G-types, returns value as-is.
// Example: cv::GMat has host type cv::Mat, when user passes a
// cv::Mat, system stores it internally as cv::Mat.
//
// - For "complex" (template) G-types, utilizes custom
// wrap_in()/wrap_out() as described in Traits.
// Example: cv::GArray<T> has host type std::vector<T>, when
// user passes a std::vector<T>, system stores it
// internally as VectorRef (with <T> stripped away).
template<typename T, class Custom = void> struct WrapValue
{
static auto wrap(const T& t) ->
typename std::remove_reference<T>::type
{
return static_cast<typename std::remove_reference<T>::type>(t);
}
template<typename U> static U wrap_in (const U &u) { return u; }
template<typename U> static U* wrap_out(U &u) { return &u; }
};
template<typename T> struct WrapValue<T, typename std::enable_if<has_custom_wrap<T>::value>::type>
{
static auto wrap(const T& t) -> decltype(GTypeTraits<T>::wrap_value(t))
{
return GTypeTraits<T>::wrap_value(t);
}
template<typename U> static auto wrap_in (const U &u) -> typename GTypeTraits<T>::strip_type
{
return GTypeTraits<T>::wrap_in(u);
}
template<typename U> static auto wrap_out(U &u) -> typename GTypeTraits<T>::strip_type
{
return GTypeTraits<T>::wrap_out(u);
}
};
template<typename T> using wrap_gapi_helper = WrapValue<typename std::decay<T>::type>;
template<typename T> using wrap_host_helper = WrapValue<typename std::decay<g_type_of_t<T> >::type>;
// Union type for various user-defined type constructors (GArray<T>,
// GOpaque<T>, etc)
//
// TODO: Replace construct-only API with a more generic one (probably
// with bits of introspection)
//
// Not required for non-user-defined types (GMat, GScalar, etc)
using HostCtor = util::variant
< util::monostate
, detail::ConstructVec
, detail::ConstructOpaque
>;
template<typename T> struct GObtainCtor {
static HostCtor get() { return HostCtor{}; }
};
template<typename T> struct GObtainCtor<GArray<T> > {
static HostCtor get() { return HostCtor{ConstructVec{&GArray<T>::VCtor}}; };
};
template<typename T> struct GObtainCtor<GOpaque<T> > {
static HostCtor get() { return HostCtor{ConstructOpaque{&GOpaque<T>::Ctor}}; };
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_GTYPE_TRAITS_HPP

View File

@ -0,0 +1,246 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GTYPED_HPP
#define OPENCV_GAPI_GTYPED_HPP
#if !defined(GAPI_STANDALONE)
#include <vector>
#include <opencv2/gapi/gcomputation.hpp>
#include <opencv2/gapi/gcompiled.hpp>
#include <opencv2/gapi/gproto.hpp>
#include <opencv2/gapi/gcommon.hpp>
namespace cv {
namespace detail
{
// FIXME: How to prevent coolhackers from extending it by their own types?
// FIXME: ...Should we care?
template<typename T> struct ProtoToParam;
template<> struct ProtoToParam<cv::GMat> { using type = cv::Mat; };
template<> struct ProtoToParam<cv::GScalar> { using type = cv::Scalar; };
template<typename U> struct ProtoToParam<cv::GArray<U> > { using type = std::vector<U>; };
template<> struct ProtoToParam<cv::GArray<cv::GMat>> { using type = std::vector<cv::Mat>; };
template<typename U> struct ProtoToParam<cv::GOpaque<U> > { using type = U; };
template<typename T> using ProtoToParamT = typename ProtoToParam<T>::type;
template<typename T> struct ProtoToMeta;
template<> struct ProtoToMeta<cv::GMat> { using type = cv::GMatDesc; };
template<> struct ProtoToMeta<cv::GScalar> { using type = cv::GScalarDesc; };
template<typename U> struct ProtoToMeta<cv::GArray<U> > { using type = cv::GArrayDesc; };
template<typename U> struct ProtoToMeta<cv::GOpaque<U> > { using type = cv::GOpaqueDesc; };
template<typename T> using ProtoToMetaT = typename ProtoToMeta<T>::type;
//workaround for MSVC 19.0 bug
template <typename T>
auto make_default()->decltype(T{}) {return {};}
}; // detail
/**
* @brief This class is a typed wrapper over a regular GComputation.
*
* `std::function<>`-like template parameter specifies the graph
* signature so methods so the object's constructor, methods like
* `apply()` and the derived `GCompiledT::operator()` also become
* typed.
*
* There is no need to use cv::gin() or cv::gout() modifiers with
* objects of this class. Instead, all input arguments are followed
* by all output arguments in the order from the template argument
* signature.
*
* Refer to the following example. Regular (untyped) code is written this way:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp Untyped_Example
*
* Here:
*
* - cv::GComputation object is created with a lambda constructor
* where it is defined as a two-input, one-output graph.
*
* - Its method `apply()` in fact takes arbitrary number of arguments
* (as vectors) so user can pass wrong number of inputs/outputs
* here. C++ compiler wouldn't notice that since the cv::GComputation
* API is polymorphic, and only a run-time error will be generated.
*
* Now the same code written with typed API:
*
* @snippet modules/gapi/samples/api_ref_snippets.cpp Typed_Example
*
* The key difference is:
*
* - Now the constructor lambda *must take* parameters and *must
* return* values as defined in the `GComputationT<>` signature.
* - Its method `apply()` does not require any extra specifiers to
* separate input arguments from the output ones
* - A `GCompiledT` (compilation product) takes input/output
* arguments with no extra specifiers as well.
*/
template<typename> class GComputationT;
// Single return value implementation
template<typename R, typename... Args> class GComputationT<R(Args...)>
{
public:
typedef std::function<R(Args...)> Gen;
class GCompiledT
{
private:
friend class GComputationT<R(Args...)>;
cv::GCompiled m_comp;
explicit GCompiledT(const cv::GCompiled &comp) : m_comp(comp) {}
public:
GCompiledT() {}
void operator()(detail::ProtoToParamT<Args>... inArgs,
detail::ProtoToParamT<R> &outArg)
{
m_comp(cv::gin(inArgs...), cv::gout(outArg));
}
explicit operator bool() const
{
return static_cast<bool>(m_comp);
}
};
private:
typedef std::pair<R, GProtoInputArgs > Captured;
Captured capture(const Gen& g, Args... args)
{
return Captured(g(args...), cv::GIn(args...));
}
Captured m_capture;
cv::GComputation m_comp;
public:
GComputationT(const Gen &generator)
: m_capture(capture(generator, detail::make_default<Args>()...))
, m_comp(cv::GProtoInputArgs(std::move(m_capture.second)),
cv::GOut(m_capture.first))
{
}
void apply(detail::ProtoToParamT<Args>... inArgs,
detail::ProtoToParamT<R> &outArg,
GCompileArgs &&args)
{
m_comp.apply(cv::gin(inArgs...), cv::gout(outArg), std::move(args));
}
void apply(detail::ProtoToParamT<Args>... inArgs,
detail::ProtoToParamT<R> &outArg)
{
apply(inArgs..., outArg, GCompileArgs());
}
GCompiledT compile(detail::ProtoToMetaT<Args>... inDescs)
{
GMetaArgs inMetas = { GMetaArg(inDescs)... };
return GCompiledT(m_comp.compile(std::move(inMetas), GCompileArgs()));
}
GCompiledT compile(detail::ProtoToMetaT<Args>... inDescs, GCompileArgs &&args)
{
GMetaArgs inMetas = { GMetaArg(inDescs)... };
return GCompiledT(m_comp.compile(std::move(inMetas), std::move(args)));
}
};
// Multiple (fixed) return value implementation. FIXME: How to avoid copy-paste?
template<typename... R, typename... Args> class GComputationT<std::tuple<R...>(Args...)>
{
public:
typedef std::function<std::tuple<R...>(Args...)> Gen;
class GCompiledT
{
private:
friend class GComputationT<std::tuple<R...>(Args...)>;
cv::GCompiled m_comp;
explicit GCompiledT(const cv::GCompiled &comp) : m_comp(comp) {}
public:
GCompiledT() {}
void operator()(detail::ProtoToParamT<Args>... inArgs,
detail::ProtoToParamT<R>&... outArgs)
{
m_comp(cv::gin(inArgs...), cv::gout(outArgs...));
}
explicit operator bool() const
{
return static_cast<bool>(m_comp);
}
};
private:
typedef std::pair<GProtoArgs, GProtoArgs> Captured;
template<int... IIs>
Captured capture(GProtoArgs &&args, const std::tuple<R...> &rr, detail::Seq<IIs...>)
{
return Captured(cv::GOut(std::get<IIs>(rr)...).m_args, args);
}
Captured capture(const Gen& g, Args... args)
{
return capture(cv::GIn(args...).m_args, g(args...), typename detail::MkSeq<sizeof...(R)>::type());
}
Captured m_capture;
cv::GComputation m_comp;
public:
GComputationT(const Gen &generator)
: m_capture(capture(generator, detail::make_default<Args>()...))
, m_comp(cv::GProtoInputArgs(std::move(m_capture.second)),
cv::GProtoOutputArgs(std::move(m_capture.first)))
{
}
void apply(detail::ProtoToParamT<Args>... inArgs,
detail::ProtoToParamT<R>&... outArgs,
GCompileArgs &&args)
{
m_comp.apply(cv::gin(inArgs...), cv::gout(outArgs...), std::move(args));
}
void apply(detail::ProtoToParamT<Args>... inArgs,
detail::ProtoToParamT<R>&... outArgs)
{
apply(inArgs..., outArgs..., GCompileArgs());
}
GCompiledT compile(detail::ProtoToMetaT<Args>... inDescs)
{
GMetaArgs inMetas = { GMetaArg(inDescs)... };
return GCompiledT(m_comp.compile(std::move(inMetas), GCompileArgs()));
}
GCompiledT compile(detail::ProtoToMetaT<Args>... inDescs, GCompileArgs &&args)
{
GMetaArgs inMetas = { GMetaArg(inDescs)... };
return GCompiledT(m_comp.compile(std::move(inMetas), std::move(args)));
}
};
} // namespace cv
#endif // !defined(GAPI_STANDALONE)
#endif // OPENCV_GAPI_GTYPED_HPP

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,714 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2021 Intel Corporation
#ifndef OPENCV_GAPI_INFER_HPP
#define OPENCV_GAPI_INFER_HPP
// FIXME: Inference API is currently only available in full mode
#if !defined(GAPI_STANDALONE)
#include <functional>
#include <string> // string
#include <utility> // tuple
#include <type_traits> // is_same, false_type
#include <opencv2/gapi/util/util.hpp> // all_satisfy
#include <opencv2/gapi/util/any.hpp> // any<>
#include <opencv2/gapi/gkernel.hpp> // GKernelType[M], GBackend
#include <opencv2/gapi/garg.hpp> // GArg
#include <opencv2/gapi/gcommon.hpp> // CompileArgTag
#include <opencv2/gapi/gmetaarg.hpp> // GMetaArg
namespace cv {
template<typename, typename> class GNetworkType;
namespace detail {
// Infer ///////////////////////////////////////////////////////////////////////
template<typename T>
struct accepted_infer_types {
static constexpr const auto value =
std::is_same<typename std::decay<T>::type, cv::GMat>::value
|| std::is_same<typename std::decay<T>::type, cv::GFrame>::value;
};
template<typename... Ts>
using valid_infer_types = all_satisfy<accepted_infer_types, Ts...>;
// Infer2 //////////////////////////////////////////////////////////////////////
template<typename, typename>
struct valid_infer2_types;
// Terminal case 1 (50/50 success)
template<typename T>
struct valid_infer2_types< std::tuple<cv::GMat>, std::tuple<T> > {
// By default, Nets are limited to GMat argument types only
// for infer2, every GMat argument may translate to either
// GArray<GMat> or GArray<Rect>. GArray<> part is stripped
// already at this point.
static constexpr const auto value =
std::is_same<typename std::decay<T>::type, cv::GMat>::value
|| std::is_same<typename std::decay<T>::type, cv::Rect>::value;
};
// Terminal case 2 (100% failure)
template<typename... Ts>
struct valid_infer2_types< std::tuple<>, std::tuple<Ts...> >
: public std::false_type {
};
// Terminal case 3 (100% failure)
template<typename... Ns>
struct valid_infer2_types< std::tuple<Ns...>, std::tuple<> >
: public std::false_type {
};
// Recursion -- generic
template<typename... Ns, typename T, typename...Ts>
struct valid_infer2_types< std::tuple<cv::GMat,Ns...>, std::tuple<T,Ts...> > {
static constexpr const auto value =
valid_infer2_types< std::tuple<cv::GMat>, std::tuple<T> >::value
&& valid_infer2_types< std::tuple<Ns...>, std::tuple<Ts...> >::value;
};
// Struct stores network input/output names.
// Used by infer<Generic>
struct InOutInfo
{
std::vector<std::string> in_names;
std::vector<std::string> out_names;
};
template <typename OutT>
class GInferOutputsTyped
{
public:
GInferOutputsTyped() = default;
GInferOutputsTyped(std::shared_ptr<cv::GCall> call)
: m_priv(std::make_shared<Priv>(std::move(call)))
{
}
OutT at(const std::string& name)
{
auto it = m_priv->blobs.find(name);
if (it == m_priv->blobs.end()) {
// FIXME: Avoid modifying GKernel
auto shape = cv::detail::GTypeTraits<OutT>::shape;
m_priv->call->kernel().outShapes.push_back(shape);
m_priv->call->kernel().outCtors.emplace_back(cv::detail::GObtainCtor<OutT>::get());
auto out_idx = static_cast<int>(m_priv->blobs.size());
it = m_priv->blobs.emplace(name,
cv::detail::Yield<OutT>::yield(*(m_priv->call), out_idx)).first;
m_priv->info->out_names.push_back(name);
}
return it->second;
}
private:
struct Priv
{
Priv(std::shared_ptr<cv::GCall> c)
: call(std::move(c)), info(cv::util::any_cast<InOutInfo>(&call->params()))
{
}
std::shared_ptr<cv::GCall> call;
InOutInfo* info = nullptr;
std::unordered_map<std::string, OutT> blobs;
};
std::shared_ptr<Priv> m_priv;
};
template <typename... Ts>
class GInferInputsTyped
{
public:
GInferInputsTyped()
: m_priv(std::make_shared<Priv>())
{
}
template <typename U>
GInferInputsTyped<Ts...>& setInput(const std::string& name, U in)
{
m_priv->blobs.emplace(std::piecewise_construct,
std::forward_as_tuple(name),
std::forward_as_tuple(in));
return *this;
}
using StorageT = cv::util::variant<Ts...>;
StorageT& operator[](const std::string& name) {
return m_priv->blobs[name];
}
using Map = std::unordered_map<std::string, StorageT>;
const Map& getBlobs() const {
return m_priv->blobs;
}
private:
struct Priv
{
std::unordered_map<std::string, StorageT> blobs;
};
std::shared_ptr<Priv> m_priv;
};
template<typename InferT>
std::shared_ptr<cv::GCall> makeCall(const std::string &tag,
std::vector<cv::GArg> &&args,
std::vector<std::string> &&names,
cv::GKinds &&kinds) {
auto call = std::make_shared<cv::GCall>(GKernel{
InferT::id(),
tag,
InferT::getOutMeta,
{}, // outShape will be filled later
std::move(kinds),
{}, // outCtors will be filled later
});
call->setArgs(std::move(args));
call->params() = cv::detail::InOutInfo{std::move(names), {}};
return call;
}
} // namespace detail
// TODO: maybe tuple_wrap_helper from util.hpp may help with this.
// Multiple-return-value network definition (specialized base class)
template<typename K, typename... R, typename... Args>
class GNetworkType<K, std::function<std::tuple<R...>(Args...)> >
{
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R...>;
using Result = OutArgs;
using API = std::function<Result(Args...)>;
using ResultL = std::tuple< cv::GArray<R>... >;
};
// Single-return-value network definition (specialized base class)
template<typename K, typename R, typename... Args>
class GNetworkType<K, std::function<R(Args...)> >
{
public:
using InArgs = std::tuple<Args...>;
using OutArgs = std::tuple<R>;
using Result = R;
using API = std::function<R(Args...)>;
using ResultL = cv::GArray<R>;
};
// InferAPI: Accepts either GMat or GFrame for very individual network's input
template<class Net, class... Ts>
struct InferAPI {
using type = typename std::enable_if
< detail::valid_infer_types<Ts...>::value
&& std::tuple_size<typename Net::InArgs>::value == sizeof...(Ts)
, std::function<typename Net::Result(Ts...)>
>::type;
};
// InferAPIRoi: Accepts a rectangle and either GMat or GFrame
template<class Net, class T>
struct InferAPIRoi {
using type = typename std::enable_if
< detail::valid_infer_types<T>::value
&& std::tuple_size<typename Net::InArgs>::value == 1u
, std::function<typename Net::Result(cv::GOpaque<cv::Rect>, T)>
>::type;
};
// InferAPIList: Accepts a list of rectangles and list of GMat/GFrames;
// crops every input.
template<class Net, class... Ts>
struct InferAPIList {
using type = typename std::enable_if
< detail::valid_infer_types<Ts...>::value
&& std::tuple_size<typename Net::InArgs>::value == sizeof...(Ts)
, std::function<typename Net::ResultL(cv::GArray<cv::Rect>, Ts...)>
>::type;
};
// APIList2 is also template to allow different calling options
// (GArray<cv::Rect> vs GArray<cv::GMat> per input)
template<class Net, typename T, class... Ts>
struct InferAPIList2 {
using type = typename std::enable_if
< detail::valid_infer_types<T>::value &&
cv::detail::valid_infer2_types< typename Net::InArgs
, std::tuple<Ts...> >::value,
std::function<typename Net::ResultL(T, cv::GArray<Ts>...)>
>::type;
};
// Base "Infer" kernel. Note - for whatever network, kernel ID
// is always the same. Different inference calls are distinguished by
// network _tag_ (an extra field in GCall)
//
// getOutMeta is a stub callback collected by G-API kernel subsystem
// automatically. This is a rare case when this callback is defined by
// a particular backend, not by a network itself.
struct GInferBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "InferROI" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferROIBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "Infer list" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferListBase {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi-list-1"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// Base "Infer list 2" kernel.
// All notes from "Infer" kernel apply here as well.
struct GInferList2Base {
static constexpr const char * id() {
return "org.opencv.dnn.infer-roi-list-2"; // Universal stub
}
static GMetaArgs getOutMeta(const GMetaArgs &, const GArgs &) {
return GMetaArgs{}; // One more universal stub
}
};
// A generic inference kernel. API (::on()) is fully defined by the Net
// template parameter.
// Acts as a regular kernel in graph (via KernelTypeMedium).
template<typename Net, typename... Args>
struct GInfer final
: public GInferBase
, public detail::KernelTypeMedium< GInfer<Net, Args...>
, typename InferAPI<Net, Args...>::type > {
using GInferBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// A specific roi-inference kernel. API (::on()) is fixed here and
// verified against Net.
template<typename Net, typename T>
struct GInferROI final
: public GInferROIBase
, public detail::KernelTypeMedium< GInferROI<Net, T>
, typename InferAPIRoi<Net, T>::type > {
using GInferROIBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// A generic roi-list inference kernel. API (::on()) is derived from
// the Net template parameter (see more in infer<> overload).
template<typename Net, typename... Args>
struct GInferList final
: public GInferListBase
, public detail::KernelTypeMedium< GInferList<Net, Args...>
, typename InferAPIList<Net, Args...>::type > {
using GInferListBase::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
// An even more generic roi-list inference kernel. API (::on()) is
// derived from the Net template parameter (see more in infer<>
// overload).
// Takes an extra variadic template list to reflect how this network
// was called (with Rects or GMats as array parameters)
template<typename Net, typename T, typename... Args>
struct GInferList2 final
: public GInferList2Base
, public detail::KernelTypeMedium< GInferList2<Net, T, Args...>
, typename InferAPIList2<Net, T, Args...>::type > {
using GInferList2Base::getOutMeta; // FIXME: name lookup conflict workaround?
static constexpr const char* tag() { return Net::tag(); }
};
/**
* @brief G-API object used to collect network inputs
*/
using GInferInputs = cv::detail::GInferInputsTyped<cv::GMat, cv::GFrame>;
/**
* @brief G-API object used to collect the list of network inputs
*/
using GInferListInputs = cv::detail::GInferInputsTyped<cv::GArray<cv::GMat>, cv::GArray<cv::Rect>>;
/**
* @brief G-API object used to collect network outputs
*/
using GInferOutputs = cv::detail::GInferOutputsTyped<cv::GMat>;
/**
* @brief G-API object used to collect the list of network outputs
*/
using GInferListOutputs = cv::detail::GInferOutputsTyped<cv::GArray<cv::GMat>>;
namespace detail {
void inline unpackBlobs(const cv::GInferInputs::Map& blobs,
std::vector<cv::GArg>& args,
std::vector<std::string>& names,
cv::GKinds& kinds)
{
for (auto&& p : blobs) {
names.emplace_back(p.first);
switch (p.second.index()) {
case cv::GInferInputs::StorageT::index_of<cv::GMat>():
args.emplace_back(cv::util::get<cv::GMat>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_MAT);
break;
case cv::GInferInputs::StorageT::index_of<cv::GFrame>():
args.emplace_back(cv::util::get<cv::GFrame>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_UNKNOWN);
break;
default:
GAPI_Assert(false);
}
}
}
template <typename InferType>
struct InferROITraits;
template <>
struct InferROITraits<GInferROIBase>
{
using outType = cv::GInferOutputs;
using inType = cv::GOpaque<cv::Rect>;
};
template <>
struct InferROITraits<GInferListBase>
{
using outType = cv::GInferListOutputs;
using inType = cv::GArray<cv::Rect>;
};
template<typename InferType>
typename InferROITraits<InferType>::outType
inferGenericROI(const std::string& tag,
const typename InferROITraits<InferType>::inType& in,
const cv::GInferInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
args.emplace_back(in);
kinds.emplace_back(cv::detail::OpaqueKind::CV_RECT);
unpackBlobs(inputs.getBlobs(), args, names, kinds);
auto call = cv::detail::makeCall<InferType>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return {std::move(call)};
}
} // namespace detail
} // namespace cv
// FIXME: Probably the <API> signature makes a function/tuple/function round-trip
#define G_API_NET(Class, API, Tag) \
struct Class final: public cv::GNetworkType<Class, std::function API> { \
static constexpr const char * tag() { return Tag; } \
}
namespace cv {
namespace gapi {
/** @brief Calculates response for the specified network (template
* parameter) for the specified region in the source image.
* Currently expects a single-input network only.
*
* @tparam A network type defined with G_API_NET() macro.
* @param in input image where to take ROI from.
* @param roi an object describing the region of interest
* in the source image. May be calculated in the same graph dynamically.
* @return an object of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* objects of appropriate type is returned.
* @sa G_API_NET()
*/
template<typename Net, typename T>
typename Net::Result infer(cv::GOpaque<cv::Rect> roi, T in) {
return GInferROI<Net, T>::on(roi, in);
}
/** @brief Calculates responses for the specified network (template
* parameter) for every region in the source image.
*
* @tparam A network type defined with G_API_NET() macro.
* @param roi a list of rectangles describing regions of interest
* in the source image. Usually an output of object detector or tracker.
* @param args network's input parameters as specified in G_API_NET() macro.
* NOTE: verified to work reliably with 1-input topologies only.
* @return a list of objects of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* GArray<> objects is returned with the appropriate types inside.
* @sa G_API_NET()
*/
template<typename Net, typename... Args>
typename Net::ResultL infer(cv::GArray<cv::Rect> roi, Args&&... args) {
return GInferList<Net, Args...>::on(roi, std::forward<Args>(args)...);
}
/** @brief Calculates responses for the specified network (template
* parameter) for every region in the source image, extended version.
*
* @tparam A network type defined with G_API_NET() macro.
* @param image A source image containing regions of interest
* @param args GArray<> objects of cv::Rect or cv::GMat, one per every
* network input:
* - If a cv::GArray<cv::Rect> is passed, the appropriate
* regions are taken from `image` and preprocessed to this particular
* network input;
* - If a cv::GArray<cv::GMat> is passed, the underlying data traited
* as tensor (no automatic preprocessing happen).
* @return a list of objects of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* GArray<> objects is returned with the appropriate types inside.
* @sa G_API_NET()
*/
template<typename Net, typename T, typename... Args>
typename Net::ResultL infer2(T image, cv::GArray<Args>... args) {
// FIXME: Declared as "2" because in the current form it steals
// overloads from the regular infer
return GInferList2<Net, T, Args...>::on(image, args...);
}
/**
* @brief Calculates response for the specified network (template
* parameter) given the input data.
*
* @tparam A network type defined with G_API_NET() macro.
* @param args network's input parameters as specified in G_API_NET() macro.
* @return an object of return type as defined in G_API_NET().
* If a network has multiple return values (defined with a tuple), a tuple of
* objects of appropriate type is returned.
* @sa G_API_NET()
*/
template<typename Net, typename... Args>
typename Net::Result infer(Args&&... args) {
return GInfer<Net, Args...>::on(std::forward<Args>(args)...);
}
/**
* @brief Generic network type: input and output layers are configured dynamically at runtime
*
* Unlike the network types defined with G_API_NET macro, this one
* doesn't fix number of network inputs and outputs at the compilation stage
* thus providing user with an opportunity to program them in runtime.
*/
struct Generic { };
/**
* @brief Calculates response for generic network
*
* @param tag a network tag
* @param inputs networks's inputs
* @return a GInferOutputs
*/
template<typename T = Generic> cv::GInferOutputs
infer(const std::string& tag, const cv::GInferInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
cv::detail::unpackBlobs(inputs.getBlobs(), args, names, kinds);
auto call = cv::detail::makeCall<GInferBase>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return cv::GInferOutputs{std::move(call)};
}
/** @brief Calculates response for the generic network
* for the specified region in the source image.
* Currently expects a single-input network only.
*
* @param tag a network tag
* @param roi a an object describing the region of interest
* in the source image. May be calculated in the same graph dynamically.
* @param inputs networks's inputs
* @return a cv::GInferOutputs
*/
template<typename T = Generic> cv::GInferOutputs
infer(const std::string& tag, const cv::GOpaque<cv::Rect>& roi, const cv::GInferInputs& inputs)
{
return cv::detail::inferGenericROI<GInferROIBase>(tag, roi, inputs);
}
/** @brief Calculates responses for the specified network
* for every region in the source image.
*
* @param tag a network tag
* @param rois a list of rectangles describing regions of interest
* in the source image. Usually an output of object detector or tracker.
* @param inputs networks's inputs
* @return a cv::GInferListOutputs
*/
template<typename T = Generic> cv::GInferListOutputs
infer(const std::string& tag, const cv::GArray<cv::Rect>& rois, const cv::GInferInputs& inputs)
{
return cv::detail::inferGenericROI<GInferListBase>(tag, rois, inputs);
}
/** @brief Calculates responses for the specified network
* for every region in the source image, extended version.
*
* @param tag a network tag
* @param in a source image containing regions of interest.
* @param inputs networks's inputs
* @return a cv::GInferListOutputs
*/
template<typename T = Generic, typename Input>
typename std::enable_if<cv::detail::accepted_infer_types<Input>::value, cv::GInferListOutputs>::type
infer2(const std::string& tag,
const Input& in,
const cv::GInferListInputs& inputs)
{
std::vector<cv::GArg> args;
std::vector<std::string> names;
cv::GKinds kinds;
args.emplace_back(in);
auto k = cv::detail::GOpaqueTraits<Input>::kind;
kinds.emplace_back(k);
for (auto&& p : inputs.getBlobs()) {
names.emplace_back(p.first);
switch (p.second.index()) {
case cv::GInferListInputs::StorageT::index_of<cv::GArray<cv::GMat>>():
args.emplace_back(cv::util::get<cv::GArray<cv::GMat>>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_MAT);
break;
case cv::GInferListInputs::StorageT::index_of<cv::GArray<cv::Rect>>():
args.emplace_back(cv::util::get<cv::GArray<cv::Rect>>(p.second));
kinds.emplace_back(cv::detail::OpaqueKind::CV_RECT);
break;
default:
GAPI_Assert(false);
}
}
auto call = cv::detail::makeCall<GInferList2Base>(tag,
std::move(args),
std::move(names),
std::move(kinds));
return cv::GInferListOutputs{std::move(call)};
}
} // namespace gapi
} // namespace cv
#endif // GAPI_STANDALONE
namespace cv {
namespace gapi {
// Note: the below code _is_ part of STANDALONE build,
// just to make our compiler code compileable.
// A type-erased form of network parameters.
// Similar to how a type-erased GKernel is represented and used.
/// @private
struct GAPI_EXPORTS_W_SIMPLE GNetParam {
std::string tag; // FIXME: const?
GBackend backend; // Specifies the execution model
util::any params; // Backend-interpreted parameter structure
};
/** \addtogroup gapi_compile_args
* @{
*/
/**
* @brief A container class for network configurations. Similar to
* GKernelPackage. Use cv::gapi::networks() to construct this object.
*
* @sa cv::gapi::networks
*/
struct GAPI_EXPORTS_W_SIMPLE GNetPackage {
GAPI_WRAP GNetPackage() = default;
GAPI_WRAP explicit GNetPackage(std::vector<GNetParam> nets);
explicit GNetPackage(std::initializer_list<GNetParam> ii);
std::vector<GBackend> backends() const;
std::vector<GNetParam> networks;
};
/** @} gapi_compile_args */
} // namespace gapi
namespace detail {
template<typename T>
gapi::GNetParam strip(T&& t) {
return gapi::GNetParam { t.tag()
, t.backend()
, t.params()
};
}
template<> struct CompileArgTag<cv::gapi::GNetPackage> {
static const char* tag() { return "gapi.net_package"; }
};
} // namespace cv::detail
namespace gapi {
template<typename... Args>
cv::gapi::GNetPackage networks(Args&&... args) {
return cv::gapi::GNetPackage({ cv::detail::strip(args)... });
}
inline cv::gapi::GNetPackage& operator += ( cv::gapi::GNetPackage& lhs,
const cv::gapi::GNetPackage& rhs) {
lhs.networks.reserve(lhs.networks.size() + rhs.networks.size());
lhs.networks.insert(lhs.networks.end(), rhs.networks.begin(), rhs.networks.end());
return lhs;
}
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_HPP

View File

@ -0,0 +1,67 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_INFER_BINDINGS_IE_HPP
#define OPENCV_GAPI_INFER_BINDINGS_IE_HPP
#include <opencv2/gapi/util/any.hpp>
#include "opencv2/gapi/own/exports.hpp" // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/infer/ie.hpp> // Params
#include <string>
namespace cv {
namespace gapi {
namespace ie {
// NB: Used by python wrapper
// This class can be marked as SIMPLE, because it's implemented as pimpl
class GAPI_EXPORTS_W_SIMPLE PyParams {
public:
GAPI_WRAP
PyParams() = default;
GAPI_WRAP
PyParams(const std::string &tag,
const std::string &model,
const std::string &weights,
const std::string &device);
GAPI_WRAP
PyParams(const std::string &tag,
const std::string &model,
const std::string &device);
GAPI_WRAP
PyParams& constInput(const std::string &layer_name,
const cv::Mat &data,
TraitAs hint = TraitAs::TENSOR);
GAPI_WRAP
PyParams& cfgNumRequests(size_t nireq);
GBackend backend() const;
std::string tag() const;
cv::util::any params() const;
private:
std::shared_ptr<Params<cv::gapi::Generic>> m_priv;
};
GAPI_EXPORTS_W PyParams params(const std::string &tag,
const std::string &model,
const std::string &weights,
const std::string &device);
GAPI_EXPORTS_W PyParams params(const std::string &tag,
const std::string &model,
const std::string &device);
} // namespace ie
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_BINDINGS_IE_HPP

View File

@ -0,0 +1,453 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019-2021 Intel Corporation
#ifndef OPENCV_GAPI_INFER_IE_HPP
#define OPENCV_GAPI_INFER_IE_HPP
#include <unordered_map>
#include <unordered_set>
#include <string>
#include <array>
#include <tuple> // tuple, tuple_size
#include <map>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/infer.hpp> // Generic
namespace cv {
namespace gapi {
// FIXME: introduce a new sub-namespace for NN?
/**
* @brief This namespace contains G-API OpenVINO backend functions,
* structures, and symbols.
*/
namespace ie {
GAPI_EXPORTS cv::gapi::GBackend backend();
/**
* Specifies how G-API and IE should trait input data
*
* In OpenCV, the same cv::Mat is used to represent both
* image and tensor data. Sometimes those are hardly distinguishable,
* so this extra parameter is used to give G-API a hint.
*
* This hint controls how G-API reinterprets the data when converting
* it to IE Blob format (and which layout/etc is assigned to this data).
*/
enum class TraitAs: int
{
TENSOR, //!< G-API traits an associated cv::Mat as a raw tensor and passes dimensions as-is
IMAGE //!< G-API traits an associated cv::Mat as an image so creates an "image" blob (NCHW/NHWC, etc)
};
using IEConfig = std::map<std::string, std::string>;
namespace detail {
struct ParamDesc {
std::string model_path;
std::string weights_path;
std::string device_id;
std::vector<std::string> input_names;
std::vector<std::string> output_names;
using ConstInput = std::pair<cv::Mat, TraitAs>;
std::unordered_map<std::string, ConstInput> const_inputs;
std::size_t num_in;
std::size_t num_out;
enum class Kind {Load, Import};
Kind kind;
bool is_generic;
IEConfig config;
std::map<std::string, std::vector<std::size_t>> reshape_table;
std::unordered_set<std::string> layer_names_to_reshape;
// NB: Number of asyncrhonious infer requests
size_t nireq;
// NB: An optional config to setup RemoteContext for IE
cv::util::any context_config;
};
} // namespace detail
// FIXME: this is probably a shared (reusable) thing
template<typename Net>
struct PortCfg {
using In = std::array
< std::string
, std::tuple_size<typename Net::InArgs>::value >;
using Out = std::array
< std::string
, std::tuple_size<typename Net::OutArgs>::value >;
};
/**
* @brief This structure provides functions
* that fill inference parameters for "OpenVINO Toolkit" model.
*/
template<typename Net> class Params {
public:
/** @brief Class constructor.
Constructs Params based on model information and specifies default values for other
inference description parameters. Model is loaded and compiled using "OpenVINO Toolkit".
@param model Path to topology IR (.xml file).
@param weights Path to weights (.bin file).
@param device target device to use.
*/
Params(const std::string &model,
const std::string &weights,
const std::string &device)
: desc{ model, weights, device, {}, {}, {}
, std::tuple_size<typename Net::InArgs>::value // num_in
, std::tuple_size<typename Net::OutArgs>::value // num_out
, detail::ParamDesc::Kind::Load
, false
, {}
, {}
, {}
, 1u
, {}} {
};
/** @overload
Use this constructor to work with pre-compiled network.
Model is imported from a pre-compiled blob.
@param model Path to model.
@param device target device to use.
*/
Params(const std::string &model,
const std::string &device)
: desc{ model, {}, device, {}, {}, {}
, std::tuple_size<typename Net::InArgs>::value // num_in
, std::tuple_size<typename Net::OutArgs>::value // num_out
, detail::ParamDesc::Kind::Import
, false
, {}
, {}
, {}
, 1u
, {}} {
};
/** @brief Specifies sequence of network input layers names for inference.
The function is used to associate cv::gapi::infer<> inputs with the model inputs.
Number of names has to match the number of network inputs as defined in G_API_NET().
In case a network has only single input layer, there is no need to specify name manually.
@param layer_names std::array<std::string, N> where N is the number of inputs
as defined in the @ref G_API_NET. Contains names of input layers.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &layer_names) {
desc.input_names.clear();
desc.input_names.reserve(layer_names.size());
std::copy(layer_names.begin(), layer_names.end(),
std::back_inserter(desc.input_names));
return *this;
}
/** @brief Specifies sequence of network output layers names for inference.
The function is used to associate cv::gapi::infer<> outputs with the model outputs.
Number of names has to match the number of network outputs as defined in G_API_NET().
In case a network has only single output layer, there is no need to specify name manually.
@param layer_names std::array<std::string, N> where N is the number of outputs
as defined in the @ref G_API_NET. Contains names of output layers.
@return reference to this parameter structure.
*/
Params<Net>& cfgOutputLayers(const typename PortCfg<Net>::Out &layer_names) {
desc.output_names.clear();
desc.output_names.reserve(layer_names.size());
std::copy(layer_names.begin(), layer_names.end(),
std::back_inserter(desc.output_names));
return *this;
}
/** @brief Specifies a constant input.
The function is used to set a constant input. This input has to be
a preprocessed tensor if its type is TENSOR. Need to provide name of the
network layer which will receive provided data.
@param layer_name Name of network layer.
@param data cv::Mat that contains data which will be associated with network layer.
@param hint Input type @sa cv::gapi::ie::TraitAs.
@return reference to this parameter structure.
*/
Params<Net>& constInput(const std::string &layer_name,
const cv::Mat &data,
TraitAs hint = TraitAs::TENSOR) {
desc.const_inputs[layer_name] = {data, hint};
return *this;
}
/** @brief Specifies OpenVINO plugin configuration.
The function is used to set configuration for OpenVINO plugin. Some parameters
can be different for each plugin. Please follow https://docs.openvinotoolkit.org/latest/index.html
to check information about specific plugin.
@param cfg Map of pairs: (config parameter name, config parameter value).
@return reference to this parameter structure.
*/
Params& pluginConfig(const IEConfig& cfg) {
desc.config = cfg;
return *this;
}
/** @overload
Function with a rvalue parameter.
@param cfg rvalue map of pairs: (config parameter name, config parameter value).
@return reference to this parameter structure.
*/
Params& pluginConfig(IEConfig&& cfg) {
desc.config = std::move(cfg);
return *this;
}
/** @brief Specifies configuration for RemoteContext in InferenceEngine.
When RemoteContext is configured the backend imports the networks using the context.
It also expects cv::MediaFrames to be actually remote, to operate with blobs via the context.
@param ctx_cfg cv::util::any value which holds InferenceEngine::ParamMap.
@return reference to this parameter structure.
*/
Params& cfgContextParams(const cv::util::any& ctx_cfg) {
desc.context_config = ctx_cfg;
return *this;
}
/** @overload
Function with an rvalue parameter.
@param ctx_cfg cv::util::any value which holds InferenceEngine::ParamMap.
@return reference to this parameter structure.
*/
Params& cfgContextParams(cv::util::any&& ctx_cfg) {
desc.context_config = std::move(ctx_cfg);
return *this;
}
/** @brief Specifies number of asynchronous inference requests.
@param nireq Number of inference asynchronous requests.
@return reference to this parameter structure.
*/
Params& cfgNumRequests(size_t nireq) {
GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!");
desc.nireq = nireq;
return *this;
}
/** @brief Specifies new input shapes for the network inputs.
The function is used to specify new input shapes for the network inputs.
Follow https://docs.openvinotoolkit.org/latest/classInferenceEngine_1_1networkNetwork.html
for additional information.
@param reshape_table Map of pairs: name of corresponding data and its dimension.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputReshape(const std::map<std::string, std::vector<std::size_t>>& reshape_table) {
desc.reshape_table = reshape_table;
return *this;
}
/** @overload */
Params<Net>& cfgInputReshape(std::map<std::string, std::vector<std::size_t>>&& reshape_table) {
desc.reshape_table = std::move(reshape_table);
return *this;
}
/** @overload
@param layer_name Name of layer.
@param layer_dims New dimensions for this layer.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputReshape(const std::string& layer_name, const std::vector<size_t>& layer_dims) {
desc.reshape_table.emplace(layer_name, layer_dims);
return *this;
}
/** @overload */
Params<Net>& cfgInputReshape(std::string&& layer_name, std::vector<size_t>&& layer_dims) {
desc.reshape_table.emplace(layer_name, layer_dims);
return *this;
}
/** @overload
@param layer_names set of names of network layers that will be used for network reshape.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputReshape(const std::unordered_set<std::string>& layer_names) {
desc.layer_names_to_reshape = layer_names;
return *this;
}
/** @overload
@param layer_names rvalue set of the selected layers will be reshaped automatically
its input image size.
@return reference to this parameter structure.
*/
Params<Net>& cfgInputReshape(std::unordered_set<std::string>&& layer_names) {
desc.layer_names_to_reshape = std::move(layer_names);
return *this;
}
// BEGIN(G-API's network parametrization API)
GBackend backend() const { return cv::gapi::ie::backend(); }
std::string tag() const { return Net::tag(); }
cv::util::any params() const { return { desc }; }
// END(G-API's network parametrization API)
protected:
detail::ParamDesc desc;
};
/*
* @brief This structure provides functions for generic network type that
* fill inference parameters.
* @see struct Generic
*/
template<>
class Params<cv::gapi::Generic> {
public:
/** @brief Class constructor.
Constructs Params based on model information and sets default values for other
inference description parameters. Model is loaded and compiled using OpenVINO Toolkit.
@param tag string tag of the network for which these parameters are intended.
@param model path to topology IR (.xml file).
@param weights path to weights (.bin file).
@param device target device to use.
*/
Params(const std::string &tag,
const std::string &model,
const std::string &weights,
const std::string &device)
: desc{ model, weights, device, {}, {}, {}, 0u, 0u,
detail::ParamDesc::Kind::Load, true, {}, {}, {}, 1u,
{}},
m_tag(tag) {
};
/** @overload
This constructor for pre-compiled networks. Model is imported from pre-compiled
blob.
@param tag string tag of the network for which these parameters are intended.
@param model path to model.
@param device target device to use.
*/
Params(const std::string &tag,
const std::string &model,
const std::string &device)
: desc{ model, {}, device, {}, {}, {}, 0u, 0u,
detail::ParamDesc::Kind::Import, true, {}, {}, {}, 1u,
{}},
m_tag(tag) {
};
/** @see ie::Params::pluginConfig. */
Params& pluginConfig(const IEConfig& cfg) {
desc.config = cfg;
return *this;
}
/** @overload */
Params& pluginConfig(IEConfig&& cfg) {
desc.config = std::move(cfg);
return *this;
}
/** @see ie::Params::constInput. */
Params& constInput(const std::string &layer_name,
const cv::Mat &data,
TraitAs hint = TraitAs::TENSOR) {
desc.const_inputs[layer_name] = {data, hint};
return *this;
}
/** @see ie::Params::cfgNumRequests. */
Params& cfgNumRequests(size_t nireq) {
GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!");
desc.nireq = nireq;
return *this;
}
/** @see ie::Params::cfgInputReshape */
Params& cfgInputReshape(const std::map<std::string, std::vector<std::size_t>>&reshape_table) {
desc.reshape_table = reshape_table;
return *this;
}
/** @overload */
Params& cfgInputReshape(std::map<std::string, std::vector<std::size_t>> && reshape_table) {
desc.reshape_table = std::move(reshape_table);
return *this;
}
/** @overload */
Params& cfgInputReshape(std::string && layer_name, std::vector<size_t> && layer_dims) {
desc.reshape_table.emplace(layer_name, layer_dims);
return *this;
}
/** @overload */
Params& cfgInputReshape(const std::string & layer_name, const std::vector<size_t>&layer_dims) {
desc.reshape_table.emplace(layer_name, layer_dims);
return *this;
}
/** @overload */
Params& cfgInputReshape(std::unordered_set<std::string> && layer_names) {
desc.layer_names_to_reshape = std::move(layer_names);
return *this;
}
/** @overload */
Params& cfgInputReshape(const std::unordered_set<std::string>&layer_names) {
desc.layer_names_to_reshape = layer_names;
return *this;
}
// BEGIN(G-API's network parametrization API)
GBackend backend() const { return cv::gapi::ie::backend(); }
std::string tag() const { return m_tag; }
cv::util::any params() const { return { desc }; }
// END(G-API's network parametrization API)
protected:
detail::ParamDesc desc;
std::string m_tag;
};
} // namespace ie
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_IE_HPP

View File

@ -0,0 +1,284 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020-2021 Intel Corporation
#ifndef OPENCV_GAPI_INFER_ONNX_HPP
#define OPENCV_GAPI_INFER_ONNX_HPP
#include <unordered_map>
#include <string>
#include <array>
#include <tuple> // tuple, tuple_size
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/any.hpp>
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
/**
* @brief This namespace contains G-API ONNX Runtime backend functions, structures, and symbols.
*/
namespace onnx {
GAPI_EXPORTS cv::gapi::GBackend backend();
enum class TraitAs: int {
TENSOR, //!< G-API traits an associated cv::Mat as a raw tensor
// and passes dimensions as-is
IMAGE //!< G-API traits an associated cv::Mat as an image so
// creates an "image" blob (NCHW/NHWC, etc)
};
using PostProc = std::function<void(const std::unordered_map<std::string, cv::Mat> &,
std::unordered_map<std::string, cv::Mat> &)>;
namespace detail {
/**
* @brief This structure contains description of inference parameters
* which is specific to ONNX models.
*/
struct ParamDesc {
std::string model_path; //!< Path to model.
// NB: nun_* may differ from topology's real input/output port numbers
// (e.g. topology's partial execution)
std::size_t num_in; //!< How many inputs are defined in the operation
std::size_t num_out; //!< How many outputs are defined in the operation
// NB: Here order follows the `Net` API
std::vector<std::string> input_names; //!< Names of input network layers.
std::vector<std::string> output_names; //!< Names of output network layers.
using ConstInput = std::pair<cv::Mat, TraitAs>;
std::unordered_map<std::string, ConstInput> const_inputs; //!< Map with pair of name of network layer and ConstInput which will be associated with this.
std::vector<cv::Scalar> mean; //!< Mean values for preprocessing.
std::vector<cv::Scalar> stdev; //!< Standard deviation values for preprocessing.
std::vector<cv::GMatDesc> out_metas; //!< Out meta information about your output (type, dimension).
PostProc custom_post_proc; //!< Post processing function.
std::vector<bool> normalize; //!< Vector of bool values that enabled or disabled normalize of input data.
std::vector<std::string> names_to_remap; //!< Names of output layers that will be processed in PostProc function.
};
} // namespace detail
template<typename Net>
struct PortCfg {
using In = std::array
< std::string
, std::tuple_size<typename Net::InArgs>::value >;
using Out = std::array
< std::string
, std::tuple_size<typename Net::OutArgs>::value >;
using NormCoefs = std::array
< cv::Scalar
, std::tuple_size<typename Net::InArgs>::value >;
using Normalize = std::array
< bool
, std::tuple_size<typename Net::InArgs>::value >;
};
/**
* Contains description of inference parameters and kit of functions that
* fill this parameters.
*/
template<typename Net> class Params {
public:
/** @brief Class constructor.
Constructs Params based on model information and sets default values for other
inference description parameters.
@param model Path to model (.onnx file).
*/
Params(const std::string &model) {
desc.model_path = model;
desc.num_in = std::tuple_size<typename Net::InArgs>::value;
desc.num_out = std::tuple_size<typename Net::OutArgs>::value;
};
/** @brief Specifies sequence of network input layers names for inference.
The function is used to associate data of graph inputs with input layers of
network topology. Number of names has to match the number of network inputs. If a network
has only one input layer, there is no need to call it as the layer is
associated with input automatically but this doesn't prevent you from
doing it yourself. Count of names has to match to number of network inputs.
@param layer_names std::array<std::string, N> where N is the number of inputs
as defined in the @ref G_API_NET. Contains names of input layers.
@return the reference on modified object.
*/
Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &layer_names) {
desc.input_names.assign(layer_names.begin(), layer_names.end());
return *this;
}
/** @brief Specifies sequence of output layers names for inference.
The function is used to associate data of graph outputs with output layers of
network topology. If a network has only one output layer, there is no need to call it
as the layer is associated with ouput automatically but this doesn't prevent
you from doing it yourself. Count of names has to match to number of network
outputs or you can set your own output but for this case you have to
additionally use @ref cfgPostProc function.
@param layer_names std::array<std::string, N> where N is the number of outputs
as defined in the @ref G_API_NET. Contains names of output layers.
@return the reference on modified object.
*/
Params<Net>& cfgOutputLayers(const typename PortCfg<Net>::Out &layer_names) {
desc.output_names.assign(layer_names.begin(), layer_names.end());
return *this;
}
/** @brief Sets a constant input.
The function is used to set constant input. This input has to be
a prepared tensor since preprocessing is disabled for this case. You should
provide name of network layer which will receive provided data.
@param layer_name Name of network layer.
@param data cv::Mat that contains data which will be associated with network layer.
@param hint Type of input (TENSOR).
@return the reference on modified object.
*/
Params<Net>& constInput(const std::string &layer_name,
const cv::Mat &data,
TraitAs hint = TraitAs::TENSOR) {
desc.const_inputs[layer_name] = {data, hint};
return *this;
}
/** @brief Specifies mean value and standard deviation for preprocessing.
The function is used to set mean value and standard deviation for preprocessing
of input data.
@param m std::array<cv::Scalar, N> where N is the number of inputs
as defined in the @ref G_API_NET. Contains mean values.
@param s std::array<cv::Scalar, N> where N is the number of inputs
as defined in the @ref G_API_NET. Contains standard deviation values.
@return the reference on modified object.
*/
Params<Net>& cfgMeanStd(const typename PortCfg<Net>::NormCoefs &m,
const typename PortCfg<Net>::NormCoefs &s) {
desc.mean.assign(m.begin(), m.end());
desc.stdev.assign(s.begin(), s.end());
return *this;
}
/** @brief Configures graph output and provides the post processing function from user.
The function is used when you work with networks with dynamic outputs.
Since we can't know dimensions of inference result needs provide them for
construction of graph output. This dimensions can differ from inference result.
So you have to provide @ref PostProc function that gets information from inference
result and fill output which is constructed by dimensions from out_metas.
@param out_metas Out meta information about your output (type, dimension).
@param remap_function Post processing function, which has two parameters. First is onnx
result, second is graph output. Both parameters is std::map that contain pair of
layer's name and cv::Mat.
@return the reference on modified object.
*/
Params<Net>& cfgPostProc(const std::vector<cv::GMatDesc> &out_metas,
const PostProc &remap_function) {
desc.out_metas = out_metas;
desc.custom_post_proc = remap_function;
return *this;
}
/** @overload
Function with a rvalue parameters.
@param out_metas rvalue out meta information about your output (type, dimension).
@param remap_function rvalue post processing function, which has two parameters. First is onnx
result, second is graph output. Both parameters is std::map that contain pair of
layer's name and cv::Mat.
@return the reference on modified object.
*/
Params<Net>& cfgPostProc(std::vector<cv::GMatDesc> &&out_metas,
PostProc &&remap_function) {
desc.out_metas = std::move(out_metas);
desc.custom_post_proc = std::move(remap_function);
return *this;
}
/** @overload
The function has additional parameter names_to_remap. This parameter provides
information about output layers which will be used for inference and post
processing function.
@param out_metas Out meta information.
@param remap_function Post processing function.
@param names_to_remap Names of output layers. network's inference will
be done on these layers. Inference's result will be processed in post processing
function using these names.
@return the reference on modified object.
*/
Params<Net>& cfgPostProc(const std::vector<cv::GMatDesc> &out_metas,
const PostProc &remap_function,
const std::vector<std::string> &names_to_remap) {
desc.out_metas = out_metas;
desc.custom_post_proc = remap_function;
desc.names_to_remap = names_to_remap;
return *this;
}
/** @overload
Function with a rvalue parameters and additional parameter names_to_remap.
@param out_metas rvalue out meta information.
@param remap_function rvalue post processing function.
@param names_to_remap rvalue names of output layers. network's inference will
be done on these layers. Inference's result will be processed in post processing
function using these names.
@return the reference on modified object.
*/
Params<Net>& cfgPostProc(std::vector<cv::GMatDesc> &&out_metas,
PostProc &&remap_function,
std::vector<std::string> &&names_to_remap) {
desc.out_metas = std::move(out_metas);
desc.custom_post_proc = std::move(remap_function);
desc.names_to_remap = std::move(names_to_remap);
return *this;
}
/** @brief Specifies normalize parameter for preprocessing.
The function is used to set normalize parameter for preprocessing of input data.
@param normalizations std::array<cv::Scalar, N> where N is the number of inputs
as defined in the @ref G_API_NET. Сontains bool values that enabled or disabled
normalize of input data.
@return the reference on modified object.
*/
Params<Net>& cfgNormalize(const typename PortCfg<Net>::Normalize &normalizations) {
desc.normalize.assign(normalizations.begin(), normalizations.end());
return *this;
}
// BEGIN(G-API's network parametrization API)
GBackend backend() const { return cv::gapi::onnx::backend(); }
std::string tag() const { return Net::tag(); }
cv::util::any params() const { return { desc }; }
// END(G-API's network parametrization API)
protected:
detail::ParamDesc desc;
};
} // namespace onnx
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_INFER_HPP

View File

@ -0,0 +1,138 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_PARSERS_HPP
#define OPENCV_GAPI_PARSERS_HPP
#include <utility> // std::tuple
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gkernel.hpp>
namespace cv { namespace gapi {
namespace nn {
namespace parsers {
using GRects = GArray<Rect>;
using GDetections = std::tuple<GArray<Rect>, GArray<int>>;
G_TYPED_KERNEL(GParseSSDBL, <GDetections(GMat, GOpaque<Size>, float, int)>,
"org.opencv.nn.parsers.parseSSD_BL") {
static std::tuple<GArrayDesc,GArrayDesc> outMeta(const GMatDesc&, const GOpaqueDesc&, float, int) {
return std::make_tuple(empty_array_desc(), empty_array_desc());
}
};
G_TYPED_KERNEL(GParseSSD, <GRects(GMat, GOpaque<Size>, float, bool, bool)>,
"org.opencv.nn.parsers.parseSSD") {
static GArrayDesc outMeta(const GMatDesc&, const GOpaqueDesc&, float, bool, bool) {
return empty_array_desc();
}
};
G_TYPED_KERNEL(GParseYolo, <GDetections(GMat, GOpaque<Size>, float, float, std::vector<float>)>,
"org.opencv.nn.parsers.parseYolo") {
static std::tuple<GArrayDesc, GArrayDesc> outMeta(const GMatDesc&, const GOpaqueDesc&,
float, float, const std::vector<float>&) {
return std::make_tuple(empty_array_desc(), empty_array_desc());
}
static const std::vector<float>& defaultAnchors() {
static std::vector<float> anchors {
0.57273f, 0.677385f, 1.87446f, 2.06253f, 3.33843f, 5.47434f, 7.88282f, 3.52778f, 9.77052f, 9.16828f
};
return anchors;
}
};
} // namespace parsers
} // namespace nn
/** @brief Parses output of SSD network.
Extracts detection information (box, confidence, label) from SSD output and
filters it by given confidence and label.
@note Function textual ID is "org.opencv.nn.parsers.parseSSD_BL"
@param in Input CV_32F tensor with {1,1,N,7} dimensions.
@param inSz Size to project detected boxes to (size of the input image).
@param confidenceThreshold If confidence of the
detection is smaller than confidence threshold, detection is rejected.
@param filterLabel If provided (!= -1), only detections with
given label will get to the output.
@return a tuple with a vector of detected boxes and a vector of appropriate labels.
*/
GAPI_EXPORTS_W std::tuple<GArray<Rect>, GArray<int>> parseSSD(const GMat& in,
const GOpaque<Size>& inSz,
const float confidenceThreshold = 0.5f,
const int filterLabel = -1);
/** @brief Parses output of SSD network.
Extracts detection information (box, confidence) from SSD output and
filters it by given confidence and by going out of bounds.
@note Function textual ID is "org.opencv.nn.parsers.parseSSD"
@param in Input CV_32F tensor with {1,1,N,7} dimensions.
@param inSz Size to project detected boxes to (size of the input image).
@param confidenceThreshold If confidence of the
detection is smaller than confidence threshold, detection is rejected.
@param alignmentToSquare If provided true, bounding boxes are extended to squares.
The center of the rectangle remains unchanged, the side of the square is
the larger side of the rectangle.
@param filterOutOfBounds If provided true, out-of-frame boxes are filtered.
@return a vector of detected bounding boxes.
*/
GAPI_EXPORTS_W GArray<Rect> parseSSD(const GMat& in,
const GOpaque<Size>& inSz,
const float confidenceThreshold,
const bool alignmentToSquare,
const bool filterOutOfBounds);
/** @brief Parses output of Yolo network.
Extracts detection information (box, confidence, label) from Yolo output,
filters it by given confidence and performs non-maximum supression for overlapping boxes.
@note Function textual ID is "org.opencv.nn.parsers.parseYolo"
@param in Input CV_32F tensor with {1,13,13,N} dimensions, N should satisfy:
\f[\texttt{N} = (\texttt{num_classes} + \texttt{5}) * \texttt{5},\f]
where num_classes - a number of classes Yolo network was trained with.
@param inSz Size to project detected boxes to (size of the input image).
@param confidenceThreshold If confidence of the
detection is smaller than confidence threshold, detection is rejected.
@param nmsThreshold Non-maximum supression threshold which controls minimum
relative box intersection area required for rejecting the box with a smaller confidence.
If 1.f, nms is not performed and no boxes are rejected.
@param anchors Anchors Yolo network was trained with.
@note The default anchor values are specified for YOLO v2 Tiny as described in Intel Open Model Zoo
<a href="https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/public/yolo-v2-tiny-tf/yolo-v2-tiny-tf.md">documentation</a>.
@return a tuple with a vector of detected boxes and a vector of appropriate labels.
*/
GAPI_EXPORTS_W std::tuple<GArray<Rect>, GArray<int>> parseYolo(const GMat& in,
const GOpaque<Size>& inSz,
const float confidenceThreshold = 0.5f,
const float nmsThreshold = 0.5f,
const std::vector<float>& anchors
= nn::parsers::GParseYolo::defaultAnchors());
} // namespace gapi
} // namespace cv
// Reimport parseSSD & parseYolo under their initial namespace
namespace cv {
namespace gapi {
namespace streaming {
using cv::gapi::parseSSD;
using cv::gapi::parseYolo;
} // namespace streaming
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_PARSERS_HPP

View File

@ -0,0 +1,257 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_MEDIA_HPP
#define OPENCV_GAPI_MEDIA_HPP
#include <memory> // unique_ptr<>, shared_ptr<>
#include <array> // array<>
#include <functional> // function<>
#include <utility> // forward<>()
#include <opencv2/gapi/gframe.hpp>
#include <opencv2/gapi/util/any.hpp>
// Forward declaration
namespace cv {
namespace gapi {
namespace s11n {
struct IOStream;
struct IIStream;
} // namespace s11n
} // namespace gapi
} // namespace cv
namespace cv {
/** \addtogroup gapi_data_structures
* @{
*
* @brief Extra G-API data structures used to pass input/output data
* to the graph for processing.
*/
/**
* @brief cv::MediaFrame class represents an image/media frame
* obtained from an external source.
*
* cv::MediaFrame represents image data as specified in
* cv::MediaFormat. cv::MediaFrame is designed to be a thin wrapper over some
* external memory of buffer; the class itself provides an uniform
* interface over such types of memory. cv::MediaFrame wraps data from
* a camera driver or from a media codec and provides an abstraction
* layer over this memory to G-API. MediaFrame defines a compact interface
* to access and manage the underlying data; the implementation is
* fully defined by the associated Adapter (which is usually
* user-defined).
*
* @sa cv::RMat
*/
class GAPI_EXPORTS MediaFrame {
public:
/// This enum defines different types of cv::MediaFrame provided
/// access to the underlying data. Note that different flags can't
/// be combined in this version.
enum class Access {
R, ///< Access data for reading
W, ///< Access data for writing
};
class IAdapter;
class View;
using AdapterPtr = std::unique_ptr<IAdapter>;
/**
* @brief Constructs an empty MediaFrame
*
* The constructed object has no any data associated with it.
*/
MediaFrame();
/**
* @brief Constructs a MediaFrame with the given
* Adapter. MediaFrame takes ownership over the passed adapter.
*
* @param p an unique pointer to instance of IAdapter derived class.
*/
explicit MediaFrame(AdapterPtr &&p);
/**
* @overload
* @brief Constructs a MediaFrame with the given parameters for
* the Adapter. The adapter of type `T` is costructed on the fly.
*
* @param args list of arguments to construct an adapter of type
* `T`.
*/
template<class T, class... Args> static cv::MediaFrame Create(Args&&... args);
/**
* @brief Obtain access to the underlying data with the given
* mode.
*
* Depending on the associated Adapter and the data wrapped, this
* method may be cheap (e.g., the underlying memory is local) or
* costly (if the underlying memory is external or device
* memory).
*
* @param mode an access mode flag
* @return a MediaFrame::View object. The views should be handled
* carefully, refer to the MediaFrame::View documentation for details.
*/
View access(Access mode) const;
/**
* @brief Returns a media frame descriptor -- the information
* about the media format, dimensions, etc.
* @return a cv::GFrameDesc
*/
cv::GFrameDesc desc() const;
// FIXME: design a better solution
// Should be used only if the actual adapter provides implementation
/// @private -- exclude from the OpenCV documentation for now.
cv::util::any blobParams() const;
/**
* @brief Casts and returns the associated MediaFrame adapter to
* the particular adapter type `T`, returns nullptr if the type is
* different.
*
* This method may be useful if the adapter type is known by the
* caller, and some lower level access to the memory is required.
* Depending on the memory type, it may be more efficient than
* access().
*
* @return a pointer to the adapter object, nullptr if the adapter
* type is different.
*/
template<typename T> T* get() const {
static_assert(std::is_base_of<IAdapter, T>::value,
"T is not derived from cv::MediaFrame::IAdapter!");
auto* adapter = getAdapter();
GAPI_Assert(adapter != nullptr);
return dynamic_cast<T*>(adapter);
}
/**
* @brief Serialize MediaFrame's data to a byte array.
*
* @note The actual logic is implemented by frame's adapter class.
* Does nothing by default.
*
* @param os Bytestream to store serialized MediaFrame data in.
*/
void serialize(cv::gapi::s11n::IOStream& os) const;
private:
struct Priv;
std::shared_ptr<Priv> m;
IAdapter* getAdapter() const;
};
template<class T, class... Args>
inline cv::MediaFrame cv::MediaFrame::Create(Args&&... args) {
std::unique_ptr<T> ptr(new T(std::forward<Args>(args)...));
return cv::MediaFrame(std::move(ptr));
}
/**
* @brief Provides access to the MediaFrame's underlying data.
*
* This object contains the necessary information to access the pixel
* data of the associated MediaFrame: arrays of pointers and strides
* (distance between every plane row, in bytes) for every image
* plane, as defined in cv::MediaFormat.
* There may be up to four image planes in MediaFrame.
*
* Depending on the MediaFrame::Access flag passed in
* MediaFrame::access(), a MediaFrame::View may be read- or
* write-only.
*
* Depending on the MediaFrame::IAdapter implementation associated
* with the parent MediaFrame, writing to memory with
* MediaFrame::Access::R flag may have no effect or lead to
* undefined behavior. Same applies to reading the memory with
* MediaFrame::Access::W flag -- again, depending on the IAdapter
* implementation, the host-side buffer the view provides access to
* may have no current data stored in (so in-place editing of the
* buffer contents may not be possible).
*
* MediaFrame::View objects must be handled carefully, as an external
* resource associated with MediaFrame may be locked for the time the
* MediaFrame::View object exists. Obtaining MediaFrame::View should
* be seen as "map" and destroying it as "unmap" in the "map/unmap"
* idiom (applicable to OpenCL, device memory, remote
* memory).
*
* When a MediaFrame buffer is accessed for writing, and the memory
* under MediaFrame::View::Ptrs is altered, the data synchronization
* of a host-side and device/remote buffer is not guaranteed until the
* MediaFrame::View is destroyed. In other words, the real data on the
* device or in a remote target may be updated at the MediaFrame::View
* destruction only -- but it depends on the associated
* MediaFrame::IAdapter implementation.
*/
class GAPI_EXPORTS MediaFrame::View final {
public:
static constexpr const size_t MAX_PLANES = 4;
using Ptrs = std::array<void*, MAX_PLANES>;
using Strides = std::array<std::size_t, MAX_PLANES>; // in bytes
using Callback = std::function<void()>;
/// @private
View(Ptrs&& ptrs, Strides&& strs, Callback &&cb = [](){});
/// @private
View(const View&) = delete;
/// @private
View(View&&) = default;
/// @private
View& operator = (const View&) = delete;
~View();
Ptrs ptr; ///< Array of image plane pointers
Strides stride; ///< Array of image plane strides, in bytes.
private:
Callback m_cb;
};
/**
* @brief An interface class for MediaFrame data adapters.
*
* Implement this interface to wrap media data in the MediaFrame. It
* makes sense to implement this class if there is a custom
* cv::gapi::wip::IStreamSource defined -- in this case, a stream
* source can produce MediaFrame objects with this adapter and the
* media data may be passed to graph without any copy. For example, a
* GStreamer-based stream source can implement an adapter over
* `GstBuffer` and G-API will transparently use it in the graph.
*/
class GAPI_EXPORTS MediaFrame::IAdapter {
public:
virtual ~IAdapter() = 0;
virtual cv::GFrameDesc meta() const = 0;
virtual MediaFrame::View access(MediaFrame::Access) = 0;
// FIXME: design a better solution
// The default implementation does nothing
virtual cv::util::any blobParams() const;
virtual void serialize(cv::gapi::s11n::IOStream&) {
GAPI_Assert(false && "Generic serialize method of MediaFrame::IAdapter does nothing by default. "
"Please, implement it in derived class to properly serialize the object.");
}
virtual void deserialize(cv::gapi::s11n::IIStream&) {
GAPI_Assert(false && "Generic deserialize method of MediaFrame::IAdapter does nothing by default. "
"Please, implement it in derived class to properly deserialize the object.");
}
};
/** @} */
} //namespace cv
#endif // OPENCV_GAPI_MEDIA_HPP

View File

@ -0,0 +1,27 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_OCL_CORE_API_HPP
#define OPENCV_GAPI_OCL_CORE_API_HPP
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
namespace core {
namespace ocl {
GAPI_EXPORTS_W cv::gapi::GKernelPackage kernels();
} // namespace ocl
} // namespace core
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_OCL_CORE_API_HPP

View File

@ -0,0 +1,249 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_GOCLKERNEL_HPP
#define OPENCV_GAPI_GOCLKERNEL_HPP
#include <vector>
#include <functional>
#include <map>
#include <unordered_map>
#include <opencv2/core/mat.hpp>
#include <opencv2/gapi/gcommon.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/garg.hpp>
// FIXME: namespace scheme for backends?
namespace cv {
namespace gimpl
{
// Forward-declare an internal class
class GOCLExecutable;
} // namespace gimpl
namespace gapi
{
/**
* @brief This namespace contains G-API OpenCL backend functions, structures, and symbols.
*/
namespace ocl
{
/**
* \addtogroup gapi_std_backends G-API Standard Backends
* @{
*/
/**
* @brief Get a reference to OCL backend.
*
* At the moment, the OCL backend is built atop of OpenCV
* "Transparent API" (T-API), see cv::UMat for details.
*
* @sa gapi_std_backends
*/
GAPI_EXPORTS cv::gapi::GBackend backend();
/** @} */
} // namespace ocl
} // namespace gapi
// Represents arguments which are passed to a wrapped OCL function
// FIXME: put into detail?
class GAPI_EXPORTS GOCLContext
{
public:
// Generic accessor API
template<typename T>
const T& inArg(int input) { return m_args.at(input).get<T>(); }
// Syntax sugar
const cv::UMat& inMat(int input);
cv::UMat& outMatR(int output); // FIXME: Avoid cv::Mat m = ctx.outMatR()
const cv::Scalar& inVal(int input);
cv::Scalar& outValR(int output); // FIXME: Avoid cv::Scalar s = ctx.outValR()
template<typename T> std::vector<T>& outVecR(int output) // FIXME: the same issue
{
return outVecRef(output).wref<T>();
}
template<typename T> T& outOpaqueR(int output) // FIXME: the same issue
{
return outOpaqueRef(output).wref<T>();
}
protected:
detail::VectorRef& outVecRef(int output);
detail::OpaqueRef& outOpaqueRef(int output);
std::vector<GArg> m_args;
std::unordered_map<std::size_t, GRunArgP> m_results;
friend class gimpl::GOCLExecutable;
};
class GAPI_EXPORTS GOCLKernel
{
public:
// This function is kernel's execution entry point (does the processing work)
using F = std::function<void(GOCLContext &)>;
GOCLKernel();
explicit GOCLKernel(const F& f);
void apply(GOCLContext &ctx);
protected:
F m_f;
};
// FIXME: This is an ugly ad-hoc implementation. TODO: refactor
namespace detail
{
template<class T> struct ocl_get_in;
template<> struct ocl_get_in<cv::GMat>
{
static cv::UMat get(GOCLContext &ctx, int idx) { return ctx.inMat(idx); }
};
template<> struct ocl_get_in<cv::GScalar>
{
static cv::Scalar get(GOCLContext &ctx, int idx) { return ctx.inVal(idx); }
};
template<typename U> struct ocl_get_in<cv::GArray<U> >
{
static const std::vector<U>& get(GOCLContext &ctx, int idx) { return ctx.inArg<VectorRef>(idx).rref<U>(); }
};
template<typename U> struct ocl_get_in<cv::GOpaque<U> >
{
static const U& get(GOCLContext &ctx, int idx) { return ctx.inArg<OpaqueRef>(idx).rref<U>(); }
};
template<class T> struct ocl_get_in
{
static T get(GOCLContext &ctx, int idx) { return ctx.inArg<T>(idx); }
};
struct tracked_cv_umat{
//TODO Think if T - API could reallocate UMat to a proper size - how do we handle this ?
//tracked_cv_umat(cv::UMat& m) : r{(m)}, original_data{m.getMat(ACCESS_RW).data} {}
tracked_cv_umat(cv::UMat& m) : r(m), original_data{ nullptr } {}
cv::UMat &r; // FIXME: It was a value (not a reference) before.
// Actually OCL backend should allocate its internal data!
uchar* original_data;
operator cv::UMat& (){ return r;}
void validate() const{
//if (r.getMat(ACCESS_RW).data != original_data)
//{
// util::throw_error
// (std::logic_error
// ("OpenCV kernel output parameter was reallocated. \n"
// "Incorrect meta data was provided ?"));
//}
}
};
template<typename... Outputs>
void postprocess_ocl(Outputs&... outs)
{
struct
{
void operator()(tracked_cv_umat* bm) { bm->validate(); }
void operator()(...) { }
} validate;
//dummy array to unfold parameter pack
int dummy[] = { 0, (validate(&outs), 0)... };
cv::util::suppress_unused_warning(dummy);
}
template<class T> struct ocl_get_out;
template<> struct ocl_get_out<cv::GMat>
{
static tracked_cv_umat get(GOCLContext &ctx, int idx)
{
auto& r = ctx.outMatR(idx);
return{ r };
}
};
template<> struct ocl_get_out<cv::GScalar>
{
static cv::Scalar& get(GOCLContext &ctx, int idx)
{
return ctx.outValR(idx);
}
};
template<typename U> struct ocl_get_out<cv::GArray<U> >
{
static std::vector<U>& get(GOCLContext &ctx, int idx) { return ctx.outVecR<U>(idx); }
};
template<typename U> struct ocl_get_out<cv::GOpaque<U> >
{
static U& get(GOCLContext &ctx, int idx) { return ctx.outOpaqueR<U>(idx); }
};
template<typename, typename, typename>
struct OCLCallHelper;
// FIXME: probably can be simplified with std::apply or analogue.
template<typename Impl, typename... Ins, typename... Outs>
struct OCLCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
{
template<typename... Inputs>
struct call_and_postprocess
{
template<typename... Outputs>
static void call(Inputs&&... ins, Outputs&&... outs)
{
//not using a std::forward on outs is deliberate in order to
//cause compilation error, by trying to bind rvalue references to lvalue references
Impl::run(std::forward<Inputs>(ins)..., outs...);
postprocess_ocl(outs...);
}
};
template<int... IIs, int... OIs>
static void call_impl(GOCLContext &ctx, detail::Seq<IIs...>, detail::Seq<OIs...>)
{
//TODO: Make sure that OpenCV kernels do not reallocate memory for output parameters
//by comparing it's state (data ptr) before and after the call.
//Convert own::Scalar to cv::Scalar before call kernel and run kernel
//convert cv::Scalar to own::Scalar after call kernel and write back results
call_and_postprocess<decltype(ocl_get_in<Ins>::get(ctx, IIs))...>::call(ocl_get_in<Ins>::get(ctx, IIs)..., ocl_get_out<Outs>::get(ctx, OIs)...);
}
static void call(GOCLContext &ctx)
{
call_impl(ctx,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
};
} // namespace detail
template<class Impl, class K>
class GOCLKernelImpl: public cv::detail::OCLCallHelper<Impl, typename K::InArgs, typename K::OutArgs>,
public cv::detail::KernelTag
{
using P = detail::OCLCallHelper<Impl, typename K::InArgs, typename K::OutArgs>;
public:
using API = K;
static cv::gapi::GBackend backend() { return cv::gapi::ocl::backend(); }
static cv::GOCLKernel kernel() { return GOCLKernel(&P::call); }
};
#define GAPI_OCL_KERNEL(Name, API) struct Name: public cv::GOCLKernelImpl<Name, API>
} // namespace cv
#endif // OPENCV_GAPI_GOCLKERNEL_HPP

View File

@ -0,0 +1,27 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_OCL_IMGPROC_API_HPP
#define OPENCV_GAPI_OCL_IMGPROC_API_HPP
#include <opencv2/core/cvdef.h> // GAPI_EXPORTS
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
namespace imgproc {
namespace ocl {
GAPI_EXPORTS GKernelPackage kernels();
} // namespace ocl
} // namespace imgproc
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_OCL_IMGPROC_API_HPP

View File

@ -0,0 +1,33 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_OPENCV_INCLUDES_HPP
#define OPENCV_GAPI_OPENCV_INCLUDES_HPP
#if !defined(GAPI_STANDALONE)
# include <opencv2/core/mat.hpp>
# include <opencv2/core/cvdef.h>
# include <opencv2/core/types.hpp>
# include <opencv2/core/base.hpp>
#else // Without OpenCV
# include <opencv2/gapi/own/cvdefs.hpp>
# include <opencv2/gapi/own/types.hpp> // cv::gapi::own::Rect/Size/Point
# include <opencv2/gapi/own/scalar.hpp> // cv::gapi::own::Scalar
# include <opencv2/gapi/own/mat.hpp>
// replacement of cv's structures:
namespace cv {
using Rect = gapi::own::Rect;
using Size = gapi::own::Size;
using Point = gapi::own::Point;
using Point2f = gapi::own::Point2f;
using Scalar = gapi::own::Scalar;
using Mat = gapi::own::Mat;
} // namespace cv
#endif // !defined(GAPI_STANDALONE)
#endif // OPENCV_GAPI_OPENCV_INCLUDES_HPP

View File

@ -0,0 +1,70 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_OPERATORS_HPP
#define OPENCV_GAPI_OPERATORS_HPP
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
namespace cv
{
GAPI_EXPORTS cv::GMat operator+(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator+(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator+(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator-(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator-(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator-(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator*(const cv::GMat& lhs, float rhs);
GAPI_EXPORTS cv::GMat operator*(float lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator*(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator*(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator/(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator/(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator/(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator&(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator|(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator^(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator~(const cv::GMat& lhs);
GAPI_EXPORTS cv::GMat operator&(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator|(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator^(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator&(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator|(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator^(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator>(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator>=(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator<(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator<=(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator==(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator!=(const cv::GMat& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator>(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator>=(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator<(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator<=(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator==(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator!=(const cv::GMat& lhs, const cv::GScalar& rhs);
GAPI_EXPORTS cv::GMat operator>(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator>=(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator<(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator<=(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator==(const cv::GScalar& lhs, const cv::GMat& rhs);
GAPI_EXPORTS cv::GMat operator!=(const cv::GScalar& lhs, const cv::GMat& rhs);
} // cv
#endif // OPENCV_GAPI_OPERATORS_HPP

View File

@ -0,0 +1,55 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_OWN_ASSERT_HPP
#define OPENCV_GAPI_OWN_ASSERT_HPP
#include <opencv2/gapi/util/compiler_hints.hpp>
#define GAPI_DbgAssertNoOp(expr) { \
constexpr bool _assert_tmp = false && (expr); \
cv::util::suppress_unused_warning(_assert_tmp); \
}
#if !defined(GAPI_STANDALONE)
#include <opencv2/core/base.hpp>
#define GAPI_Assert CV_Assert
#if defined _DEBUG || defined CV_STATIC_ANALYSIS
# define GAPI_DbgAssert CV_DbgAssert
#else
# define GAPI_DbgAssert(expr) GAPI_DbgAssertNoOp(expr)
#endif
#else
#include <stdexcept>
#include <sstream>
#include <opencv2/gapi/util/throw.hpp>
namespace detail
{
[[noreturn]] inline void assert_abort(const char* str, int line, const char* file, const char* func)
{
std::stringstream ss;
ss << file << ":" << line << ": Assertion " << str << " in function " << func << " failed\n";
cv::util::throw_error(std::logic_error(ss.str()));
}
}
#define GAPI_Assert(expr) \
{ if (!(expr)) ::detail::assert_abort(#expr, __LINE__, __FILE__, __func__); }
#ifdef NDEBUG
# define GAPI_DbgAssert(expr) GAPI_DbgAssertNoOp(expr)
#else
# define GAPI_DbgAssert(expr) GAPI_Assert(expr)
#endif
#endif // GAPI_STANDALONE
#endif // OPENCV_GAPI_OWN_ASSERT_HPP

View File

@ -0,0 +1,55 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_OWN_CONVERT_HPP
#define OPENCV_GAPI_OWN_CONVERT_HPP
#if !defined(GAPI_STANDALONE)
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/own/mat.hpp>
namespace cv
{
template<typename T>
std::vector<T> to_own(const cv::MatSize &sz) {
std::vector<T> result(sz.dims());
for (int i = 0; i < sz.dims(); i++) {
// Note: cv::MatSize is not iterable
result[i] = static_cast<T>(sz[i]);
}
return result;
}
cv::gapi::own::Mat to_own(Mat&&) = delete;
inline cv::gapi::own::Mat to_own(Mat const& m) {
return (m.dims == 2)
? cv::gapi::own::Mat{m.rows, m.cols, m.type(), m.data, m.step}
: cv::gapi::own::Mat{to_own<int>(m.size), m.type(), m.data};
};
namespace gapi
{
namespace own
{
inline cv::Mat to_ocv(Mat const& m) {
return m.dims.empty()
? cv::Mat{m.rows, m.cols, m.type(), m.data, m.step}
: cv::Mat{m.dims, m.type(), m.data};
}
cv::Mat to_ocv(Mat&&) = delete;
} // namespace own
} // namespace gapi
} // namespace cv
#endif // !defined(GAPI_STANDALONE)
#endif // OPENCV_GAPI_OWN_CONVERT_HPP

View File

@ -0,0 +1,149 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_CV_DEFS_HPP
#define OPENCV_GAPI_CV_DEFS_HPP
#if defined(GAPI_STANDALONE)
// Simulate OpenCV definitions taken from various
// OpenCV interface headers if G-API is built in a
// standalone mode.
// interface.h:
typedef unsigned char uchar;
typedef char schar;
typedef unsigned short ushort;
#define CV_CN_MAX 512
#define CV_CN_SHIFT 3
#define CV_DEPTH_MAX (1 << CV_CN_SHIFT)
#define CV_8U 0
#define CV_8S 1
#define CV_16U 2
#define CV_16S 3
#define CV_32S 4
#define CV_32F 5
#define CV_64F 6
#define CV_USRTYPE1 7
#define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1)
#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK)
#define CV_MAKETYPE(depth,cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT))
#define CV_MAKE_TYPE CV_MAKETYPE
#define CV_8UC1 CV_MAKETYPE(CV_8U,1)
#define CV_8UC2 CV_MAKETYPE(CV_8U,2)
#define CV_8UC3 CV_MAKETYPE(CV_8U,3)
#define CV_8UC4 CV_MAKETYPE(CV_8U,4)
#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n))
#define CV_8SC1 CV_MAKETYPE(CV_8S,1)
#define CV_8SC2 CV_MAKETYPE(CV_8S,2)
#define CV_8SC3 CV_MAKETYPE(CV_8S,3)
#define CV_8SC4 CV_MAKETYPE(CV_8S,4)
#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n))
#define CV_16UC1 CV_MAKETYPE(CV_16U,1)
#define CV_16UC2 CV_MAKETYPE(CV_16U,2)
#define CV_16UC3 CV_MAKETYPE(CV_16U,3)
#define CV_16UC4 CV_MAKETYPE(CV_16U,4)
#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n))
#define CV_16SC1 CV_MAKETYPE(CV_16S,1)
#define CV_16SC2 CV_MAKETYPE(CV_16S,2)
#define CV_16SC3 CV_MAKETYPE(CV_16S,3)
#define CV_16SC4 CV_MAKETYPE(CV_16S,4)
#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n))
#define CV_32SC1 CV_MAKETYPE(CV_32S,1)
#define CV_32SC2 CV_MAKETYPE(CV_32S,2)
#define CV_32SC3 CV_MAKETYPE(CV_32S,3)
#define CV_32SC4 CV_MAKETYPE(CV_32S,4)
#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n))
#define CV_32FC1 CV_MAKETYPE(CV_32F,1)
#define CV_32FC2 CV_MAKETYPE(CV_32F,2)
#define CV_32FC3 CV_MAKETYPE(CV_32F,3)
#define CV_32FC4 CV_MAKETYPE(CV_32F,4)
#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n))
#define CV_64FC1 CV_MAKETYPE(CV_64F,1)
#define CV_64FC2 CV_MAKETYPE(CV_64F,2)
#define CV_64FC3 CV_MAKETYPE(CV_64F,3)
#define CV_64FC4 CV_MAKETYPE(CV_64F,4)
#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n))
// cvdef.h:
#define CV_MAT_CN_MASK ((CV_CN_MAX - 1) << CV_CN_SHIFT)
#define CV_MAT_CN(flags) ((((flags) & CV_MAT_CN_MASK) >> CV_CN_SHIFT) + 1)
#define CV_MAT_TYPE_MASK (CV_DEPTH_MAX*CV_CN_MAX - 1)
#define CV_MAT_TYPE(flags) ((flags) & CV_MAT_TYPE_MASK)
#define CV_MAT_CONT_FLAG_SHIFT 14
#define CV_MAT_CONT_FLAG (1 << CV_MAT_CONT_FLAG_SHIFT)
#define CV_IS_MAT_CONT(flags) ((flags) & CV_MAT_CONT_FLAG)
#define CV_IS_CONT_MAT CV_IS_MAT_CONT
#define CV_SUBMAT_FLAG_SHIFT 15
#define CV_SUBMAT_FLAG (1 << CV_SUBMAT_FLAG_SHIFT)
#define CV_IS_SUBMAT(flags) ((flags) & CV_MAT_SUBMAT_FLAG)
///** Size of each channel item,
// 0x8442211 = 1000 0100 0100 0010 0010 0001 0001 ~ array of sizeof(arr_type_elem) */
//#define CV_ELEM_SIZE1(type) \
// ((((sizeof(size_t)<<28)|0x8442211) >> CV_MAT_DEPTH(type)*4) & 15)
#define CV_MAT_TYPE(flags) ((flags) & CV_MAT_TYPE_MASK)
/** 0x3a50 = 11 10 10 01 01 00 00 ~ array of log2(sizeof(arr_type_elem)) */
#define CV_ELEM_SIZE(type) \
(CV_MAT_CN(type) << ((((sizeof(size_t)/4+1)*16384|0x3a50) >> CV_MAT_DEPTH(type)*2) & 3))
#ifndef CV_OVERRIDE
# define CV_OVERRIDE override
#endif
// base.h:
namespace cv
{
enum BorderTypes {
BORDER_CONSTANT = 0, //!< `iiiiii|abcdefgh|iiiiiii` with some specified `i`
BORDER_REPLICATE = 1, //!< `aaaaaa|abcdefgh|hhhhhhh`
BORDER_REFLECT = 2, //!< `fedcba|abcdefgh|hgfedcb`
BORDER_WRAP = 3, //!< `cdefgh|abcdefgh|abcdefg`
BORDER_REFLECT_101 = 4, //!< `gfedcb|abcdefgh|gfedcba`
BORDER_TRANSPARENT = 5, //!< `uvwxyz|abcdefgh|ijklmno`
BORDER_REFLECT101 = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101
BORDER_DEFAULT = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101
BORDER_ISOLATED = 16 //!< do not look outside of ROI
};
// imgproc.hpp:
enum InterpolationFlags{
INTER_NEAREST = 0,
INTER_LINEAR = 1,
INTER_CUBIC = 2,
INTER_AREA = 3,
INTER_LANCZOS4 = 4,
INTER_LINEAR_EXACT = 5,
INTER_MAX = 7,
};
} // namespace cv
static inline int cvFloor( double value )
{
int i = (int)value;
return i - (i > value);
}
#endif // defined(GAPI_STANDALONE)
#endif // OPENCV_GAPI_CV_DEFS_HPP

View File

@ -0,0 +1,42 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_OWN_TYPES_HPP
#define OPENCV_GAPI_OWN_TYPES_HPP
# if defined(__OPENCV_BUILD)
# include <opencv2/core/base.hpp>
# define GAPI_EXPORTS CV_EXPORTS
/* special informative macros for wrapper generators */
# define GAPI_PROP CV_PROP
# define GAPI_PROP_RW CV_PROP_RW
# define GAPI_WRAP CV_WRAP
# define GAPI_EXPORTS_W_SIMPLE CV_EXPORTS_W_SIMPLE
# define GAPI_EXPORTS_W CV_EXPORTS_W
# else
# define GAPI_PROP
# define GAPI_PROP_RW
# define GAPI_WRAP
# define GAPI_EXPORTS
# define GAPI_EXPORTS_W_SIMPLE
# define GAPI_EXPORTS_W
#if 0 // Note: the following version currently is not needed for non-OpenCV build
# if defined _WIN32
# define GAPI_EXPORTS __declspec(dllexport)
# elif defined __GNUC__ && __GNUC__ >= 4
# define GAPI_EXPORTS __attribute__ ((visibility ("default")))
# endif
# ifndef GAPI_EXPORTS
# define GAPI_EXPORTS
# endif
#endif
# endif
#endif // OPENCV_GAPI_OWN_TYPES_HPP

View File

@ -0,0 +1,354 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_OWN_MAT_HPP
#define OPENCV_GAPI_OWN_MAT_HPP
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/own/types.hpp>
#include <opencv2/gapi/own/scalar.hpp>
#include <opencv2/gapi/own/saturate.hpp>
#include <opencv2/gapi/own/assert.hpp>
#include <memory> //std::shared_ptr
#include <cstring> //std::memcpy
#include <numeric> //std::accumulate
#include <vector>
#include <opencv2/gapi/util/throw.hpp>
namespace cv { namespace gapi { namespace own {
namespace detail {
template <typename T, unsigned char channels>
void assign_row(void* ptr, int cols, Scalar const& s)
{
auto p = static_cast<T*>(ptr);
for (int c = 0; c < cols; c++)
{
for (int ch = 0; ch < channels; ch++)
{
p[c * channels + ch] = saturate<T>(s[ch], roundd);
}
}
}
inline size_t default_step(int type, int cols)
{
return CV_ELEM_SIZE(type) * cols;
}
//Matrix header, i.e. fields that are unique to each Mat object.
//Devoted class is needed to implement custom behavior on move (erasing state of moved from object)
struct MatHeader{
enum { AUTO_STEP = 0};
enum { TYPE_MASK = 0x00000FFF };
MatHeader() = default;
MatHeader(int _rows, int _cols, int type, void* _data, size_t _step)
: flags((type & TYPE_MASK)), rows(_rows), cols(_cols), data((uchar*)_data), step(_step == AUTO_STEP ? detail::default_step(type, _cols) : _step)
{}
MatHeader(const std::vector<int> &_dims, int type, void* _data)
: flags((type & TYPE_MASK)), data((uchar*)_data), step(0), dims(_dims)
{}
MatHeader(const MatHeader& ) = default;
MatHeader(MatHeader&& src) : MatHeader(src) // reuse copy constructor here
{
MatHeader empty; //give it a name to call copy(not move) assignment below
src = empty;
}
MatHeader& operator=(const MatHeader& ) = default;
MatHeader& operator=(MatHeader&& src)
{
*this = src; //calling a copy assignment here, not move one
MatHeader empty; //give it a name to call copy(not move) assignment below
src = empty;
return *this;
}
/*! includes several bit-fields:
- depth
- number of channels
*/
int flags = 0;
//! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions
int rows = 0, cols = 0;
//! pointer to the data
uchar* data = nullptr;
size_t step = 0;
//! dimensions (ND-case)
std::vector<int> dims;
};
} // namespace detail
//concise version of cv::Mat suitable for GAPI needs (used when no dependence on OpenCV is required)
class Mat : public detail::MatHeader{
public:
Mat() = default;
/** @overload
@param _rows Number of rows in a 2D array.
@param _cols Number of columns in a 2D array.
@param _type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or
CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices.
@param _data Pointer to the user data. Matrix constructors that take data and step parameters do not
allocate matrix data. Instead, they just initialize the matrix header that points to the specified
data, which means that no data is copied. This operation is very efficient and can be used to
process external data using OpenCV functions. The external data is not automatically deallocated, so
you should take care of it.
@param _step Number of bytes each matrix row occupies. The value should include the padding bytes at
the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed
and the actual step is calculated as cols*elemSize(). See Mat::elemSize.
*/
Mat(int _rows, int _cols, int _type, void* _data, size_t _step = AUTO_STEP)
: MatHeader (_rows, _cols, _type, _data, _step)
{}
Mat(const std::vector<int> &_dims, int _type, void* _data)
: MatHeader (_dims, _type, _data)
{}
Mat(std::vector<int> &&_dims, int _type, void* _data)
: MatHeader (std::move(_dims), _type, _data)
{}
Mat(Mat const& src, const Rect& roi )
: Mat(src)
{
rows = roi.height;
cols = roi.width;
data = ptr(roi.y, roi.x);
}
Mat(Mat const& ) = default;
Mat(Mat&& ) = default;
Mat& operator=(Mat const& ) = default;
Mat& operator=(Mat&& ) = default;
/** @brief Sets all or some of the array elements to the specified value.
@param s Assigned scalar converted to the actual array type.
*/
Mat& operator = (const Scalar& s)
{
constexpr unsigned max_channels = 4; //Scalar can't fit more than 4
using func_p_t = void (*)(void*, int, Scalar const&);
using detail::assign_row;
#define TABLE_ENTRY(type) {assign_row<type, 1>, assign_row<type, 2>, assign_row<type, 3>, assign_row<type, 4>}
static constexpr func_p_t func_tbl[][max_channels] = {
TABLE_ENTRY(uchar),
TABLE_ENTRY(schar),
TABLE_ENTRY(ushort),
TABLE_ENTRY(short),
TABLE_ENTRY(int),
TABLE_ENTRY(float),
TABLE_ENTRY(double)
};
#undef TABLE_ENTRY
static_assert(CV_8U == 0 && CV_8S == 1 && CV_16U == 2 && CV_16S == 3
&& CV_32S == 4 && CV_32F == 5 && CV_64F == 6,
"OCV type ids used as indexes to array, thus exact numbers are important!"
);
const auto depth = static_cast<unsigned int>(this->depth());
GAPI_Assert(depth < sizeof(func_tbl)/sizeof(func_tbl[0]));
if (dims.empty())
{
const auto channels = static_cast<unsigned int>(this->channels());
GAPI_Assert(channels <= max_channels);
auto* f = func_tbl[depth][channels - 1];
for (int r = 0; r < rows; ++r)
{
(*f)(static_cast<void *>(ptr(r)), cols, s );
}
}
else
{
auto* f = func_tbl[depth][0];
// FIXME: better to refactor assign_row to use std::size_t by default
(*f)(static_cast<void *>(data), static_cast<int>(total()), s);
}
return *this;
}
/** @brief Returns the matrix element size in bytes.
The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 ,
the method returns 3\*sizeof(short) or 6.
*/
size_t elemSize() const
{
return CV_ELEM_SIZE(type());
}
/** @brief Returns the type of a matrix element.
The method returns a matrix element type. This is an identifier compatible with the CvMat type
system, like CV_16SC3 or 16-bit signed 3-channel array, and so on.
*/
int type() const {return CV_MAT_TYPE(flags);}
/** @brief Returns the depth of a matrix element.
The method returns the identifier of the matrix element depth (the type of each individual channel).
For example, for a 16-bit signed element array, the method returns CV_16S . A complete list of
matrix types contains the following values:
- CV_8U - 8-bit unsigned integers ( 0..255 )
- CV_8S - 8-bit signed integers ( -128..127 )
- CV_16U - 16-bit unsigned integers ( 0..65535 )
- CV_16S - 16-bit signed integers ( -32768..32767 )
- CV_32S - 32-bit signed integers ( -2147483648..2147483647 )
- CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN )
- CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN )
*/
int depth() const {return CV_MAT_DEPTH(flags);}
/** @brief Returns the number of matrix channels.
The method returns the number of matrix channels.
If matrix is N-dimensional, -1 is returned.
*/
int channels() const {return dims.empty() ? CV_MAT_CN(flags) : -1;}
/**
@param _rows New number of rows.
@param _cols New number of columns.
@param _type New matrix type.
*/
void create(int _rows, int _cols, int _type)
{
create(Size{_cols, _rows}, _type);
}
/** @overload
@param _size Alternative new matrix size specification: Size(cols, rows)
@param _type New matrix type.
*/
void create(Size _size, int _type)
{
GAPI_Assert(_size.height >= 0 && _size.width >= 0);
if (_size != Size{cols, rows} )
{
Mat tmp{_size.height, _size.width, _type, nullptr};
tmp.memory.reset(new uchar[ tmp.step * tmp.rows], [](uchar * p){delete[] p;});
tmp.data = tmp.memory.get();
*this = std::move(tmp);
}
}
void create(const std::vector<int> &_dims, int _type)
{
// FIXME: make a proper reallocation-on-demands
// WARNING: no tensor views, so no strides
Mat tmp{_dims, _type, nullptr};
// FIXME: this accumulate duplicates a lot
const auto sz = std::accumulate(_dims.begin(), _dims.end(), 1, std::multiplies<int>());
tmp.memory.reset(new uchar[CV_ELEM_SIZE(_type)*sz], [](uchar * p){delete[] p;});
tmp.data = tmp.memory.get();
*this = std::move(tmp);
}
/** @brief Creates a full copy of the matrix and the underlying data.
The method creates a full copy of the matrix. The original step[] is not taken into account.
So, the copy has a continuous buffer occupying total() * elemSize() bytes.
*/
Mat clone() const
{
Mat m;
copyTo(m);
return m;
}
/** @brief Copies the matrix to another one.
The method copies the matrix data to another matrix. Before copying the data, the method invokes :
@code
m.create(this->size(), this->type());
@endcode
so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the
function does not handle the case of a partial overlap between the source and the destination
matrices.
*/
void copyTo(Mat& dst) const
{
if (dims.empty())
{
dst.create(rows, cols, type());
for (int r = 0; r < rows; ++r)
{
std::copy_n(ptr(r), detail::default_step(type(),cols), dst.ptr(r));
}
}
else
{
dst.create(dims, depth());
std::copy_n(data, total()*elemSize(), data);
}
}
/** @brief Returns true if the array has no elements.
The method returns true if Mat::total() is 0 or if Mat::data is NULL. Because of pop_back() and
resize() methods `M.total() == 0` does not imply that `M.data == NULL`.
*/
bool empty() const
{
return data == 0 || total() == 0;
}
/** @brief Returns the total number of array elements.
The method returns the number of array elements (a number of pixels if the array represents an
image).
*/
size_t total() const
{
return dims.empty()
? (static_cast<std::size_t>(rows) * cols)
: std::accumulate(dims.begin(), dims.end(), static_cast<std::size_t>(1), std::multiplies<size_t>());
}
/** @overload
@param roi Extracted submatrix specified as a rectangle.
*/
Mat operator()( const Rect& roi ) const
{
return Mat{*this, roi};
}
/** @brief Returns a pointer to the specified matrix row.
The methods return `uchar*` or typed pointer to the specified matrix row. See the sample in
Mat::isContinuous to know how to use these methods.
@param row Index along the dimension 0
@param col Index along the dimension 1
*/
uchar* ptr(int row, int col = 0)
{
return const_cast<uchar*>(const_cast<const Mat*>(this)->ptr(row,col));
}
/** @overload */
const uchar* ptr(int row, int col = 0) const
{
return data + step * row + CV_ELEM_SIZE(type()) * col;
}
private:
//actual memory allocated for storage, or nullptr if object is non owning view to over memory
std::shared_ptr<uchar> memory;
};
} //namespace own
} //namespace gapi
} //namespace cv
#endif /* OPENCV_GAPI_OWN_MAT_HPP */

View File

@ -0,0 +1,90 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_OWN_SATURATE_HPP
#define OPENCV_GAPI_OWN_SATURATE_HPP
#include <math.h>
#include <limits>
#include <type_traits>
#include <opencv2/gapi/own/assert.hpp>
namespace cv { namespace gapi { namespace own {
//-----------------------------
//
// Numeric cast with saturation
//
//-----------------------------
template<typename DST, typename SRC>
static inline DST saturate(SRC x)
{
// only integral types please!
GAPI_DbgAssert(std::is_integral<DST>::value &&
std::is_integral<SRC>::value);
if (std::is_same<DST, SRC>::value)
return static_cast<DST>(x);
if (sizeof(DST) > sizeof(SRC))
return static_cast<DST>(x);
// compiler must recognize this saturation,
// so compile saturate<s16>(a + b) with adds
// instruction (e.g.: _mm_adds_epi16 if x86)
return x < std::numeric_limits<DST>::min()?
std::numeric_limits<DST>::min():
x > std::numeric_limits<DST>::max()?
std::numeric_limits<DST>::max():
static_cast<DST>(x);
}
// Note, that OpenCV rounds differently:
// - like std::round() for add, subtract
// - like std::rint() for multiply, divide
template<typename DST, typename SRC, typename R>
static inline DST saturate(SRC x, R round)
{
if (std::is_floating_point<DST>::value)
{
return static_cast<DST>(x);
}
else if (std::is_integral<SRC>::value)
{
GAPI_DbgAssert(std::is_integral<DST>::value &&
std::is_integral<SRC>::value);
return saturate<DST>(x);
}
else
{
GAPI_DbgAssert(std::is_integral<DST>::value &&
std::is_floating_point<SRC>::value);
#ifdef _WIN32
// Suppress warning about converting x to floating-point
// Note that x is already floating-point at this point
#pragma warning(disable: 4244)
#endif
int ix = static_cast<int>(round(x));
#ifdef _WIN32
#pragma warning(default: 4244)
#endif
return saturate<DST>(ix);
}
}
// explicit suffix 'd' for double type
inline double ceild(double x) { return ceil(x); }
inline double floord(double x) { return floor(x); }
inline double roundd(double x) { return round(x); }
inline double rintd(double x) { return rint(x); }
} //namespace own
} //namespace gapi
} //namespace cv
#endif /* OPENCV_GAPI_OWN_SATURATE_HPP */

View File

@ -0,0 +1,47 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_GAPI_OWN_SCALAR_HPP
#define OPENCV_GAPI_GAPI_OWN_SCALAR_HPP
#include <opencv2/gapi/own/exports.hpp>
namespace cv
{
namespace gapi
{
namespace own
{
class GAPI_EXPORTS Scalar
{
public:
Scalar() = default;
explicit Scalar(double v0) { val[0] = v0; };
Scalar(double v0, double v1, double v2 = 0, double v3 = 0)
: val{v0, v1, v2, v3}
{
}
const double& operator[](int i) const { return val[i]; }
double& operator[](int i) { return val[i]; }
static Scalar all(double v0) { return Scalar(v0, v0, v0, v0); }
double val[4] = {0};
};
inline bool operator==(const Scalar& lhs, const Scalar& rhs)
{
return std::equal(std::begin(lhs.val), std::end(lhs.val), std::begin(rhs.val));
}
} // namespace own
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GAPI_OWN_SCALAR_HPP

View File

@ -0,0 +1,150 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_TYPES_HPP
#define OPENCV_GAPI_TYPES_HPP
#include <algorithm> // std::max, std::min
#include <ostream>
namespace cv
{
namespace gapi
{
/**
* @brief This namespace contains G-API own data structures used in
* its standalone mode build.
*/
namespace own
{
class Point
{
public:
Point() = default;
Point(int _x, int _y) : x(_x), y(_y) {}
int x = 0;
int y = 0;
};
class Point2f
{
public:
Point2f() = default;
Point2f(float _x, float _y) : x(_x), y(_y) {}
float x = 0.f;
float y = 0.f;
};
class Rect
{
public:
Rect() = default;
Rect(int _x, int _y, int _width, int _height) : x(_x), y(_y), width(_width), height(_height) {}
#if !defined(GAPI_STANDALONE)
Rect(const cv::Rect& other) : x(other.x), y(other.y), width(other.width), height(other.height) {}
inline Rect& operator=(const cv::Rect& other)
{
x = other.x;
y = other.x;
width = other.width;
height = other.height;
return *this;
}
#endif // !defined(GAPI_STANDALONE)
int x = 0; //!< x coordinate of the top-left corner
int y = 0; //!< y coordinate of the top-left corner
int width = 0; //!< width of the rectangle
int height = 0; //!< height of the rectangle
};
inline bool operator==(const Rect& lhs, const Rect& rhs)
{
return lhs.x == rhs.x && lhs.y == rhs.y && lhs.width == rhs.width && lhs.height == rhs.height;
}
inline bool operator!=(const Rect& lhs, const Rect& rhs)
{
return !(lhs == rhs);
}
inline Rect& operator&=(Rect& lhs, const Rect& rhs)
{
int x1 = std::max(lhs.x, rhs.x);
int y1 = std::max(lhs.y, rhs.y);
lhs.width = std::min(lhs.x + lhs.width, rhs.x + rhs.width) - x1;
lhs.height = std::min(lhs.y + lhs.height, rhs.y + rhs.height) - y1;
lhs.x = x1;
lhs.y = y1;
if( lhs.width <= 0 || lhs.height <= 0 )
lhs = Rect();
return lhs;
}
inline const Rect operator&(const Rect& lhs, const Rect& rhs)
{
Rect result = lhs;
return result &= rhs;
}
inline std::ostream& operator<<(std::ostream& o, const Rect& rect)
{
return o << "[" << rect.width << " x " << rect.height << " from (" << rect.x << ", " << rect.y << ")]";
}
class Size
{
public:
Size() = default;
Size(int _width, int _height) : width(_width), height(_height) {}
#if !defined(GAPI_STANDALONE)
Size(const cv::Size& other) : width(other.width), height(other.height) {}
inline Size& operator=(const cv::Size& rhs)
{
width = rhs.width;
height = rhs.height;
return *this;
}
#endif // !defined(GAPI_STANDALONE)
int width = 0;
int height = 0;
};
inline Size& operator+=(Size& lhs, const Size& rhs)
{
lhs.width += rhs.width;
lhs.height += rhs.height;
return lhs;
}
inline bool operator==(const Size& lhs, const Size& rhs)
{
return lhs.width == rhs.width && lhs.height == rhs.height;
}
inline bool operator!=(const Size& lhs, const Size& rhs)
{
return !(lhs == rhs);
}
inline std::ostream& operator<<(std::ostream& o, const Size& s)
{
o << "[" << s.width << " x " << s.height << "]";
return o;
}
} // namespace own
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_TYPES_HPP

View File

@ -0,0 +1,20 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_PLAIDML_CORE_HPP
#define OPENCV_GAPI_PLAIDML_CORE_HPP
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
namespace cv { namespace gapi { namespace core { namespace plaidml {
GAPI_EXPORTS cv::gapi::GKernelPackage kernels();
}}}}
#endif // OPENCV_GAPI_PLAIDML_CORE_HPP

View File

@ -0,0 +1,140 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
//
#ifndef OPENCV_GAPI_GPLAIDMLKERNEL_HPP
#define OPENCV_GAPI_GPLAIDMLKERNEL_HPP
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/garg.hpp>
namespace plaidml
{
namespace edsl
{
class Tensor;
} // namespace edsl
} // namespace plaidml
namespace cv
{
namespace gapi
{
namespace plaidml
{
GAPI_EXPORTS cv::gapi::GBackend backend();
} // namespace plaidml
} // namespace gapi
struct GPlaidMLContext
{
// Generic accessor API
template<typename T>
const T& inArg(int input) { return m_args.at(input).get<T>(); }
// Syntax sugar
const plaidml::edsl::Tensor& inTensor(int input)
{
return inArg<plaidml::edsl::Tensor>(input);
}
plaidml::edsl::Tensor& outTensor(int output)
{
return *(m_results.at(output).get<plaidml::edsl::Tensor*>());
}
std::vector<GArg> m_args;
std::unordered_map<std::size_t, GArg> m_results;
};
class GAPI_EXPORTS GPlaidMLKernel
{
public:
using F = std::function<void(GPlaidMLContext &)>;
GPlaidMLKernel() = default;
explicit GPlaidMLKernel(const F& f) : m_f(f) {};
void apply(GPlaidMLContext &ctx) const
{
GAPI_Assert(m_f);
m_f(ctx);
}
protected:
F m_f;
};
namespace detail
{
template<class T> struct plaidml_get_in;
template<> struct plaidml_get_in<cv::GMat>
{
static const plaidml::edsl::Tensor& get(GPlaidMLContext& ctx, int idx)
{
return ctx.inTensor(idx);
}
};
template<class T> struct plaidml_get_in
{
static T get(GPlaidMLContext &ctx, int idx) { return ctx.inArg<T>(idx); }
};
template<class T> struct plaidml_get_out;
template<> struct plaidml_get_out<cv::GMat>
{
static plaidml::edsl::Tensor& get(GPlaidMLContext& ctx, int idx)
{
return ctx.outTensor(idx);
}
};
template<typename, typename, typename>
struct PlaidMLCallHelper;
template<typename Impl, typename... Ins, typename... Outs>
struct PlaidMLCallHelper<Impl, std::tuple<Ins...>, std::tuple<Outs...> >
{
template<int... IIs, int... OIs>
static void call_impl(GPlaidMLContext &ctx, detail::Seq<IIs...>, detail::Seq<OIs...>)
{
Impl::run(plaidml_get_in<Ins>::get(ctx, IIs)..., plaidml_get_out<Outs>::get(ctx, OIs)...);
}
static void call(GPlaidMLContext& ctx)
{
call_impl(ctx,
typename detail::MkSeq<sizeof...(Ins)>::type(),
typename detail::MkSeq<sizeof...(Outs)>::type());
}
};
} // namespace detail
template<class Impl, class K>
class GPlaidMLKernelImpl: public cv::detail::PlaidMLCallHelper<Impl, typename K::InArgs, typename K::OutArgs>,
public cv::detail::KernelTag
{
using P = detail::PlaidMLCallHelper<Impl, typename K::InArgs, typename K::OutArgs>;
public:
using API = K;
static cv::gapi::GBackend backend() { return cv::gapi::plaidml::backend(); }
static cv::GPlaidMLKernel kernel() { return GPlaidMLKernel(&P::call); }
};
#define GAPI_PLAIDML_KERNEL(Name, API) struct Name: public cv::GPlaidMLKernelImpl<Name, API>
} // namespace cv
#endif // OPENCV_GAPI_GPLAIDMLKERNEL_HPP

View File

@ -0,0 +1,53 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_PLAIDML_PLAIDML_HPP
#define OPENCV_GAPI_PLAIDML_PLAIDML_HPP
#include <string>
#include <opencv2/gapi/gcommon.hpp> // CompileArgTag
namespace cv
{
namespace gapi
{
/**
* @brief This namespace contains G-API PlaidML backend functions,
* structures, and symbols.
*/
namespace plaidml
{
/** \addtogroup gapi_compile_args
* @{
*/
/**
* @brief This structure represents the basic parameters for the experimental
* PlaidML backend.
*/
struct config
{
std::string dev_id; //!< Device ID. Refer to PlaidML documentation for details.
std::string trg_id; //!< Target ID. Refer to PlaidML documentation for details.
};
/** @} gapi_compile_args */
} // namespace plaidml
} // namespace gapi
namespace detail
{
template<> struct CompileArgTag<cv::gapi::plaidml::config>
{
static const char* tag() { return "gapi.plaidml.config"; }
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_PLAIDML_PLAIDML_HPP

View File

@ -0,0 +1,67 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#ifndef OPENCV_GAPI_PYTHON_API_HPP
#define OPENCV_GAPI_PYTHON_API_HPP
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
namespace cv {
namespace gapi {
/**
* @brief This namespace contains G-API Python backend functions,
* structures, and symbols.
*
* This functionality is required to enable G-API custom operations
* and kernels when using G-API from Python, no need to use it in the
* C++ form.
*/
namespace python {
GAPI_EXPORTS cv::gapi::GBackend backend();
struct GPythonContext
{
const cv::GArgs &ins;
const cv::GMetaArgs &in_metas;
const cv::GTypesInfo &out_info;
};
using Impl = std::function<cv::GRunArgs(const GPythonContext&)>;
class GAPI_EXPORTS GPythonKernel
{
public:
GPythonKernel() = default;
GPythonKernel(Impl run);
cv::GRunArgs operator()(const GPythonContext& ctx);
private:
Impl m_run;
};
class GAPI_EXPORTS GPythonFunctor : public cv::gapi::GFunctor
{
public:
using Meta = cv::GKernel::M;
GPythonFunctor(const char* id, const Meta &meta, const Impl& impl);
GKernelImpl impl() const override;
gapi::GBackend backend() const override;
private:
GKernelImpl impl_;
};
} // namespace python
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_PYTHON_API_HPP

View File

@ -0,0 +1,14 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_RENDER_ROOT_HPP
#define OPENCV_GAPI_RENDER_ROOT_HPP
// This file is just a shortcut to render/render.hpp
#include <opencv2/gapi/render/render.hpp>
#endif // OPENCV_GAPI_RENDER_ROOT_HPP

View File

@ -0,0 +1,196 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2020 Intel Corporation
#ifndef OPENCV_GAPI_RENDER_HPP
#define OPENCV_GAPI_RENDER_HPP
#include <opencv2/gapi/render/render_types.hpp>
#include <opencv2/gapi.hpp>
/** \defgroup gapi_draw G-API Drawing and composition functionality
* @{
*
* @brief Functions for in-graph drawing.
*
* @note This is a Work in Progress functionality and APIs may
* change in the future releases.
*
* G-API can do some in-graph drawing with a generic operations and a
* set of [rendering primitives](@ref gapi_draw_prims).
* In contrast with traditional OpenCV, in G-API user need to form a
* *rendering list* of primitives to draw. This list can be built
* manually or generated within a graph. This list is passed to
* [special operations or functions](@ref gapi_draw_api) where all
* primitives are interpreted and applied to the image.
*
* For example, in a complex pipeline a list of detected objects
* can be translated in-graph to a list of cv::gapi::wip::draw::Rect
* primitives to highlight those with bounding boxes, or a list of
* detected faces can be translated in-graph to a list of
* cv::gapi::wip::draw::Mosaic primitives to hide sensitive content
* or protect privacy.
*
* Like any other operations, rendering in G-API can be reimplemented
* by different backends. Currently only an OpenCV-based backend is
* available.
*
* In addition to the graph-level operations, there are also regular
* (immediate) OpenCV-like functions are available -- see
* cv::gapi::wip::draw::render(). These functions are just wrappers
* over regular G-API and build the rendering graphs on the fly, so
* take compilation arguments as parameters.
*
* Currently this API is more machine-oriented than human-oriented.
* The main purpose is to translate a set of domain-specific objects
* to a list of primitives to draw. For example, in order to generate
* a picture like this:
*
* ![](modules/gapi/doc/pics/render_example.png)
*
* Rendering list needs to be generated as follows:
*
* @include modules/gapi/samples/draw_example.cpp
*
* @defgroup gapi_draw_prims Drawing primitives
* @defgroup gapi_draw_api Drawing operations and functions
* @}
*/
namespace cv
{
namespace gapi
{
namespace wip
{
namespace draw
{
using GMat2 = std::tuple<cv::GMat,cv::GMat>;
using GMatDesc2 = std::tuple<cv::GMatDesc,cv::GMatDesc>;
//! @addtogroup gapi_draw_api
//! @{
/** @brief The function renders on the input image passed drawing primitivies
@param bgr input image: 8-bit unsigned 3-channel image @ref CV_8UC3.
@param prims vector of drawing primitivies
@param args graph compile time parameters
*/
void GAPI_EXPORTS_W render(cv::Mat& bgr,
const Prims& prims,
cv::GCompileArgs&& args = {});
/** @brief The function renders on two NV12 planes passed drawing primitivies
@param y_plane input image: 8-bit unsigned 1-channel image @ref CV_8UC1.
@param uv_plane input image: 8-bit unsigned 2-channel image @ref CV_8UC2.
@param prims vector of drawing primitivies
@param args graph compile time parameters
*/
void GAPI_EXPORTS_W render(cv::Mat& y_plane,
cv::Mat& uv_plane,
const Prims& prims,
cv::GCompileArgs&& args = {});
/** @brief The function renders on the input media frame passed drawing primitivies
@param frame input Media Frame : @ref cv::MediaFrame.
@param prims vector of drawing primitivies
@param args graph compile time parameters
*/
void GAPI_EXPORTS render(cv::MediaFrame& frame,
const Prims& prims,
cv::GCompileArgs&& args = {});
G_TYPED_KERNEL_M(GRenderNV12, <GMat2(cv::GMat,cv::GMat,cv::GArray<wip::draw::Prim>)>, "org.opencv.render.nv12")
{
static GMatDesc2 outMeta(GMatDesc y_plane, GMatDesc uv_plane, GArrayDesc)
{
return std::make_tuple(y_plane, uv_plane);
}
};
G_TYPED_KERNEL(GRenderBGR, <cv::GMat(cv::GMat,cv::GArray<wip::draw::Prim>)>, "org.opencv.render.bgr")
{
static GMatDesc outMeta(GMatDesc bgr, GArrayDesc)
{
return bgr;
}
};
G_TYPED_KERNEL(GRenderFrame, <cv::GFrame(cv::GFrame, cv::GArray<wip::draw::Prim>)>, "org.opencv.render.frame")
{
static GFrameDesc outMeta(GFrameDesc desc, GArrayDesc)
{
return desc;
}
};
/** @brief Renders on 3 channels input
Output image must be 8-bit unsigned planar 3-channel image
@param src input image: 8-bit unsigned 3-channel image @ref CV_8UC3
@param prims draw primitives
*/
GAPI_EXPORTS_W GMat render3ch(const GMat& src, const GArray<Prim>& prims);
/** @brief Renders on two planes
Output y image must be 8-bit unsigned planar 1-channel image @ref CV_8UC1
uv image must be 8-bit unsigned planar 2-channel image @ref CV_8UC2
@param y input image: 8-bit unsigned 1-channel image @ref CV_8UC1
@param uv input image: 8-bit unsigned 2-channel image @ref CV_8UC2
@param prims draw primitives
*/
GAPI_EXPORTS_W GMat2 renderNV12(const GMat& y,
const GMat& uv,
const GArray<Prim>& prims);
/** @brief Renders Media Frame
Output media frame frame cv::MediaFrame
@param m_frame input image: cv::MediaFrame @ref cv::MediaFrame
@param prims draw primitives
*/
GAPI_EXPORTS GFrame renderFrame(const GFrame& m_frame,
const GArray<Prim>& prims);
//! @} gapi_draw_api
} // namespace draw
} // namespace wip
/**
* @brief This namespace contains G-API CPU rendering backend functions,
* structures, and symbols. See @ref gapi_draw for details.
*/
namespace render
{
namespace ocv
{
GAPI_EXPORTS_W cv::gapi::GKernelPackage kernels();
} // namespace ocv
} // namespace render
} // namespace gapi
namespace detail
{
template<> struct CompileArgTag<cv::gapi::wip::draw::freetype_font>
{
static const char* tag() { return "gapi.freetype_font"; }
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_RENDER_HPP

View File

@ -0,0 +1,359 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_RENDER_TYPES_HPP
#define OPENCV_GAPI_RENDER_TYPES_HPP
#include <string>
#include <vector>
#include <opencv2/gapi/opencv_includes.hpp>
#include <opencv2/gapi/util/variant.hpp>
#include <opencv2/gapi/own/exports.hpp>
namespace cv
{
namespace gapi
{
namespace wip
{
namespace draw
{
/**
* @brief This structure specifies which FreeType font to use by FText primitives.
*/
struct freetype_font
{
/*@{*/
std::string path; //!< The path to the font file (.ttf)
/*@{*/
};
//! @addtogroup gapi_draw_prims
//! @{
/**
* @brief This structure represents a text string to draw.
*
* Parameters match cv::putText().
*/
struct GAPI_EXPORTS_W_SIMPLE Text
{
/**
* @brief Text constructor
*
* @param text_ The text string to be drawn
* @param org_ The bottom-left corner of the text string in the image
* @param ff_ The font type, see #HersheyFonts
* @param fs_ The font scale factor that is multiplied by the font-specific base size
* @param color_ The text color
* @param thick_ The thickness of the lines used to draw a text
* @param lt_ The line type. See #LineTypes
* @param bottom_left_origin_ When true, the image data origin is at the bottom-left corner. Otherwise, it is at the top-left corner
*/
GAPI_WRAP
Text(const std::string& text_,
const cv::Point& org_,
int ff_,
double fs_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = 8,
bool bottom_left_origin_ = false) :
text(text_), org(org_), ff(ff_), fs(fs_),
color(color_), thick(thick_), lt(lt_), bottom_left_origin(bottom_left_origin_)
{
}
GAPI_WRAP
Text() = default;
/*@{*/
GAPI_PROP_RW std::string text; //!< The text string to be drawn
GAPI_PROP_RW cv::Point org; //!< The bottom-left corner of the text string in the image
GAPI_PROP_RW int ff; //!< The font type, see #HersheyFonts
GAPI_PROP_RW double fs; //!< The font scale factor that is multiplied by the font-specific base size
GAPI_PROP_RW cv::Scalar color; //!< The text color
GAPI_PROP_RW int thick; //!< The thickness of the lines used to draw a text
GAPI_PROP_RW int lt; //!< The line type. See #LineTypes
GAPI_PROP_RW bool bottom_left_origin; //!< When true, the image data origin is at the bottom-left corner. Otherwise, it is at the top-left corner
/*@{*/
};
/**
* @brief This structure represents a text string to draw using
* FreeType renderer.
*
* If OpenCV is built without FreeType support, this primitive will
* fail at the execution stage.
*/
struct FText
{
/**
* @brief FText constructor
*
* @param text_ The text string to be drawn
* @param org_ The bottom-left corner of the text string in the image
* @param fh_ The height of text
* @param color_ The text color
*/
FText(const std::wstring& text_,
const cv::Point& org_,
int fh_,
const cv::Scalar& color_) :
text(text_), org(org_), fh(fh_), color(color_)
{
}
FText() = default;
/*@{*/
std::wstring text; //!< The text string to be drawn
cv::Point org; //!< The bottom-left corner of the text string in the image
int fh; //!< The height of text
cv::Scalar color; //!< The text color
/*@{*/
};
/**
* @brief This structure represents a rectangle to draw.
*
* Parameters match cv::rectangle().
*/
struct GAPI_EXPORTS_W_SIMPLE Rect
{
/**
* @brief Rect constructor
*
* @param rect_ Coordinates of the rectangle
* @param color_ The bottom-left corner of the text string in the image
* @param thick_ The thickness of lines that make up the rectangle. Negative values, like #FILLED, mean that the function has to draw a filled rectangle
* @param lt_ The type of the line. See #LineTypes
* @param shift_ The number of fractional bits in the point coordinates
*/
Rect(const cv::Rect& rect_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = 8,
int shift_ = 0) :
rect(rect_), color(color_), thick(thick_), lt(lt_), shift(shift_)
{
}
GAPI_WRAP
Rect() = default;
/*@{*/
GAPI_PROP_RW cv::Rect rect; //!< Coordinates of the rectangle
GAPI_PROP_RW cv::Scalar color; //!< The rectangle color or brightness (grayscale image)
GAPI_PROP_RW int thick; //!< The thickness of lines that make up the rectangle. Negative values, like #FILLED, mean that the function has to draw a filled rectangle
GAPI_PROP_RW int lt; //!< The type of the line. See #LineTypes
GAPI_PROP_RW int shift; //!< The number of fractional bits in the point coordinates
/*@{*/
};
/**
* @brief This structure represents a circle to draw.
*
* Parameters match cv::circle().
*/
struct GAPI_EXPORTS_W_SIMPLE Circle
{
/**
* @brief Circle constructor
*
* @param center_ The center of the circle
* @param radius_ The radius of the circle
* @param color_ The color of the circle
* @param thick_ The thickness of the circle outline, if positive. Negative values, like #FILLED, mean that a filled circle is to be drawn
* @param lt_ The Type of the circle boundary. See #LineTypes
* @param shift_ The Number of fractional bits in the coordinates of the center and in the radius value
*/
GAPI_WRAP
Circle(const cv::Point& center_,
int radius_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = 8,
int shift_ = 0) :
center(center_), radius(radius_), color(color_), thick(thick_), lt(lt_), shift(shift_)
{
}
GAPI_WRAP
Circle() = default;
/*@{*/
GAPI_PROP_RW cv::Point center; //!< The center of the circle
GAPI_PROP_RW int radius; //!< The radius of the circle
GAPI_PROP_RW cv::Scalar color; //!< The color of the circle
GAPI_PROP_RW int thick; //!< The thickness of the circle outline, if positive. Negative values, like #FILLED, mean that a filled circle is to be drawn
GAPI_PROP_RW int lt; //!< The Type of the circle boundary. See #LineTypes
GAPI_PROP_RW int shift; //!< The Number of fractional bits in the coordinates of the center and in the radius value
/*@{*/
};
/**
* @brief This structure represents a line to draw.
*
* Parameters match cv::line().
*/
struct GAPI_EXPORTS_W_SIMPLE Line
{
/**
* @brief Line constructor
*
* @param pt1_ The first point of the line segment
* @param pt2_ The second point of the line segment
* @param color_ The line color
* @param thick_ The thickness of line
* @param lt_ The Type of the line. See #LineTypes
* @param shift_ The number of fractional bits in the point coordinates
*/
GAPI_WRAP
Line(const cv::Point& pt1_,
const cv::Point& pt2_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = 8,
int shift_ = 0) :
pt1(pt1_), pt2(pt2_), color(color_), thick(thick_), lt(lt_), shift(shift_)
{
}
GAPI_WRAP
Line() = default;
/*@{*/
GAPI_PROP_RW cv::Point pt1; //!< The first point of the line segment
GAPI_PROP_RW cv::Point pt2; //!< The second point of the line segment
GAPI_PROP_RW cv::Scalar color; //!< The line color
GAPI_PROP_RW int thick; //!< The thickness of line
GAPI_PROP_RW int lt; //!< The Type of the line. See #LineTypes
GAPI_PROP_RW int shift; //!< The number of fractional bits in the point coordinates
/*@{*/
};
/**
* @brief This structure represents a mosaicing operation.
*
* Mosaicing is a very basic method to obfuscate regions in the image.
*/
struct GAPI_EXPORTS_W_SIMPLE Mosaic
{
/**
* @brief Mosaic constructor
*
* @param mos_ Coordinates of the mosaic
* @param cellSz_ Cell size (same for X, Y)
* @param decim_ Decimation (0 stands for no decimation)
*/
Mosaic(const cv::Rect& mos_,
int cellSz_,
int decim_) :
mos(mos_), cellSz(cellSz_), decim(decim_)
{
}
GAPI_WRAP
Mosaic() : cellSz(0), decim(0) {}
/*@{*/
GAPI_PROP_RW cv::Rect mos; //!< Coordinates of the mosaic
GAPI_PROP_RW int cellSz; //!< Cell size (same for X, Y)
GAPI_PROP_RW int decim; //!< Decimation (0 stands for no decimation)
/*@{*/
};
/**
* @brief This structure represents an image to draw.
*
* Image is blended on a frame using the specified mask.
*/
struct GAPI_EXPORTS_W_SIMPLE Image
{
/**
* @brief Mosaic constructor
*
* @param org_ The bottom-left corner of the image
* @param img_ Image to draw
* @param alpha_ Alpha channel for image to draw (same size and number of channels)
*/
GAPI_WRAP
Image(const cv::Point& org_,
const cv::Mat& img_,
const cv::Mat& alpha_) :
org(org_), img(img_), alpha(alpha_)
{
}
GAPI_WRAP
Image() = default;
/*@{*/
GAPI_PROP_RW cv::Point org; //!< The bottom-left corner of the image
GAPI_PROP_RW cv::Mat img; //!< Image to draw
GAPI_PROP_RW cv::Mat alpha; //!< Alpha channel for image to draw (same size and number of channels)
/*@{*/
};
/**
* @brief This structure represents a polygon to draw.
*/
struct GAPI_EXPORTS_W_SIMPLE Poly
{
/**
* @brief Mosaic constructor
*
* @param points_ Points to connect
* @param color_ The line color
* @param thick_ The thickness of line
* @param lt_ The Type of the line. See #LineTypes
* @param shift_ The number of fractional bits in the point coordinate
*/
GAPI_WRAP
Poly(const std::vector<cv::Point>& points_,
const cv::Scalar& color_,
int thick_ = 1,
int lt_ = 8,
int shift_ = 0) :
points(points_), color(color_), thick(thick_), lt(lt_), shift(shift_)
{
}
GAPI_WRAP
Poly() = default;
/*@{*/
GAPI_PROP_RW std::vector<cv::Point> points; //!< Points to connect
GAPI_PROP_RW cv::Scalar color; //!< The line color
GAPI_PROP_RW int thick; //!< The thickness of line
GAPI_PROP_RW int lt; //!< The Type of the line. See #LineTypes
GAPI_PROP_RW int shift; //!< The number of fractional bits in the point coordinate
/*@{*/
};
using Prim = util::variant
< Text
, FText
, Rect
, Circle
, Line
, Mosaic
, Image
, Poly
>;
using Prims = std::vector<Prim>;
//! @} gapi_draw_prims
} // namespace draw
} // namespace wip
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_RENDER_TYPES_HPP

View File

@ -0,0 +1,158 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_RMAT_HPP
#define OPENCV_GAPI_RMAT_HPP
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/own/exports.hpp>
// Forward declaration
namespace cv {
namespace gapi {
namespace s11n {
struct IOStream;
struct IIStream;
} // namespace s11n
} // namespace gapi
} // namespace cv
namespace cv {
// "Remote Mat", a general class which provides an abstraction layer over the data
// storage and placement (host, remote device etc) and allows to access this data.
//
// The device specific implementation is hidden in the RMat::Adapter class
//
// The basic flow is the following:
// * Backend which is aware of the remote device:
// - Implements own AdapterT class which is derived from RMat::Adapter
// - Wraps device memory into RMat via make_rmat utility function:
// cv::RMat rmat = cv::make_rmat<AdapterT>(args);
//
// * End user:
// - Writes the code which works with RMats without any knowledge of the remote device:
// void func(const cv::RMat& in_rmat, cv::RMat& out_rmat) {
// // Fetch input data from the device, get mapped memory for output
// cv::RMat::View in_view = in_rmat.access(Access::R);
// cv::RMat::View out_view = out_rmat.access(Access::W);
// performCalculations(in_view, out_view);
// // data from out_view is transferred to the device when out_view is destroyed
// }
/** \addtogroup gapi_data_structures
* @{
*/
class GAPI_EXPORTS RMat
{
public:
// A lightweight wrapper on image data:
// - Doesn't own the memory;
// - Doesn't implement copy semantics (it's assumed that a view is created each time
// wrapped data is being accessed);
// - Has an optional callback which is called when the view is destroyed.
class GAPI_EXPORTS View
{
public:
using DestroyCallback = std::function<void()>;
using stepsT = std::vector<size_t>;
View() = default;
View(const GMatDesc& desc, uchar* data, const stepsT& steps = {}, DestroyCallback&& cb = nullptr);
View(const GMatDesc& desc, uchar* data, size_t step, DestroyCallback&& cb = nullptr);
View(const View&) = delete;
View& operator=(const View&) = delete;
View(View&&) = default;
View& operator=(View&& v);
~View() { if (m_cb) m_cb(); }
cv::Size size() const { return m_desc.size; }
const std::vector<int>& dims() const { return m_desc.dims; }
int cols() const { return m_desc.size.width; }
int rows() const { return m_desc.size.height; }
int type() const;
int depth() const { return m_desc.depth; }
int chan() const { return m_desc.chan; }
size_t elemSize() const { return CV_ELEM_SIZE(type()); }
template<typename T = uchar> T* ptr(int y = 0) {
return reinterpret_cast<T*>(m_data + step()*y);
}
template<typename T = uchar> const T* ptr(int y = 0) const {
return reinterpret_cast<T*>(m_data + step()*y);
}
template<typename T = uchar> T* ptr(int y, int x) {
return reinterpret_cast<T*>(m_data + step()*y + step(1)*x);
}
template<typename T = uchar> const T* ptr(int y, int x) const {
return reinterpret_cast<const T*>(m_data + step()*y + step(1)*x);
}
size_t step(size_t i = 0) const { GAPI_DbgAssert(i<m_steps.size()); return m_steps[i]; }
const stepsT& steps() const { return m_steps; }
private:
GMatDesc m_desc;
uchar* m_data = nullptr;
stepsT m_steps = {0u};
DestroyCallback m_cb = nullptr;
};
enum class Access { R, W };
class Adapter
{
public:
virtual ~Adapter() = default;
virtual GMatDesc desc() const = 0;
// Implementation is responsible for setting the appropriate callback to
// the view when accessed for writing, to ensure that the data from the view
// is transferred to the device when the view is destroyed
virtual View access(Access) = 0;
virtual void serialize(cv::gapi::s11n::IOStream&) {
GAPI_Assert(false && "Generic serialize method of RMat::Adapter does nothing by default. "
"Please, implement it in derived class to properly serialize the object.");
}
virtual void deserialize(cv::gapi::s11n::IIStream&) {
GAPI_Assert(false && "Generic deserialize method of RMat::Adapter does nothing by default. "
"Please, implement it in derived class to properly deserialize the object.");
}
};
using AdapterP = std::shared_ptr<Adapter>;
RMat() = default;
RMat(AdapterP&& a) : m_adapter(std::move(a)) {}
GMatDesc desc() const { return m_adapter->desc(); }
// Note: When accessed for write there is no guarantee that returned view
// will contain actual snapshot of the mapped device memory
// (no guarantee that fetch from a device is performed). The only
// guaranty is that when the view is destroyed, its data will be
// transferred to the device
View access(Access a) const { return m_adapter->access(a); }
// Cast underlying RMat adapter to the particular adapter type,
// return nullptr if underlying type is different
template<typename T> T* get() const
{
static_assert(std::is_base_of<Adapter, T>::value, "T is not derived from Adapter!");
GAPI_Assert(m_adapter != nullptr);
return dynamic_cast<T*>(m_adapter.get());
}
void serialize(cv::gapi::s11n::IOStream& os) const {
m_adapter->serialize(os);
}
private:
AdapterP m_adapter = nullptr;
};
template<typename T, typename... Ts>
RMat make_rmat(Ts&&... args) { return { std::make_shared<T>(std::forward<Ts>(args)...) }; }
/** @} */
} //namespace cv
#endif /* OPENCV_GAPI_RMAT_HPP */

View File

@ -0,0 +1,505 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020-2021 Intel Corporation
#ifndef OPENCV_GAPI_S11N_HPP
#define OPENCV_GAPI_S11N_HPP
#include <vector>
#include <map>
#include <unordered_map>
#include <opencv2/gapi/s11n/base.hpp>
#include <opencv2/gapi/gcomputation.hpp>
#include <opencv2/gapi/rmat.hpp>
#include <opencv2/gapi/media.hpp>
#include <opencv2/gapi/util/util.hpp>
// FIXME: caused by deserialize_runarg
#if (defined _WIN32 || defined _WIN64) && defined _MSC_VER
#pragma warning(disable: 4702)
#endif
namespace cv {
namespace gapi {
/**
* \addtogroup gapi_serialization
* @{
*/
namespace detail {
GAPI_EXPORTS cv::GComputation getGraph(const std::vector<char> &bytes);
GAPI_EXPORTS cv::GMetaArgs getMetaArgs(const std::vector<char> &bytes);
GAPI_EXPORTS cv::GRunArgs getRunArgs(const std::vector<char> &bytes);
GAPI_EXPORTS std::vector<std::string> getVectorOfStrings(const std::vector<char> &bytes);
template<typename... Types>
cv::GCompileArgs getCompileArgs(const std::vector<char> &bytes);
template<typename... AdapterType>
cv::GRunArgs getRunArgsWithAdapters(const std::vector<char> &bytes);
} // namespace detail
/** @brief Serialize a graph represented by GComputation into an array of bytes.
*
* Check different overloads for more examples.
* @param c GComputation to serialize.
* @return serialized vector of bytes.
*/
GAPI_EXPORTS std::vector<char> serialize(const cv::GComputation &c);
/** @overload
* @param ca GCompileArgs to serialize.
*/
GAPI_EXPORTS std::vector<char> serialize(const cv::GCompileArgs& ca);
/** @overload
* @param ma GMetaArgs to serialize.
*/
GAPI_EXPORTS std::vector<char> serialize(const cv::GMetaArgs& ma);
/** @overload
* @param ra GRunArgs to serialize.
*/
GAPI_EXPORTS std::vector<char> serialize(const cv::GRunArgs& ra);
/** @overload
* @param vs std::vector<std::string> to serialize.
*/
GAPI_EXPORTS std::vector<char> serialize(const std::vector<std::string>& vs);
/**
* @private
*/
template<typename T> static inline
T deserialize(const std::vector<char> &bytes);
/** @brief Deserialize GComputation from a byte array.
*
* Check different overloads for more examples.
* @param bytes serialized vector of bytes.
* @return deserialized GComputation object.
*/
template<> inline
cv::GComputation deserialize(const std::vector<char> &bytes) {
return detail::getGraph(bytes);
}
/** @brief Deserialize GMetaArgs from a byte array.
*
* Check different overloads for more examples.
* @param bytes serialized vector of bytes.
* @return deserialized GMetaArgs object.
*/
template<> inline
cv::GMetaArgs deserialize(const std::vector<char> &bytes) {
return detail::getMetaArgs(bytes);
}
/** @brief Deserialize GRunArgs from a byte array.
*
* Check different overloads for more examples.
* @param bytes serialized vector of bytes.
* @return deserialized GRunArgs object.
*/
template<> inline
cv::GRunArgs deserialize(const std::vector<char> &bytes) {
return detail::getRunArgs(bytes);
}
/** @brief Deserialize std::vector<std::string> from a byte array.
*
* Check different overloads for more examples.
* @param bytes serialized vector of bytes.
* @return deserialized std::vector<std::string> object.
*/
template<> inline
std::vector<std::string> deserialize(const std::vector<char> &bytes) {
return detail::getVectorOfStrings(bytes);
}
/**
* @brief Deserialize GCompileArgs which types were specified in the template from a byte array.
*
* @note cv::gapi::s11n::detail::S11N template specialization must be provided to make a custom type
* in GCompileArgs deserializable.
*
* @param bytes vector of bytes to deserialize GCompileArgs object from.
* @return GCompileArgs object.
* @see GCompileArgs cv::gapi::s11n::detail::S11N
*/
template<typename T, typename... Types> inline
typename std::enable_if<std::is_same<T, GCompileArgs>::value, GCompileArgs>::
type deserialize(const std::vector<char> &bytes) {
return detail::getCompileArgs<Types...>(bytes);
}
/**
* @brief Deserialize GRunArgs including RMat and MediaFrame objects if any from a byte array.
*
* Adapter types are specified in the template.
* @note To be used properly specified adapter types must overload their deserialize() method.
* @param bytes vector of bytes to deserialize GRunArgs object from.
* @return GRunArgs including RMat and MediaFrame objects if any.
* @see RMat MediaFrame
*/
template<typename T, typename AtLeastOneAdapterT, typename... AdapterTypes> inline
typename std::enable_if<std::is_same<T, GRunArgs>::value, GRunArgs>::
type deserialize(const std::vector<char> &bytes) {
return detail::getRunArgsWithAdapters<AtLeastOneAdapterT, AdapterTypes...>(bytes);
}
} // namespace gapi
} // namespace cv
namespace cv {
namespace gapi {
namespace s11n {
/** @brief This structure is an interface for serialization routines.
*
* It's main purpose is to provide multiple overloads for operator<<()
* with basic C++ in addition to OpenCV/G-API types.
*
* This sctructure can be inherited and further extended with additional types.
*
* For example, it is utilized in cv::gapi::s11n::detail::S11N as input parameter
* in serialize() method.
*/
struct GAPI_EXPORTS IOStream {
virtual ~IOStream() = default;
// Define the native support for basic C++ types at the API level:
virtual IOStream& operator<< (bool) = 0;
virtual IOStream& operator<< (char) = 0;
virtual IOStream& operator<< (unsigned char) = 0;
virtual IOStream& operator<< (short) = 0;
virtual IOStream& operator<< (unsigned short) = 0;
virtual IOStream& operator<< (int) = 0;
virtual IOStream& operator<< (uint32_t) = 0;
virtual IOStream& operator<< (uint64_t) = 0;
virtual IOStream& operator<< (float) = 0;
virtual IOStream& operator<< (double) = 0;
virtual IOStream& operator<< (const std::string&) = 0;
};
/** @brief This structure is an interface for deserialization routines.
*
* It's main purpose is to provide multiple overloads for operator>>()
* with basic C++ in addition to OpenCV/G-API types.
*
* This structure can be inherited and further extended with additional types.
*
* For example, it is utilized in cv::gapi::s11n::detail::S11N as input parameter
* in deserialize() method.
*/
struct GAPI_EXPORTS IIStream {
virtual ~IIStream() = default;
virtual IIStream& operator>> (bool &) = 0;
virtual IIStream& operator>> (std::vector<bool>::reference) = 0;
virtual IIStream& operator>> (char &) = 0;
virtual IIStream& operator>> (unsigned char &) = 0;
virtual IIStream& operator>> (short &) = 0;
virtual IIStream& operator>> (unsigned short &) = 0;
virtual IIStream& operator>> (int &) = 0;
virtual IIStream& operator>> (float &) = 0;
virtual IIStream& operator>> (double &) = 0;
virtual IIStream& operator >> (uint32_t &) = 0;
virtual IIStream& operator >> (uint64_t &) = 0;
virtual IIStream& operator>> (std::string &) = 0;
};
namespace detail {
GAPI_EXPORTS std::unique_ptr<IIStream> getInStream(const std::vector<char> &bytes);
} // namespace detail
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
// S11N operators
// Note: operators for basic types are defined in IIStream/IOStream
// OpenCV types ////////////////////////////////////////////////////////////////
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::Point &pt);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::Point &pt);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::Point2f &pt);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::Point2f &pt);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::Size &sz);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::Size &sz);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::Rect &rc);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::Rect &rc);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::Scalar &s);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::Scalar &s);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::Mat &m);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::Mat &m);
// FIXME: for GRunArgs serailization
#if !defined(GAPI_STANDALONE)
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::UMat & um);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::UMat & um);
#endif // !defined(GAPI_STANDALONE)
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::RMat &r);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::RMat &r);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::gapi::wip::IStreamSource::Ptr &issptr);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::gapi::wip::IStreamSource::Ptr &issptr);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::detail::VectorRef &vr);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::detail::VectorRef &vr);
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::detail::OpaqueRef &opr);
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::detail::OpaqueRef &opr);
/// @private -- Exclude this function from OpenCV documentation
GAPI_EXPORTS IOStream& operator<< (IOStream& os, const cv::MediaFrame &mf);
/// @private -- Exclude this function from OpenCV documentation
GAPI_EXPORTS IIStream& operator>> (IIStream& is, cv::MediaFrame &mf);
// Generic STL types ////////////////////////////////////////////////////////////////
template<typename K, typename V>
IOStream& operator<< (IOStream& os, const std::map<K, V> &m) {
const uint32_t sz = static_cast<uint32_t>(m.size());
os << sz;
for (const auto& it : m) os << it.first << it.second;
return os;
}
template<typename K, typename V>
IIStream& operator>> (IIStream& is, std::map<K, V> &m) {
m.clear();
uint32_t sz = 0u;
is >> sz;
for (std::size_t i = 0; i < sz; ++i) {
K k{};
V v{};
is >> k >> v;
m[k] = v;
}
return is;
}
template<typename K, typename V>
IOStream& operator<< (IOStream& os, const std::unordered_map<K, V> &m) {
const uint32_t sz = static_cast<uint32_t>(m.size());
os << sz;
for (auto &&it : m) os << it.first << it.second;
return os;
}
template<typename K, typename V>
IIStream& operator>> (IIStream& is, std::unordered_map<K, V> &m) {
m.clear();
uint32_t sz = 0u;
is >> sz;
for (std::size_t i = 0; i < sz; ++i) {
K k{};
V v{};
is >> k >> v;
m[k] = v;
}
return is;
}
template<typename T>
IOStream& operator<< (IOStream& os, const std::vector<T> &ts) {
const uint32_t sz = static_cast<uint32_t>(ts.size());
os << sz;
for (auto &&v : ts) os << v;
return os;
}
template<typename T>
IIStream& operator>> (IIStream& is, std::vector<T> &ts) {
uint32_t sz = 0u;
is >> sz;
if (sz == 0u) {
ts.clear();
}
else {
ts.resize(sz);
for (std::size_t i = 0; i < sz; ++i) is >> ts[i];
}
return is;
}
// Generic: variant serialization
namespace detail {
template<typename V>
IOStream& put_v(IOStream&, const V&, std::size_t) {
GAPI_Assert(false && "variant>>: requested index is invalid");
};
template<typename V, typename X, typename... Xs>
IOStream& put_v(IOStream& os, const V& v, std::size_t x) {
return (x == 0u)
? os << cv::util::get<X>(v)
: put_v<V, Xs...>(os, v, x-1);
}
template<typename V>
IIStream& get_v(IIStream&, V&, std::size_t, std::size_t) {
GAPI_Assert(false && "variant<<: requested index is invalid");
}
template<typename V, typename X, typename... Xs>
IIStream& get_v(IIStream& is, V& v, std::size_t i, std::size_t gi) {
if (i == gi) {
X x{};
is >> x;
v = V{std::move(x)};
return is;
} else return get_v<V, Xs...>(is, v, i+1, gi);
}
} // namespace detail
//! @overload
template<typename... Ts>
IOStream& operator<< (IOStream& os, const cv::util::variant<Ts...> &v) {
os << static_cast<uint32_t>(v.index());
return detail::put_v<cv::util::variant<Ts...>, Ts...>(os, v, v.index());
}
//! @overload
template<typename... Ts>
IIStream& operator>> (IIStream& is, cv::util::variant<Ts...> &v) {
int idx = -1;
is >> idx;
GAPI_Assert(idx >= 0 && idx < (int)sizeof...(Ts));
return detail::get_v<cv::util::variant<Ts...>, Ts...>(is, v, 0u, idx);
}
// FIXME: consider a better solution
/// @private -- Exclude this function from OpenCV documentation
template<typename... Ts>
void getRunArgByIdx (IIStream& is, cv::util::variant<Ts...> &v, uint32_t idx) {
is = detail::get_v<cv::util::variant<Ts...>, Ts...>(is, v, 0u, idx);
}
} // namespace s11n
namespace detail
{
template<typename T> struct try_deserialize_comparg;
template<> struct try_deserialize_comparg<std::tuple<>> {
static cv::util::optional<GCompileArg> exec(const std::string&, cv::gapi::s11n::IIStream&) {
return { };
}
};
template<typename T, typename... Types>
struct try_deserialize_comparg<std::tuple<T, Types...>> {
static cv::util::optional<GCompileArg> exec(const std::string& tag, cv::gapi::s11n::IIStream& is) {
if (tag == cv::detail::CompileArgTag<T>::tag()) {
static_assert(cv::gapi::s11n::detail::has_S11N_spec<T>::value,
"cv::gapi::deserialize<GCompileArgs, Types...> expects Types to have S11N "
"specializations with deserialization callbacks!");
return cv::util::optional<GCompileArg>(
GCompileArg { cv::gapi::s11n::detail::S11N<T>::deserialize(is) });
}
return try_deserialize_comparg<std::tuple<Types...>>::exec(tag, is);
}
};
template<typename ...T>
struct deserialize_arg_with_adapter;
template<typename RA, typename TA>
struct deserialize_arg_with_adapter<RA, TA> {
static GRunArg exec(cv::gapi::s11n::IIStream& is) {
std::unique_ptr<TA> ptr(new TA);
ptr->deserialize(is);
return GRunArg { RA(std::move(ptr)) };
}
};
template<typename RA>
struct deserialize_arg_with_adapter<RA, void> {
static GRunArg exec(cv::gapi::s11n::IIStream&) {
GAPI_Assert(false && "No suitable adapter class found during RMat/MediaFrame deserialization. "
"Please, make sure you've passed them in cv::gapi::deserialize() template");
return GRunArg{};
}
};
template<typename... Types>
struct deserialize_runarg {
static GRunArg exec(cv::gapi::s11n::IIStream& is, uint32_t idx) {
if (idx == GRunArg::index_of<RMat>()) {
// Type or void (if not found)
using TA = typename cv::util::find_adapter_impl<RMat::Adapter, Types...>::type;
return deserialize_arg_with_adapter<RMat, TA>::exec(is);
} else if (idx == GRunArg::index_of<MediaFrame>()) {
// Type or void (if not found)
using TA = typename cv::util::find_adapter_impl<MediaFrame::IAdapter, Types...>::type;
return deserialize_arg_with_adapter<MediaFrame, TA>::exec(is);
} else { // not an adapter holding type runarg - use default deserialization
GRunArg arg;
getRunArgByIdx(is, arg, idx);
return arg;
}
}
};
template<typename... Types>
inline cv::util::optional<GCompileArg> tryDeserializeCompArg(const std::string& tag,
const std::vector<char>& sArg) {
std::unique_ptr<cv::gapi::s11n::IIStream> pArgIs = cv::gapi::s11n::detail::getInStream(sArg);
return try_deserialize_comparg<std::tuple<Types...>>::exec(tag, *pArgIs);
}
template<typename... Types>
cv::GCompileArgs getCompileArgs(const std::vector<char> &sArgs) {
cv::GCompileArgs args;
std::unique_ptr<cv::gapi::s11n::IIStream> pIs = cv::gapi::s11n::detail::getInStream(sArgs);
cv::gapi::s11n::IIStream& is = *pIs;
uint32_t sz = 0;
is >> sz;
for (uint32_t i = 0; i < sz; ++i) {
std::string tag;
is >> tag;
std::vector<char> sArg;
is >> sArg;
cv::util::optional<GCompileArg> dArg =
cv::gapi::detail::tryDeserializeCompArg<Types...>(tag, sArg);
if (dArg.has_value())
{
args.push_back(dArg.value());
}
}
return args;
}
template<typename... AdapterTypes>
cv::GRunArgs getRunArgsWithAdapters(const std::vector<char> &bytes) {
std::unique_ptr<cv::gapi::s11n::IIStream> pIs = cv::gapi::s11n::detail::getInStream(bytes);
cv::gapi::s11n::IIStream& is = *pIs;
cv::GRunArgs args;
uint32_t sz = 0;
is >> sz;
for (uint32_t i = 0; i < sz; ++i) {
uint32_t idx = 0;
is >> idx;
args.push_back(cv::gapi::detail::deserialize_runarg<AdapterTypes...>::exec(is, idx));
}
return args;
}
} // namespace detail
/** @} */
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_S11N_HPP

View File

@ -0,0 +1,80 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020-2021 Intel Corporation
#ifndef OPENCV_GAPI_S11N_BASE_HPP
#define OPENCV_GAPI_S11N_BASE_HPP
#include <opencv2/gapi/own/assert.hpp>
#include <opencv2/gapi/own/exports.hpp>
namespace cv {
namespace gapi {
/**
* @brief This namespace contains G-API serialization and
* deserialization functions and data structures.
*/
namespace s11n {
struct IOStream;
struct IIStream;
namespace detail {
//! @addtogroup gapi_serialization
//! @{
struct NotImplemented {
};
/** @brief This structure allows to implement serialization routines for custom types.
*
* The default S11N for custom types is not implemented.
*
* @note When providing an overloaded implementation for S11N with your type
* don't inherit it from NotImplemented structure.
*
* @note There are lots of overloaded >> and << operators for basic and OpenCV/G-API types
* which can be utilized when serializing a custom type.
*
* Example of usage:
* @snippet modules/gapi/samples/api_ref_snippets.cpp S11N usage
*
*/
template<typename T>
struct S11N: public NotImplemented {
/**
* @brief This function allows user to serialize their custom type.
*
* @note The default overload throws an exception if called. User need to
* properly overload the function to use it.
*/
static void serialize(IOStream &, const T &) {
GAPI_Assert(false && "No serialization routine is provided!");
}
/**
* @brief This function allows user to deserialize their custom type.
*
* @note The default overload throws an exception if called. User need to
* properly overload the function to use it.
*/
static T deserialize(IIStream &) {
GAPI_Assert(false && "No deserialization routine is provided!");
}
};
/// @private -- Exclude this struct from OpenCV documentation
template<typename T> struct has_S11N_spec {
static constexpr bool value = !std::is_base_of<NotImplemented,
S11N<typename std::decay<T>::type>>::value;
};
//! @} gapi_serialization
} // namespace detail
} // namespace s11n
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_S11N_BASE_HPP

View File

@ -0,0 +1,85 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distereoibution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#ifndef OPENCV_GAPI_STEREO_HPP
#define OPENCV_GAPI_STEREO_HPP
#include <opencv2/gapi/gmat.hpp>
#include <opencv2/gapi/gscalar.hpp>
#include <opencv2/gapi/gkernel.hpp>
namespace cv {
namespace gapi {
/**
* The enum specified format of result that you get from @ref cv::gapi::stereo.
*/
enum class StereoOutputFormat {
DEPTH_FLOAT16, ///< Floating point 16 bit value, CV_16FC1.
///< This identifier is deprecated, use DEPTH_16F instead.
DEPTH_FLOAT32, ///< Floating point 32 bit value, CV_32FC1
///< This identifier is deprecated, use DEPTH_16F instead.
DISPARITY_FIXED16_11_5, ///< 16 bit signed: first bit for sign,
///< 10 bits for integer part,
///< 5 bits for fractional part.
///< This identifier is deprecated,
///< use DISPARITY_16Q_10_5 instead.
DISPARITY_FIXED16_12_4, ///< 16 bit signed: first bit for sign,
///< 11 bits for integer part,
///< 4 bits for fractional part.
///< This identifier is deprecated,
///< use DISPARITY_16Q_11_4 instead.
DEPTH_16F = DEPTH_FLOAT16, ///< Same as DEPTH_FLOAT16
DEPTH_32F = DEPTH_FLOAT32, ///< Same as DEPTH_FLOAT32
DISPARITY_16Q_10_5 = DISPARITY_FIXED16_11_5, ///< Same as DISPARITY_FIXED16_11_5
DISPARITY_16Q_11_4 = DISPARITY_FIXED16_12_4 ///< Same as DISPARITY_FIXED16_12_4
};
/**
* @brief This namespace contains G-API Operation Types for Stereo and
* related functionality.
*/
namespace calib3d {
G_TYPED_KERNEL(GStereo, <GMat(GMat, GMat, const StereoOutputFormat)>, "org.opencv.stereo") {
static GMatDesc outMeta(const GMatDesc &left, const GMatDesc &right, const StereoOutputFormat of) {
GAPI_Assert(left.chan == 1);
GAPI_Assert(left.depth == CV_8U);
GAPI_Assert(right.chan == 1);
GAPI_Assert(right.depth == CV_8U);
switch(of) {
case StereoOutputFormat::DEPTH_FLOAT16:
return left.withDepth(CV_16FC1);
case StereoOutputFormat::DEPTH_FLOAT32:
return left.withDepth(CV_32FC1);
case StereoOutputFormat::DISPARITY_FIXED16_11_5:
case StereoOutputFormat::DISPARITY_FIXED16_12_4:
return left.withDepth(CV_16SC1);
default:
GAPI_Assert(false && "Unknown output format!");
}
}
};
} // namespace calib3d
/** @brief Computes disparity/depth map for the specified stereo-pair.
The function computes disparity or depth map depending on passed StereoOutputFormat argument.
@param left 8-bit single-channel left image of @ref CV_8UC1 type.
@param right 8-bit single-channel right image of @ref CV_8UC1 type.
@param of enum to specified output kind: depth or disparity and corresponding type
*/
GAPI_EXPORTS GMat stereo(const GMat& left,
const GMat& right,
const StereoOutputFormat of = StereoOutputFormat::DEPTH_FLOAT32);
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_STEREO_HPP

View File

@ -0,0 +1,126 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_STREAMING_CAP_HPP
#define OPENCV_GAPI_STREAMING_CAP_HPP
/**
* YOUR ATTENTION PLEASE!
*
* This is a header-only implementation of cv::VideoCapture-based
* Stream source. It is not built by default with G-API as G-API
* doesn't depend on videoio module.
*
* If you want to use it in your application, please make sure
* videioio is available in your OpenCV package and is linked to your
* application.
*
* Note for developers: please don't put videoio dependency in G-API
* because of this file.
*/
#include <chrono>
#include <opencv2/videoio.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/streaming/meta.hpp>
namespace cv {
namespace gapi {
namespace wip {
/**
* @brief OpenCV's VideoCapture-based streaming source.
*
* This class implements IStreamSource interface.
* Its constructor takes the same parameters as cv::VideoCapture does.
*
* Please make sure that videoio OpenCV module is available before using
* this in your application (G-API doesn't depend on it directly).
*
* @note stream sources are passed to G-API via shared pointers, so
* please gapi::make_src<> to create objects and ptr() to pass a
* GCaptureSource to cv::gin().
*/
class GCaptureSource: public IStreamSource
{
public:
explicit GCaptureSource(int id) : cap(id) { prep(); }
explicit GCaptureSource(const std::string &path) : cap(path) { prep(); }
// TODO: Add more constructor overloads to make it
// fully compatible with VideoCapture's interface.
protected:
cv::VideoCapture cap;
cv::Mat first;
bool first_pulled = false;
int64_t counter = 0;
void prep()
{
// Prepare first frame to report its meta to engine
// when needed
GAPI_Assert(first.empty());
cv::Mat tmp;
if (!cap.read(tmp))
{
GAPI_Assert(false && "Couldn't grab the very first frame");
}
// NOTE: Some decode/media VideoCapture backends continue
// owning the video buffer under cv::Mat so in order to
// process it safely in a highly concurrent pipeline, clone()
// is the only right way.
first = tmp.clone();
}
virtual bool pull(cv::gapi::wip::Data &data) override
{
if (!first_pulled)
{
GAPI_Assert(!first.empty());
first_pulled = true;
data = first; // no need to clone here since it was cloned already
}
else
{
if (!cap.isOpened()) return false;
cv::Mat frame;
if (!cap.read(frame))
{
// end-of-stream happened
return false;
}
// Same reason to clone as in prep()
data = frame.clone();
}
// Tag data with seq_id/ts
const auto now = std::chrono::system_clock::now();
const auto dur = std::chrono::duration_cast<std::chrono::microseconds>
(now.time_since_epoch());
data.meta[cv::gapi::streaming::meta_tag::timestamp] = int64_t{dur.count()};
data.meta[cv::gapi::streaming::meta_tag::seq_id] = int64_t{counter++};
return true;
}
virtual GMetaArg descr_of() const override
{
GAPI_Assert(!first.empty());
return cv::GMetaArg{cv::descr_of(first)};
}
};
// NB: Overload for using from python
GAPI_EXPORTS_W cv::Ptr<IStreamSource> inline make_capture_src(const std::string& path)
{
return make_src<GCaptureSource>(path);
}
} // namespace wip
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_STREAMING_CAP_HPP

View File

@ -0,0 +1,85 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020-2021 Intel Corporation
#ifndef OPENCV_GAPI_GSTREAMING_DESYNC_HPP
#define OPENCV_GAPI_GSTREAMING_DESYNC_HPP
#include <tuple>
#include <opencv2/gapi/util/util.hpp>
#include <opencv2/gapi/gtype_traits.hpp>
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/gcall.hpp>
#include <opencv2/gapi/gkernel.hpp>
namespace cv {
namespace gapi {
namespace streaming {
namespace detail {
struct GDesync {
static const char *id() {
return "org.opencv.streaming.desync";
}
// An universal yield for desync.
// Yields output objects according to the input Types...
// Reuses gkernel machinery.
// FIXME: This function can be generic and declared in gkernel.hpp
// (it is there already, but a part of GKernelType[M]
template<typename... R, int... IIs>
static std::tuple<R...> yield(cv::GCall &call, cv::detail::Seq<IIs...>) {
return std::make_tuple(cv::detail::Yield<R>::yield(call, IIs)...);
}
};
template<typename G>
G desync(const G &g) {
cv::GKernel k{
GDesync::id() // kernel id
, "" // kernel tag
, [](const GMetaArgs &a, const GArgs &) {return a;} // outMeta callback
, {cv::detail::GTypeTraits<G>::shape} // output Shape
, {cv::detail::GTypeTraits<G>::op_kind} // input data kinds
, {cv::detail::GObtainCtor<G>::get()} // output template ctors
};
cv::GCall call(std::move(k));
call.pass(g);
return std::get<0>(GDesync::yield<G>(call, cv::detail::MkSeq<1>::type()));
}
} // namespace detail
/**
* @brief Starts a desynchronized branch in the graph.
*
* This operation takes a single G-API data object and returns a
* graph-level "duplicate" of this object.
*
* Operations which use this data object can be desynchronized
* from the rest of the graph.
*
* This operation has no effect when a GComputation is compiled with
* regular cv::GComputation::compile(), since cv::GCompiled objects
* always produce their full output vectors.
*
* This operation only makes sense when a GComputation is compiled in
* straming mode with cv::GComputation::compileStreaming(). If this
* operation is used and there are desynchronized outputs, the user
* should use a special version of cv::GStreamingCompiled::pull()
* which produces an array of cv::util::optional<> objects.
*
* @note This feature is highly experimental now and is currently
* limited to a single GMat/GFrame argument only.
*/
GAPI_EXPORTS GMat desync(const GMat &g);
GAPI_EXPORTS GFrame desync(const GFrame &f);
} // namespace streaming
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GSTREAMING_DESYNC_HPP

View File

@ -0,0 +1,94 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_GSTREAMING_FORMAT_HPP
#define OPENCV_GAPI_GSTREAMING_FORMAT_HPP
#include <opencv2/gapi/gkernel.hpp> // GKernelPackage
namespace cv {
namespace gapi {
namespace streaming {
GAPI_EXPORTS cv::gapi::GKernelPackage kernels();
G_API_OP(GBGR, <GMat(GFrame)>, "org.opencv.streaming.BGR")
{
static GMatDesc outMeta(const GFrameDesc& in) { return GMatDesc{CV_8U, 3, in.size}; }
};
G_API_OP(GY, <GMat(GFrame)>, "org.opencv.streaming.Y") {
static GMatDesc outMeta(const GFrameDesc& frameDesc) {
return GMatDesc { CV_8U, 1, frameDesc.size , false };
}
};
G_API_OP(GUV, <GMat(GFrame)>, "org.opencv.streaming.UV") {
static GMatDesc outMeta(const GFrameDesc& frameDesc) {
return GMatDesc { CV_8U, 2, cv::Size(frameDesc.size.width / 2, frameDesc.size.height / 2),
false };
}
};
/** @brief Gets bgr plane from input frame
@note Function textual ID is "org.opencv.streaming.BGR"
@param in Input frame
@return Image in BGR format
*/
GAPI_EXPORTS cv::GMat BGR(const cv::GFrame& in);
/** @brief Extracts Y plane from media frame.
Output image is 8-bit 1-channel image of @ref CV_8UC1.
@note Function textual ID is "org.opencv.streaming.Y"
@param frame input media frame.
*/
GAPI_EXPORTS GMat Y(const cv::GFrame& frame);
/** @brief Extracts UV plane from media frame.
Output image is 8-bit 2-channel image of @ref CV_8UC2.
@note Function textual ID is "org.opencv.streaming.UV"
@param frame input media frame.
*/
GAPI_EXPORTS GMat UV(const cv::GFrame& frame);
} // namespace streaming
//! @addtogroup gapi_transform
//! @{
/** @brief Makes a copy of the input image. Note that this copy may be not real
(no actual data copied). Use this function to maintain graph contracts,
e.g when graph's input needs to be passed directly to output, like in Streaming mode.
@note Function textual ID is "org.opencv.streaming.copy"
@param in Input image
@return Copy of the input
*/
GAPI_EXPORTS_W GMat copy(const GMat& in);
/** @brief Makes a copy of the input frame. Note that this copy may be not real
(no actual data copied). Use this function to maintain graph contracts,
e.g when graph's input needs to be passed directly to output, like in Streaming mode.
@note Function textual ID is "org.opencv.streaming.copy"
@param in Input frame
@return Copy of the input
*/
GAPI_EXPORTS GFrame copy(const GFrame& in);
//! @} gapi_transform
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GSTREAMING_FORMAT_HPP

View File

@ -0,0 +1,79 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_GSTREAMING_META_HPP
#define OPENCV_GAPI_GSTREAMING_META_HPP
#include <opencv2/gapi/gopaque.hpp>
#include <opencv2/gapi/gcall.hpp>
#include <opencv2/gapi/gkernel.hpp>
#include <opencv2/gapi/gtype_traits.hpp>
namespace cv {
namespace gapi {
namespace streaming {
// FIXME: the name is debatable
namespace meta_tag {
static constexpr const char * timestamp = "org.opencv.gapi.meta.timestamp";
static constexpr const char * seq_id = "org.opencv.gapi.meta.seq_id";
} // namespace meta_tag
namespace detail {
struct GMeta {
static const char *id() {
return "org.opencv.streaming.meta";
}
// A universal yield for meta(), same as in GDesync
template<typename... R, int... IIs>
static std::tuple<R...> yield(cv::GCall &call, cv::detail::Seq<IIs...>) {
return std::make_tuple(cv::detail::Yield<R>::yield(call, IIs)...);
}
// Also a universal outMeta stub here
static GMetaArgs getOutMeta(const GMetaArgs &args, const GArgs &) {
return args;
}
};
} // namespace detail
template<typename T, typename G>
cv::GOpaque<T> meta(G g, const std::string &tag) {
using O = cv::GOpaque<T>;
cv::GKernel k{
detail::GMeta::id() // kernel id
, tag // kernel tag. Use meta tag here
, &detail::GMeta::getOutMeta // outMeta callback
, {cv::detail::GTypeTraits<O>::shape} // output Shape
, {cv::detail::GTypeTraits<G>::op_kind} // input data kinds
, {cv::detail::GObtainCtor<O>::get()} // output template ctors
};
cv::GCall call(std::move(k));
call.pass(g);
return std::get<0>(detail::GMeta::yield<O>(call, cv::detail::MkSeq<1>::type()));
}
template<typename G>
cv::GOpaque<int64_t> timestamp(G g) {
return meta<int64_t>(g, meta_tag::timestamp);
}
template<typename G>
cv::GOpaque<int64_t> seq_id(G g) {
return meta<int64_t>(g, meta_tag::seq_id);
}
template<typename G>
cv::GOpaque<int64_t> seqNo(G g) {
// Old name, compatibility only
return seq_id(g);
}
} // namespace streaming
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_GSTREAMING_META_HPP

View File

@ -0,0 +1,88 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#ifndef OPENCV_GAPI_STREAMING_ONEVPL_CFG_PARAMS_HPP
#define OPENCV_GAPI_STREAMING_ONEVPL_CFG_PARAMS_HPP
#include <map>
#include <memory>
#include <string>
#include <opencv2/gapi/streaming/source.hpp>
#include <opencv2/gapi/util/variant.hpp>
namespace cv {
namespace gapi {
namespace wip {
namespace onevpl {
/**
* @brief Public class is using for creation of onevpl::GSource instances.
*
* Class members availaible through methods @ref CfgParam::get_name() and @ref CfgParam::get_value() are used by
* onevpl::GSource inner logic to create or find oneVPL particular implementation
* (software/hardware, specific API version and etc.).
*
* @note Because oneVPL may provide several implementations which are satisfying with multiple (or single one) @ref CfgParam
* criteria therefore it is possible to configure `preferred` parameters. This kind of CfgParams are created
* using `is_major = false` argument in @ref CfgParam::create method and are not used by creating oneVPL particular implementations.
* Instead they fill out a "score table" to select preferrable implementation from available list. Implementation are satisfying
* with most of these optional params would be chosen.
* If no one optional CfgParam params were present then first of available oneVPL implementation would be applied.
* Please get on https://spec.oneapi.io/versions/latest/elements/oneVPL/source/API_ref/VPL_disp_api_func.html?highlight=mfxcreateconfig#mfxsetconfigfilterproperty
* for using OneVPL configuration. In this schema `mfxU8 *name` represents @ref CfgParam::get_name() and
* `mfxVariant value` is @ref CfgParam::get_value()
*/
struct GAPI_EXPORTS CfgParam {
using name_t = std::string;
using value_t = cv::util::variant<uint8_t, int8_t,
uint16_t, int16_t,
uint32_t, int32_t,
uint64_t, int64_t,
float_t,
double_t,
void*,
std::string>;
/**
* Create onevp::GSource configuration parameter.
*
*@param name name of parameter.
*@param value value of parameter.
*@param is_major TRUE if parameter MUST be provided by OneVPL inner implementation, FALSE for optional (for resolve multiple available implementations).
*
*/
template<typename ValueType>
static CfgParam create(const std::string& name, ValueType&& value, bool is_major = true) {
CfgParam param(name, CfgParam::value_t(std::forward<ValueType>(value)), is_major);
return param;
}
struct Priv;
const name_t& get_name() const;
const value_t& get_value() const;
bool is_major() const;
bool operator==(const CfgParam& rhs) const;
bool operator< (const CfgParam& rhs) const;
bool operator!=(const CfgParam& rhs) const;
CfgParam& operator=(const CfgParam& src);
CfgParam& operator=(CfgParam&& src);
CfgParam(const CfgParam& src);
CfgParam(CfgParam&& src);
~CfgParam();
private:
CfgParam(const std::string& param_name, value_t&& param_value, bool is_major_param);
std::shared_ptr<Priv> m_priv;
};
} //namespace onevpl
} // namespace wip
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_STREAMING_ONEVPL_CFG_PARAMS_HPP

View File

@ -0,0 +1,74 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#ifndef GAPI_STREAMING_ONEVPL_ONEVPL_DATA_PROVIDER_INTERFACE_HPP
#define GAPI_STREAMING_ONEVPL_ONEVPL_DATA_PROVIDER_INTERFACE_HPP
#include <exception>
#include <string>
#include <opencv2/gapi/own/exports.hpp> // GAPI_EXPORTS
namespace cv {
namespace gapi {
namespace wip {
namespace onevpl {
struct GAPI_EXPORTS DataProviderException : public std::exception {
virtual ~DataProviderException() {};
};
struct GAPI_EXPORTS DataProviderSystemErrorException : public DataProviderException {
DataProviderSystemErrorException(int error_code, const std::string& desription = std::string());
virtual ~DataProviderSystemErrorException();
virtual const char* what() const noexcept override;
private:
std::string reason;
};
/**
* @brief Public interface allows to customize extraction of video stream data
* used by onevpl::GSource instead of reading stream from file (by default).
*
* Interface implementation constructor MUST provide consistency and creates fully operable object.
* If error happened implementation MUST throw `DataProviderException` kind exceptions
*
* @note Interface implementation MUST manage stream and other constructed resources by itself to avoid any kind of leak.
* For simple interface implementation example please see `StreamDataProvider` in `tests/streaming/gapi_streaming_tests.cpp`
*/
struct GAPI_EXPORTS IDataProvider {
using Ptr = std::shared_ptr<IDataProvider>;
virtual ~IDataProvider() {};
/**
* The function is used by onevpl::GSource to extract binary data stream from @ref IDataProvider
* implementation.
*
* It MUST throw `DataProviderException` kind exceptions in fail cases.
* It MUST return 0 in EOF which considered as not-fail case.
*
* @param out_data_bytes_size the available capacity of out_data buffer.
* @param out_data the output consumer buffer with capacity out_data_bytes_size.
* @return fetched bytes count.
*/
virtual size_t fetch_data(size_t out_data_bytes_size, void* out_data) = 0;
/**
* The function is used by onevpl::GSource to check more binary data availability.
*
* It MUST return TRUE in case of EOF and NO_THROW exceptions.
*
* @return boolean value which detects end of stream
*/
virtual bool empty() const = 0;
};
} // namespace onevpl
} // namespace wip
} // namespace gapi
} // namespace cv
#endif // GAPI_STREAMING_ONEVPL_ONEVPL_DATA_PROVIDER_INTERFACE_HPP

View File

@ -0,0 +1,64 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#ifndef OPENCV_GAPI_STREAMING_ONEVPL_ONEVPL_SOURCE_HPP
#define OPENCV_GAPI_STREAMING_ONEVPL_ONEVPL_SOURCE_HPP
#include <opencv2/gapi/garg.hpp>
#include <opencv2/gapi/streaming/meta.hpp>
#include <opencv2/gapi/streaming/source.hpp>
#include <opencv2/gapi/streaming/onevpl/cfg_params.hpp>
#include <opencv2/gapi/streaming/onevpl/data_provider_interface.hpp>
namespace cv {
namespace gapi {
namespace wip {
namespace onevpl {
using CfgParams = std::vector<CfgParam>;
/**
* @brief G-API streaming source based on OneVPL implementation.
*
* This class implements IStreamSource interface.
* Its constructor takes source file path (in usual way) or @ref onevpl::IDataProvider
* interface implementation (for not file-based sources). It also allows to pass-through
* oneVPL configuration parameters by using several @ref onevpl::CfgParam.
*
* @note stream sources are passed to G-API via shared pointers, so
* please gapi::make_onevpl_src<> to create objects and ptr() to pass a
* GSource to cv::gin().
*/
class GAPI_EXPORTS GSource : public IStreamSource
{
public:
struct Priv;
GSource(const std::string& filePath,
const CfgParams& cfg_params = CfgParams{});
GSource(std::shared_ptr<IDataProvider> source,
const CfgParams& cfg_params = CfgParams{});
~GSource() override;
bool pull(cv::gapi::wip::Data& data) override;
GMetaArg descr_of() const override;
private:
explicit GSource(std::unique_ptr<Priv>&& impl);
std::unique_ptr<Priv> m_priv;
};
} // namespace onevpl
template<class... Args>
GAPI_EXPORTS_W cv::Ptr<IStreamSource> inline make_onevpl_src(Args&&... args)
{
return make_src<onevpl::GSource>(std::forward<Args>(args)...);
}
} // namespace wip
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_STREAMING_ONEVPL_ONEVPL_SOURCE_HPP

View File

@ -0,0 +1,62 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2019 Intel Corporation
#ifndef OPENCV_GAPI_STREAMING_SOURCE_HPP
#define OPENCV_GAPI_STREAMING_SOURCE_HPP
#include <memory> // shared_ptr
#include <type_traits> // is_base_of
#include <opencv2/gapi/gmetaarg.hpp> // GMetaArg
namespace cv {
namespace gapi {
namespace wip {
struct Data; // "forward-declaration" of GRunArg
/**
* @brief Abstract streaming pipeline source.
*
* Implement this interface if you want customize the way how data is
* streaming into GStreamingCompiled.
*
* Objects implementing this interface can be passed to
* GStreamingCompiled using setSource() with cv::gin(). Regular
* compiled graphs (GCompiled) don't support input objects of this
* type.
*
* Default cv::VideoCapture-based implementation is available, see
* cv::gapi::wip::GCaptureSource.
*
* @note stream sources are passed to G-API via shared pointers, so
* please use ptr() when passing a IStreamSource implementation to
* cv::gin().
*/
class IStreamSource: public std::enable_shared_from_this<IStreamSource>
{
public:
using Ptr = std::shared_ptr<IStreamSource>;
Ptr ptr() { return shared_from_this(); }
virtual bool pull(Data &data) = 0;
virtual GMetaArg descr_of() const = 0;
virtual ~IStreamSource() = default;
};
template<class T, class... Args>
IStreamSource::Ptr inline make_src(Args&&... args)
{
static_assert(std::is_base_of<IStreamSource, T>::value,
"T must implement the cv::gapi::IStreamSource interface!");
auto src_ptr = std::make_shared<T>(std::forward<Args>(args)...);
return src_ptr->ptr();
}
} // namespace wip
} // namespace gapi
} // namespace cv
#endif // OPENCV_GAPI_STREAMING_SOURCE_HPP

View File

@ -0,0 +1,30 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#ifndef OPENCV_GAPI_STREAMING_SYNC_HPP
#define OPENCV_GAPI_STREAMING_SYNC_HPP
namespace cv {
namespace gapi {
namespace streaming {
enum class sync_policy {
dont_sync,
drop
};
} // namespace streaming
} // namespace gapi
namespace detail {
template<> struct CompileArgTag<gapi::streaming::sync_policy> {
static const char* tag() { return "gapi.streaming.sync_policy"; }
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_STREAMING_SYNC_HPP

View File

@ -0,0 +1,186 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_ANY_HPP
#define OPENCV_GAPI_UTIL_ANY_HPP
#include <memory>
#include <type_traits>
#include <typeinfo>
#include <utility>
#include <opencv2/gapi/util/throw.hpp>
#if defined(_MSC_VER)
// disable MSVC warning on "multiple copy constructors specified"
# pragma warning(disable: 4521)
#endif
namespace cv
{
namespace internal
{
template <class T, class Source>
T down_cast(Source operand)
{
#if defined(__GXX_RTTI) || defined(_CPPRTTI)
return dynamic_cast<T>(operand);
#else
#warning used static cast instead of dynamic because RTTI is disabled
return static_cast<T>(operand);
#endif
}
}
namespace util
{
class bad_any_cast : public std::bad_cast
{
public:
virtual const char* what() const noexcept override
{
return "Bad any cast";
}
};
//modeled against C++17 std::any
class any
{
private:
struct holder;
using holder_ptr = std::unique_ptr<holder>;
struct holder
{
virtual holder_ptr clone() = 0;
virtual ~holder() = default;
};
template <typename value_t>
struct holder_impl : holder
{
value_t v;
template<typename arg_t>
holder_impl(arg_t&& a) : v(std::forward<arg_t>(a)) {}
holder_ptr clone() override { return holder_ptr(new holder_impl (v));}
};
holder_ptr hldr;
public:
template<class value_t>
any(value_t&& arg) : hldr(new holder_impl<typename std::decay<value_t>::type>( std::forward<value_t>(arg))) {}
any(any const& src) : hldr( src.hldr ? src.hldr->clone() : nullptr) {}
//simple hack in order not to write enable_if<not any> for the template constructor
any(any & src) : any (const_cast<any const&>(src)) {}
any() = default;
any(any&& ) = default;
any& operator=(any&&) = default;
any& operator=(any const& src)
{
any copy(src);
swap(*this, copy);
return *this;
}
template<class value_t>
friend value_t* any_cast(any* operand);
template<class value_t>
friend const value_t* any_cast(const any* operand);
template<class value_t>
friend value_t& unsafe_any_cast(any& operand);
template<class value_t>
friend const value_t& unsafe_any_cast(const any& operand);
friend void swap(any & lhs, any& rhs)
{
swap(lhs.hldr, rhs.hldr);
}
};
template<class value_t>
value_t* any_cast(any* operand)
{
auto casted = internal::down_cast<any::holder_impl<typename std::decay<value_t>::type> *>(operand->hldr.get());
if (casted){
return & (casted->v);
}
return nullptr;
}
template<class value_t>
const value_t* any_cast(const any* operand)
{
auto casted = internal::down_cast<any::holder_impl<typename std::decay<value_t>::type> *>(operand->hldr.get());
if (casted){
return & (casted->v);
}
return nullptr;
}
template<class value_t>
value_t& any_cast(any& operand)
{
auto ptr = any_cast<value_t>(&operand);
if (ptr)
{
return *ptr;
}
throw_error(bad_any_cast());
}
template<class value_t>
const value_t& any_cast(const any& operand)
{
auto ptr = any_cast<value_t>(&operand);
if (ptr)
{
return *ptr;
}
throw_error(bad_any_cast());
}
template<class value_t>
inline value_t& unsafe_any_cast(any& operand)
{
#ifdef DEBUG
return any_cast<value_t>(operand);
#else
return static_cast<any::holder_impl<typename std::decay<value_t>::type> *>(operand.hldr.get())->v;
#endif
}
template<class value_t>
inline const value_t& unsafe_any_cast(const any& operand)
{
#ifdef DEBUG
return any_cast<value_t>(operand);
#else
return static_cast<any::holder_impl<typename std::decay<value_t>::type> *>(operand.hldr.get())->v;
#endif
}
} // namespace util
} // namespace cv
#if defined(_MSC_VER)
// Enable "multiple copy constructors specified" back
# pragma warning(default: 4521)
#endif
#endif // OPENCV_GAPI_UTIL_ANY_HPP

View File

@ -0,0 +1,19 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_COMPILER_HINTS_HPP
#define OPENCV_GAPI_UTIL_COMPILER_HINTS_HPP
namespace cv
{
namespace util
{
//! Utility template function to prevent "unused" warnings by various compilers.
template<typename T> void suppress_unused_warning( const T& ) {}
} // namespace util
} // namespace cv
#endif /* OPENCV_GAPI_UTIL_COMPILER_HINTS_HPP */

View File

@ -0,0 +1,34 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_COPY_THROUGH_MOVE_HPP
#define OPENCV_GAPI_UTIL_COPY_THROUGH_MOVE_HPP
#include <opencv2/gapi/util/type_traits.hpp> //decay_t
namespace cv
{
namespace util
{
//This is a tool to move initialize captures of a lambda in C++11
template<typename T>
struct copy_through_move_t{
T value;
const T& get() const {return value;}
T& get() {return value;}
copy_through_move_t(T&& g) : value(std::move(g)) {}
copy_through_move_t(copy_through_move_t&&) = default;
copy_through_move_t(copy_through_move_t const& lhs) : copy_through_move_t(std::move(const_cast<copy_through_move_t&>(lhs))) {}
};
template<typename T>
copy_through_move_t<util::decay_t<T>> copy_through_move(T&& t){
return std::forward<T>(t);
}
} // namespace util
} // namespace cv
#endif /* OPENCV_GAPI_UTIL_COPY_THROUGH_MOVE_HPP */

View File

@ -0,0 +1,178 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_OPTIONAL_HPP
#define OPENCV_GAPI_UTIL_OPTIONAL_HPP
#include <opencv2/gapi/util/variant.hpp>
// A poor man's `optional` implementation, incompletely modeled against C++17 spec.
namespace cv
{
namespace util
{
class bad_optional_access: public std::exception
{
public:
virtual const char *what() const noexcept override
{
return "Bad optional access";
}
};
// TODO: nullopt_t
// Interface ///////////////////////////////////////////////////////////////
template<typename T> class optional
{
public:
// Constructors
// NB.: there were issues with Clang 3.8 when =default() was used
// instead {}
optional() {};
optional(const optional&) = default;
explicit optional(T&&) noexcept;
explicit optional(const T&) noexcept;
optional(optional&&) noexcept;
// TODO: optional(nullopt_t) noexcept;
// TODO: optional(const optional<U> &)
// TODO: optional(optional<U> &&)
// TODO: optional(Args&&...)
// TODO: optional(initializer_list<U>)
// TODO: optional(U&& value);
// Assignment
optional& operator=(const optional&) = default;
optional& operator=(optional&&);
// Observers
T* operator-> ();
const T* operator-> () const;
T& operator* ();
const T& operator* () const;
// TODO: && versions
operator bool() const noexcept;
bool has_value() const noexcept;
T& value();
const T& value() const;
// TODO: && versions
template<class U>
T value_or(U &&default_value) const;
void swap(optional &other) noexcept;
void reset() noexcept;
// TODO: emplace
// TODO: operator==, !=, <, <=, >, >=
private:
struct nothing {};
util::variant<nothing, T> m_holder;
};
template<class T>
optional<typename std::decay<T>::type> make_optional(T&& value);
// TODO: Args... and initializer_list versions
// Implementation //////////////////////////////////////////////////////////
template<class T> optional<T>::optional(T &&v) noexcept
: m_holder(std::move(v))
{
}
template<class T> optional<T>::optional(const T &v) noexcept
: m_holder(v)
{
}
template<class T> optional<T>::optional(optional&& rhs) noexcept
: m_holder(std::move(rhs.m_holder))
{
rhs.reset();
}
template<class T> optional<T>& optional<T>::operator=(optional&& rhs)
{
m_holder = std::move(rhs.m_holder);
rhs.reset();
return *this;
}
template<class T> T* optional<T>::operator-> ()
{
return & *(*this);
}
template<class T> const T* optional<T>::operator-> () const
{
return & *(*this);
}
template<class T> T& optional<T>::operator* ()
{
return this->value();
}
template<class T> const T& optional<T>::operator* () const
{
return this->value();
}
template<class T> optional<T>::operator bool() const noexcept
{
return this->has_value();
}
template<class T> bool optional<T>::has_value() const noexcept
{
return util::holds_alternative<T>(m_holder);
}
template<class T> T& optional<T>::value()
{
if (!this->has_value())
throw_error(bad_optional_access());
return util::get<T>(m_holder);
}
template<class T> const T& optional<T>::value() const
{
if (!this->has_value())
throw_error(bad_optional_access());
return util::get<T>(m_holder);
}
template<class T>
template<class U> T optional<T>::value_or(U &&default_value) const
{
return (this->has_value() ? this->value() : T(default_value));
}
template<class T> void optional<T>::swap(optional<T> &other) noexcept
{
m_holder.swap(other.m_holder);
}
template<class T> void optional<T>::reset() noexcept
{
if (this->has_value())
m_holder = nothing{};
}
template<class T>
optional<typename std::decay<T>::type> make_optional(T&& value)
{
return optional<typename std::decay<T>::type>(std::forward<T>(value));
}
} // namespace util
} // namespace cv
#endif // OPENCV_GAPI_UTIL_OPTIONAL_HPP

View File

@ -0,0 +1,36 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_THROW_HPP
#define OPENCV_GAPI_UTIL_THROW_HPP
#include <utility> // std::forward
#if !defined(__EXCEPTIONS)
#include <stdlib.h>
#include <stdio.h>
#endif
namespace cv
{
namespace util
{
template <class ExceptionType>
[[noreturn]] void throw_error(ExceptionType &&e)
{
#if defined(__EXCEPTIONS) || defined(_CPPUNWIND)
throw std::forward<ExceptionType>(e);
#else
fprintf(stderr, "An exception thrown! %s\n" , e.what());
fflush(stderr);
abort();
#endif
}
} // namespace util
} // namespace cv
#endif // OPENCV_GAPI_UTIL_THROW_HPP

View File

@ -0,0 +1,31 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_TYPE_TRAITS_HPP
#define OPENCV_GAPI_UTIL_TYPE_TRAITS_HPP
#include <type_traits>
namespace cv
{
namespace util
{
//these are C++14 parts of type_traits :
template< bool B, class T = void >
using enable_if_t = typename std::enable_if<B,T>::type;
template<typename T>
using decay_t = typename std::decay<T>::type;
//this is not part of C++14 but still, of pretty common usage
template<class T, class U, class V = void>
using are_different_t = enable_if_t< !std::is_same<decay_t<T>, decay_t<U>>::value, V>;
} // namespace cv
} // namespace util
#endif // OPENCV_GAPI_UTIL_TYPE_TRAITS_HPP

View File

@ -0,0 +1,183 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_HPP
#define OPENCV_GAPI_UTIL_HPP
#include <tuple>
// \cond HIDDEN_SYMBOLS
// This header file contains some generic utility functions which are
// used in other G-API Public API headers.
//
// PLEASE don't put any stuff here if it is NOT used in public API headers!
namespace cv
{
namespace detail
{
// Recursive integer sequence type, useful for enumerating elements of
// template parameter packs.
template<int... I> struct Seq { using next = Seq<I..., sizeof...(I)>; };
template<int Sz> struct MkSeq { using type = typename MkSeq<Sz-1>::type::next; };
template<> struct MkSeq<0>{ using type = Seq<>; };
// Checks if elements of variadic template satisfy the given Predicate.
// Implemented via tuple, with an interface to accept plain type lists
template<template<class> class, typename, typename...> struct all_satisfy;
template<template<class> class F, typename T, typename... Ts>
struct all_satisfy<F, std::tuple<T, Ts...> >
{
static const constexpr bool value = F<T>::value
&& all_satisfy<F, std::tuple<Ts...> >::value;
};
template<template<class> class F, typename T>
struct all_satisfy<F, std::tuple<T> >
{
static const constexpr bool value = F<T>::value;
};
template<template<class> class F, typename T, typename... Ts>
struct all_satisfy: public all_satisfy<F, std::tuple<T, Ts...> > {};
// Permute given tuple type C with given integer sequence II
// Sequence may be less than tuple C size.
template<class, class> struct permute_tuple;
template<class C, int... IIs>
struct permute_tuple<C, Seq<IIs...> >
{
using type = std::tuple< typename std::tuple_element<IIs, C>::type... >;
};
// Given T..., generates a type sequence of sizeof...(T)-1 elements
// which is T... without its last element
// Implemented via tuple, with an interface to accept plain type lists
template<typename T, typename... Ts> struct all_but_last;
template<typename T, typename... Ts>
struct all_but_last<std::tuple<T, Ts...> >
{
using C = std::tuple<T, Ts...>;
using S = typename MkSeq<std::tuple_size<C>::value - 1>::type;
using type = typename permute_tuple<C, S>::type;
};
template<typename T, typename... Ts>
struct all_but_last: public all_but_last<std::tuple<T, Ts...> > {};
template<typename... Ts>
using all_but_last_t = typename all_but_last<Ts...>::type;
// NB.: This is here because there's no constexpr std::max in C++11
template<std::size_t S0, std::size_t... SS> struct max_of_t
{
static constexpr const std::size_t rest = max_of_t<SS...>::value;
static constexpr const std::size_t value = rest > S0 ? rest : S0;
};
template<std::size_t S> struct max_of_t<S>
{
static constexpr const std::size_t value = S;
};
template <typename...>
struct contains : std::false_type{};
template <typename T1, typename T2, typename... Ts>
struct contains<T1, T2, Ts...> : std::integral_constant<bool, std::is_same<T1, T2>::value ||
contains<T1, Ts...>::value> {};
template<typename T, typename... Types>
struct contains<T, std::tuple<Types...>> : std::integral_constant<bool, contains<T, Types...>::value> {};
template <typename...>
struct all_unique : std::true_type{};
template <typename T1, typename... Ts>
struct all_unique<T1, Ts...> : std::integral_constant<bool, !contains<T1, Ts...>::value &&
all_unique<Ts...>::value> {};
template<typename>
struct tuple_wrap_helper;
template<typename T> struct tuple_wrap_helper
{
using type = std::tuple<T>;
static type get(T&& obj) { return std::make_tuple(std::move(obj)); }
};
template<typename... Objs>
struct tuple_wrap_helper<std::tuple<Objs...>>
{
using type = std::tuple<Objs...>;
static type get(std::tuple<Objs...>&& objs) { return std::forward<std::tuple<Objs...>>(objs); }
};
} // namespace detail
namespace util
{
template<typename ...L>
struct overload_lamba_set;
template<typename L1>
struct overload_lamba_set<L1> : public L1
{
overload_lamba_set(L1&& lambda) : L1(std::move(lambda)) {}
overload_lamba_set(const L1& lambda) : L1(lambda) {}
using L1::operator();
};
template<typename L1, typename ...L>
struct overload_lamba_set<L1, L...> : public L1, public overload_lamba_set<L...>
{
using base_type = overload_lamba_set<L...>;
overload_lamba_set(L1 &&lambda1, L&& ...lambdas):
L1(std::move(lambda1)),
base_type(std::forward<L>(lambdas)...) {}
overload_lamba_set(const L1 &lambda1, L&& ...lambdas):
L1(lambda1),
base_type(std::forward<L>(lambdas)...) {}
using L1::operator();
using base_type::operator();
};
template<typename... L>
overload_lamba_set<L...> overload_lambdas(L&& ...lambdas)
{
return overload_lamba_set<L...>(std::forward<L>(lambdas)...);
}
template<typename ...T>
struct find_adapter_impl;
template<typename AdapterT, typename T>
struct find_adapter_impl<AdapterT, T>
{
using type = typename std::conditional<std::is_base_of<AdapterT, T>::value,
T,
void>::type;
static constexpr bool found = std::is_base_of<AdapterT, T>::value;
};
template<typename AdapterT, typename T, typename... Types>
struct find_adapter_impl<AdapterT, T, Types...>
{
using type = typename std::conditional<std::is_base_of<AdapterT, T>::value,
T,
typename find_adapter_impl<AdapterT, Types...>::type>::type;
static constexpr bool found = std::is_base_of<AdapterT, T>::value ||
find_adapter_impl<AdapterT, Types...>::found;
};
} // namespace util
} // namespace cv
// \endcond
#endif // OPENCV_GAPI_UTIL_HPP

View File

@ -0,0 +1,658 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#ifndef OPENCV_GAPI_UTIL_VARIANT_HPP
#define OPENCV_GAPI_UTIL_VARIANT_HPP
#include <array>
#include <type_traits>
#include <opencv2/gapi/util/compiler_hints.hpp>
#include <opencv2/gapi/util/throw.hpp>
#include <opencv2/gapi/util/util.hpp> // max_of_t
#include <opencv2/gapi/util/type_traits.hpp>
// A poor man's `variant` implementation, incompletely modeled against C++17 spec.
namespace cv
{
namespace util
{
namespace detail
{
template<std::size_t I, typename Target, typename First, typename... Remaining>
struct type_list_index_helper
{
static const constexpr bool is_same = std::is_same<Target, First>::value;
static const constexpr std::size_t value =
std::conditional<is_same, std::integral_constant<std::size_t, I>, type_list_index_helper<I + 1, Target, Remaining...>>::type::value;
};
template<std::size_t I, typename Target, typename First>
struct type_list_index_helper<I, Target, First>
{
static_assert(std::is_same<Target, First>::value, "Type not found");
static const constexpr std::size_t value = I;
};
}
template<typename Target, typename... Types>
struct type_list_index
{
static const constexpr std::size_t value = detail::type_list_index_helper<0, Target, Types...>::value;
};
template<std::size_t Index, class... Types >
struct type_list_element
{
using type = typename std::tuple_element<Index, std::tuple<Types...> >::type;
};
class bad_variant_access: public std::exception
{
public:
virtual const char *what() const noexcept override
{
return "Bad variant access";
}
};
// Interface ///////////////////////////////////////////////////////////////
struct monostate {};
inline bool operator==(const util::monostate&, const util::monostate&)
{
return true;
}
template<typename... Ts> // FIXME: no references, arrays, and void
class variant
{
// FIXME: Replace with std::aligned_union after gcc4.8 support is dropped
static constexpr const std::size_t S = cv::detail::max_of_t<sizeof(Ts)...>::value;
static constexpr const std::size_t A = cv::detail::max_of_t<alignof(Ts)...>::value;
using Memory = typename std::aligned_storage<S, A>::type[1];
template<typename T> struct cctr_h {
static void help(Memory memory, const Memory from) {
new (memory) T(*reinterpret_cast<const T*>(from));
}
};
template<typename T> struct mctr_h {
static void help(Memory memory, void *pval) {
new (memory) T(std::move(*reinterpret_cast<T*>(pval)));
}
};
//FIXME: unify with cctr_h and mctr_h
template<typename T> struct cnvrt_ctor_h {
static void help(Memory memory, void* from) {
using util::decay_t;
new (memory) decay_t<T>(std::forward<T>(*reinterpret_cast<decay_t<T>*>(from)));
}
};
template<typename T> struct copy_h {
static void help(Memory to, const Memory from) {
*reinterpret_cast<T*>(to) = *reinterpret_cast<const T*>(from);
}
};
template<typename T> struct move_h {
static void help(Memory to, Memory from) {
*reinterpret_cast<T*>(to) = std::move(*reinterpret_cast<T*>(from));
}
};
//FIXME: unify with copy_h and move_h
template<typename T> struct cnvrt_assign_h {
static void help(Memory to, void* from) {
using util::decay_t;
*reinterpret_cast<decay_t<T>*>(to) = std::forward<T>(*reinterpret_cast<decay_t<T>*>(from));
}
};
template<typename T> struct swap_h {
static void help(Memory to, Memory from) {
std::swap(*reinterpret_cast<T*>(to), *reinterpret_cast<T*>(from));
}
};
template<typename T> struct dtor_h {
static void help(Memory memory) {
(void) memory; // MSCV warning
reinterpret_cast<T*>(memory)->~T();
}
};
template<typename T> struct equal_h {
static bool help(const Memory lhs, const Memory rhs) {
const T& t_lhs = *reinterpret_cast<const T*>(lhs);
const T& t_rhs = *reinterpret_cast<const T*>(rhs);
return t_lhs == t_rhs;
}
};
typedef void (*CCtr) (Memory, const Memory); // Copy c-tor (variant)
typedef void (*MCtr) (Memory, void*); // Generic move c-tor
typedef void (*Copy) (Memory, const Memory); // Copy assignment
typedef void (*Move) (Memory, Memory); // Move assignment
typedef void (*Swap) (Memory, Memory); // Swap
typedef void (*Dtor) (Memory); // Destructor
using cnvrt_assgn_t = void (*) (Memory, void*); // Converting assignment (via std::forward)
using cnvrt_ctor_t = void (*) (Memory, void*); // Converting constructor (via std::forward)
typedef bool (*Equal)(const Memory, const Memory); // Equality test (external)
static constexpr std::array<CCtr, sizeof...(Ts)> cctrs(){ return {{(&cctr_h<Ts>::help)...}};}
static constexpr std::array<MCtr, sizeof...(Ts)> mctrs(){ return {{(&mctr_h<Ts>::help)...}};}
static constexpr std::array<Copy, sizeof...(Ts)> cpyrs(){ return {{(&copy_h<Ts>::help)...}};}
static constexpr std::array<Move, sizeof...(Ts)> mvers(){ return {{(&move_h<Ts>::help)...}};}
static constexpr std::array<Swap, sizeof...(Ts)> swprs(){ return {{(&swap_h<Ts>::help)...}};}
static constexpr std::array<Dtor, sizeof...(Ts)> dtors(){ return {{(&dtor_h<Ts>::help)...}};}
template<bool cond, typename T>
struct conditional_ref : std::conditional<cond, typename std::remove_reference<T>::type&, typename std::remove_reference<T>::type > {};
template<bool cond, typename T>
using conditional_ref_t = typename conditional_ref<cond, T>::type;
template<bool is_lvalue_arg>
static constexpr std::array<cnvrt_assgn_t, sizeof...(Ts)> cnvrt_assgnrs(){
return {{(&cnvrt_assign_h<conditional_ref_t<is_lvalue_arg,Ts>>::help)...}};
}
template<bool is_lvalue_arg>
static constexpr std::array<cnvrt_ctor_t, sizeof...(Ts)> cnvrt_ctors(){
return {{(&cnvrt_ctor_h<conditional_ref_t<is_lvalue_arg,Ts>>::help)...}};
}
std::size_t m_index = 0;
protected:
template<typename T, typename... Us> friend T& get(variant<Us...> &v);
template<typename T, typename... Us> friend const T& get(const variant<Us...> &v);
template<typename T, typename... Us> friend T* get_if(variant<Us...> *v) noexcept;
template<typename T, typename... Us> friend const T* get_if(const variant<Us...> *v) noexcept;
template<typename... Us> friend bool operator==(const variant<Us...> &lhs,
const variant<Us...> &rhs);
Memory memory;
public:
// Constructors
variant() noexcept;
variant(const variant& other);
variant(variant&& other) noexcept;
// are_different_t is a SFINAE trick to avoid variant(T &&t) with T=variant
// for some reason, this version is called instead of variant(variant&& o) when
// variant is used in STL containers (examples: vector assignment).
template<
typename T,
typename = util::are_different_t<variant, T>
>
explicit variant(T&& t);
// template<class T, class... Args> explicit variant(Args&&... args);
// FIXME: other constructors
// Destructor
~variant();
// Assignment
variant& operator=(const variant& rhs);
variant& operator=(variant &&rhs) noexcept;
// SFINAE trick to avoid operator=(T&&) with T=variant<>, see comment above
template<
typename T,
typename = util::are_different_t<variant, T>
>
variant& operator=(T&& t) noexcept;
// Observers
std::size_t index() const noexcept;
// FIXME: valueless_by_exception()
// Modifiers
// FIXME: emplace()
void swap(variant &rhs) noexcept;
// Non-C++17x!
template<typename T> static constexpr std::size_t index_of();
};
// FIMXE: visit
template<typename T, typename... Types>
T* get_if(util::variant<Types...>* v) noexcept;
template<typename T, typename... Types>
const T* get_if(const util::variant<Types...>* v) noexcept;
template<typename T, typename... Types>
T& get(util::variant<Types...> &v);
template<typename T, typename... Types>
const T& get(const util::variant<Types...> &v);
template<std::size_t Index, typename... Types>
typename util::type_list_element<Index, Types...>::type& get(util::variant<Types...> &v);
template<std::size_t Index, typename... Types>
const typename util::type_list_element<Index, Types...>::type& get(const util::variant<Types...> &v);
template<typename T, typename... Types>
bool holds_alternative(const util::variant<Types...> &v) noexcept;
// Visitor
namespace detail
{
struct visitor_interface {};
// Class `visitor_return_type_deduction_helper`
// introduces solution for deduction `return_type` in `visit` function in common way
// for both Lambda and class Visitor and keep one interface invocation point: `visit` only
// his helper class is required to unify return_type deduction mechanism because
// for Lambda it is possible to take type of `decltype(visitor(get<0>(var)))`
// but for class Visitor there is no operator() in base case,
// because it provides `operator() (std::size_t index, ...)`
// So `visitor_return_type_deduction_helper` expose `operator()`
// uses only for class Visitor only for deduction `return type` in visit()
template<typename R>
struct visitor_return_type_deduction_helper
{
using return_type = R;
// to be used in Lambda return type deduction context only
template<typename T>
return_type operator() (T&&);
};
}
// Special purpose `static_visitor` can receive additional arguments
template<typename R, typename Impl>
struct static_visitor : public detail::visitor_interface,
public detail::visitor_return_type_deduction_helper<R> {
// assign responsibility for return type deduction to helper class
using return_type = typename detail::visitor_return_type_deduction_helper<R>::return_type;
using detail::visitor_return_type_deduction_helper<R>::operator();
friend Impl;
template<typename VariantValue, typename ...Args>
return_type operator() (std::size_t index, VariantValue&& value, Args&& ...args)
{
suppress_unused_warning(index);
return static_cast<Impl*>(this)-> visit(
std::forward<VariantValue>(value),
std::forward<Args>(args)...);
}
};
// Special purpose `static_indexed_visitor` can receive additional arguments
// And make forwarding current variant index as runtime function argument to its `Impl`
template<typename R, typename Impl>
struct static_indexed_visitor : public detail::visitor_interface,
public detail::visitor_return_type_deduction_helper<R> {
// assign responsibility for return type deduction to helper class
using return_type = typename detail::visitor_return_type_deduction_helper<R>::return_type;
using detail::visitor_return_type_deduction_helper<R>::operator();
friend Impl;
template<typename VariantValue, typename ...Args>
return_type operator() (std::size_t Index, VariantValue&& value, Args&& ...args)
{
return static_cast<Impl*>(this)-> visit(Index,
std::forward<VariantValue>(value),
std::forward<Args>(args)...);
}
};
template <class T>
struct variant_size;
template <class... Types>
struct variant_size<util::variant<Types...>>
: std::integral_constant<std::size_t, sizeof...(Types)> { };
// FIXME: T&&, const TT&& versions.
// Implementation //////////////////////////////////////////////////////////
template<typename... Ts>
variant<Ts...>::variant() noexcept
{
typedef typename std::tuple_element<0, std::tuple<Ts...> >::type TFirst;
new (memory) TFirst();
}
template<typename... Ts>
variant<Ts...>::variant(const variant &other)
: m_index(other.m_index)
{
(cctrs()[m_index])(memory, other.memory);
}
template<typename... Ts>
variant<Ts...>::variant(variant &&other) noexcept
: m_index(other.m_index)
{
(mctrs()[m_index])(memory, other.memory);
}
template<typename... Ts>
template<class T, typename>
variant<Ts...>::variant(T&& t)
: m_index(util::type_list_index<util::decay_t<T>, Ts...>::value)
{
const constexpr bool is_lvalue_arg = std::is_lvalue_reference<T>::value;
(cnvrt_ctors<is_lvalue_arg>()[m_index])(memory, const_cast<util::decay_t<T> *>(&t));
}
template<typename... Ts>
variant<Ts...>::~variant()
{
(dtors()[m_index])(memory);
}
template<typename... Ts>
variant<Ts...>& variant<Ts...>::operator=(const variant<Ts...> &rhs)
{
if (m_index != rhs.m_index)
{
(dtors()[ m_index])(memory);
(cctrs()[rhs.m_index])(memory, rhs.memory);
m_index = rhs.m_index;
}
else
{
(cpyrs()[rhs.m_index])(memory, rhs.memory);
}
return *this;
}
template<typename... Ts>
variant<Ts...>& variant<Ts...>::operator=(variant<Ts...> &&rhs) noexcept
{
if (m_index != rhs.m_index)
{
(dtors()[ m_index])(memory);
(mctrs()[rhs.m_index])(memory, rhs.memory);
m_index = rhs.m_index;
}
else
{
(mvers()[rhs.m_index])(memory, rhs.memory);
}
return *this;
}
template<typename... Ts>
template<typename T, typename>
variant<Ts...>& variant<Ts...>::operator=(T&& t) noexcept
{
using decayed_t = util::decay_t<T>;
// FIXME: No version with implicit type conversion available!
const constexpr std::size_t t_index =
util::type_list_index<decayed_t, Ts...>::value;
const constexpr bool is_lvalue_arg = std::is_lvalue_reference<T>::value;
if (t_index != m_index)
{
(dtors()[m_index])(memory);
(cnvrt_ctors<is_lvalue_arg>()[t_index])(memory, &t);
m_index = t_index;
}
else
{
(cnvrt_assgnrs<is_lvalue_arg>()[m_index])(memory, &t);
}
return *this;
}
template<typename... Ts>
std::size_t util::variant<Ts...>::index() const noexcept
{
return m_index;
}
template<typename... Ts>
void variant<Ts...>::swap(variant<Ts...> &rhs) noexcept
{
if (m_index == rhs.index())
{
(swprs()[m_index](memory, rhs.memory));
}
else
{
variant<Ts...> tmp(std::move(*this));
*this = std::move(rhs);
rhs = std::move(tmp);
}
}
template<typename... Ts>
template<typename T>
constexpr std::size_t variant<Ts...>::index_of()
{
return util::type_list_index<T, Ts...>::value; // FIXME: tests!
}
template<typename T, typename... Types>
T* get_if(util::variant<Types...>* v) noexcept
{
const constexpr std::size_t t_index =
util::type_list_index<T, Types...>::value;
if (v && v->index() == t_index)
return (T*)(&v->memory); // workaround for ICC 2019
// original code: return reinterpret_cast<T&>(v.memory);
return nullptr;
}
template<typename T, typename... Types>
const T* get_if(const util::variant<Types...>* v) noexcept
{
const constexpr std::size_t t_index =
util::type_list_index<T, Types...>::value;
if (v && v->index() == t_index)
return (const T*)(&v->memory); // workaround for ICC 2019
// original code: return reinterpret_cast<const T&>(v.memory);
return nullptr;
}
template<typename T, typename... Types>
T& get(util::variant<Types...> &v)
{
if (auto* p = get_if<T>(&v))
return *p;
else
throw_error(bad_variant_access());
}
template<typename T, typename... Types>
const T& get(const util::variant<Types...> &v)
{
if (auto* p = get_if<T>(&v))
return *p;
else
throw_error(bad_variant_access());
}
template<std::size_t Index, typename... Types>
typename util::type_list_element<Index, Types...>::type& get(util::variant<Types...> &v)
{
using ReturnType = typename util::type_list_element<Index, Types...>::type;
return const_cast<ReturnType&>(get<Index, Types...>(static_cast<const util::variant<Types...> &>(v)));
}
template<std::size_t Index, typename... Types>
const typename util::type_list_element<Index, Types...>::type& get(const util::variant<Types...> &v)
{
static_assert(Index < sizeof...(Types),
"`Index` it out of bound of `util::variant` type list");
using ReturnType = typename util::type_list_element<Index, Types...>::type;
return get<ReturnType>(v);
}
template<typename T, typename... Types>
bool holds_alternative(const util::variant<Types...> &v) noexcept
{
return v.index() == util::variant<Types...>::template index_of<T>();
}
template<typename... Us> bool operator==(const variant<Us...> &lhs,
const variant<Us...> &rhs)
{
using V = variant<Us...>;
// Instantiate table only here since it requires operator== for <Us...>
// <Us...> should have operator== only if this one is used, not in general
static const std::array<typename V::Equal, sizeof...(Us)> eqs = {
{(&V::template equal_h<Us>::help)...}
};
if (lhs.index() != rhs.index())
return false;
return (eqs[lhs.index()])(lhs.memory, rhs.memory);
}
template<typename... Us> bool operator!=(const variant<Us...> &lhs,
const variant<Us...> &rhs)
{
return !(lhs == rhs);
}
namespace detail
{
// terminate recursion implementation for `non-void` ReturnType
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, typename... VisitorArgs>
ReturnType apply_visitor_impl(Visitor&&, Variant&,
std::true_type, std::false_type,
VisitorArgs&& ...)
{
return {};
}
// terminate recursion implementation for `void` ReturnType
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, typename... VisitorArgs>
void apply_visitor_impl(Visitor&&, Variant&,
std::true_type, std::true_type,
VisitorArgs&& ...)
{
}
// Intermediate resursion processor for Lambda Visitors
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, bool no_return_value, typename... VisitorArgs>
typename std::enable_if<!std::is_base_of<visitor_interface, typename std::decay<Visitor>::type>::value, ReturnType>::type
apply_visitor_impl(Visitor&& visitor, Variant&& v, std::false_type not_processed,
std::integral_constant<bool, no_return_value> should_no_return,
VisitorArgs&& ...args)
{
static_assert(std::is_same<ReturnType, decltype(visitor(get<CurIndex>(v)))>::value,
"Different `ReturnType`s detected! All `Visitor::visit` or `overload_lamba_set`"
" must return the same type");
suppress_unused_warning(not_processed);
if (v.index() == CurIndex)
{
return visitor.operator()(get<CurIndex>(v), std::forward<VisitorArgs>(args)... );
}
using is_variant_processed_t = std::integral_constant<bool, CurIndex + 1 >= ElemCount>;
return apply_visitor_impl<ReturnType, CurIndex +1, ElemCount>(
std::forward<Visitor>(visitor),
std::forward<Variant>(v),
is_variant_processed_t{},
should_no_return,
std::forward<VisitorArgs>(args)...);
}
//Visual Studio 2014 compilation fix: cast visitor to base class before invoke operator()
template<std::size_t CurIndex, typename ReturnType, typename Visitor, class Value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<static_visitor<ReturnType, typename std::decay<Visitor>::type>,
typename std::decay<Visitor>::type>::value, ReturnType>::type
invoke_class_visitor(Visitor& visitor, Value&& v, VisitorArgs&&...args)
{
return static_cast<static_visitor<ReturnType, typename std::decay<Visitor>::type>&>(visitor).operator() (CurIndex, std::forward<Value>(v), std::forward<VisitorArgs>(args)... );
}
//Visual Studio 2014 compilation fix: cast visitor to base class before invoke operator()
template<std::size_t CurIndex, typename ReturnType, typename Visitor, class Value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<static_indexed_visitor<ReturnType, typename std::decay<Visitor>::type>,
typename std::decay<Visitor>::type>::value, ReturnType>::type
invoke_class_visitor(Visitor& visitor, Value&& v, VisitorArgs&&...args)
{
return static_cast<static_indexed_visitor<ReturnType, typename std::decay<Visitor>::type>&>(visitor).operator() (CurIndex, std::forward<Value>(v), std::forward<VisitorArgs>(args)... );
}
// Intermediate recursion processor for special case `visitor_interface` derived Visitors
template<typename ReturnType, std::size_t CurIndex, std::size_t ElemCount,
typename Visitor, typename Variant, bool no_return_value, typename... VisitorArgs>
typename std::enable_if<std::is_base_of<visitor_interface, typename std::decay<Visitor>::type>::value, ReturnType>::type
apply_visitor_impl(Visitor&& visitor, Variant&& v, std::false_type not_processed,
std::integral_constant<bool, no_return_value> should_no_return,
VisitorArgs&& ...args)
{
static_assert(std::is_same<ReturnType, decltype(visitor(get<CurIndex>(v)))>::value,
"Different `ReturnType`s detected! All `Visitor::visit` or `overload_lamba_set`"
" must return the same type");
suppress_unused_warning(not_processed);
if (v.index() == CurIndex)
{
return invoke_class_visitor<CurIndex, ReturnType>(visitor, get<CurIndex>(v), std::forward<VisitorArgs>(args)... );
}
using is_variant_processed_t = std::integral_constant<bool, CurIndex + 1 >= ElemCount>;
return apply_visitor_impl<ReturnType, CurIndex +1, ElemCount>(
std::forward<Visitor>(visitor),
std::forward<Variant>(v),
is_variant_processed_t{},
should_no_return,
std::forward<VisitorArgs>(args)...);
}
} // namespace detail
template<typename Visitor, typename Variant, typename... VisitorArg>
auto visit(Visitor &visitor, const Variant& var, VisitorArg &&...args) -> decltype(visitor(get<0>(var)))
{
constexpr std::size_t varsize = util::variant_size<Variant>::value;
static_assert(varsize != 0, "utils::variant must contains one type at least ");
using is_variant_processed_t = std::false_type;
using ReturnType = decltype(visitor(get<0>(var)));
using return_t = std::is_same<ReturnType, void>;
return detail::apply_visitor_impl<ReturnType, 0, varsize, Visitor>(
std::forward<Visitor>(visitor),
var, is_variant_processed_t{},
return_t{},
std::forward<VisitorArg>(args)...);
}
template<typename Visitor, typename Variant>
auto visit(Visitor&& visitor, const Variant& var) -> decltype(visitor(get<0>(var)))
{
constexpr std::size_t varsize = util::variant_size<Variant>::value;
static_assert(varsize != 0, "utils::variant must contains one type at least ");
using is_variant_processed_t = std::false_type;
using ReturnType = decltype(visitor(get<0>(var)));
using return_t = std::is_same<ReturnType, void>;
return detail::apply_visitor_impl<ReturnType, 0, varsize, Visitor>(
std::forward<Visitor>(visitor),
var, is_variant_processed_t{},
return_t{});
}
} // namespace util
} // namespace cv
#endif // OPENCV_GAPI_UTIL_VARIANT_HPP

View File

@ -0,0 +1,364 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2020 Intel Corporation
#ifndef OPENCV_GAPI_VIDEO_HPP
#define OPENCV_GAPI_VIDEO_HPP
#include <utility> // std::tuple
#include <opencv2/gapi/gkernel.hpp>
/** \defgroup gapi_video G-API Video processing functionality
*/
namespace cv { namespace gapi {
/** @brief Structure for the Kalman filter's initialization parameters.*/
struct GAPI_EXPORTS KalmanParams
{
// initial state
//! corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
Mat state;
//! posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
Mat errorCov;
// dynamic system description
//! state transition matrix (A)
Mat transitionMatrix;
//! measurement matrix (H)
Mat measurementMatrix;
//! process noise covariance matrix (Q)
Mat processNoiseCov;
//! measurement noise covariance matrix (R)
Mat measurementNoiseCov;
//! control matrix (B) (Optional: not used if there's no control)
Mat controlMatrix;
};
/**
* @brief This namespace contains G-API Operations and functions for
* video-oriented algorithms, like optical flow and background subtraction.
*/
namespace video
{
using GBuildPyrOutput = std::tuple<GArray<GMat>, GScalar>;
using GOptFlowLKOutput = std::tuple<cv::GArray<cv::Point2f>,
cv::GArray<uchar>,
cv::GArray<float>>;
G_TYPED_KERNEL(GBuildOptFlowPyramid, <GBuildPyrOutput(GMat,Size,GScalar,bool,int,int,bool)>,
"org.opencv.video.buildOpticalFlowPyramid")
{
static std::tuple<GArrayDesc,GScalarDesc>
outMeta(GMatDesc,const Size&,GScalarDesc,bool,int,int,bool)
{
return std::make_tuple(empty_array_desc(), empty_scalar_desc());
}
};
G_TYPED_KERNEL(GCalcOptFlowLK,
<GOptFlowLKOutput(GMat,GMat,cv::GArray<cv::Point2f>,cv::GArray<cv::Point2f>,Size,
GScalar,TermCriteria,int,double)>,
"org.opencv.video.calcOpticalFlowPyrLK")
{
static std::tuple<GArrayDesc,GArrayDesc,GArrayDesc> outMeta(GMatDesc,GMatDesc,GArrayDesc,
GArrayDesc,const Size&,GScalarDesc,
const TermCriteria&,int,double)
{
return std::make_tuple(empty_array_desc(), empty_array_desc(), empty_array_desc());
}
};
G_TYPED_KERNEL(GCalcOptFlowLKForPyr,
<GOptFlowLKOutput(cv::GArray<cv::GMat>,cv::GArray<cv::GMat>,
cv::GArray<cv::Point2f>,cv::GArray<cv::Point2f>,Size,GScalar,
TermCriteria,int,double)>,
"org.opencv.video.calcOpticalFlowPyrLKForPyr")
{
static std::tuple<GArrayDesc,GArrayDesc,GArrayDesc> outMeta(GArrayDesc,GArrayDesc,
GArrayDesc,GArrayDesc,
const Size&,GScalarDesc,
const TermCriteria&,int,double)
{
return std::make_tuple(empty_array_desc(), empty_array_desc(), empty_array_desc());
}
};
enum BackgroundSubtractorType
{
TYPE_BS_MOG2,
TYPE_BS_KNN
};
/** @brief Structure for the Background Subtractor operation's initialization parameters.*/
struct BackgroundSubtractorParams
{
//! Type of the Background Subtractor operation.
BackgroundSubtractorType operation = TYPE_BS_MOG2;
//! Length of the history.
int history = 500;
//! For MOG2: Threshold on the squared Mahalanobis distance between the pixel
//! and the model to decide whether a pixel is well described by
//! the background model.
//! For KNN: Threshold on the squared distance between the pixel and the sample
//! to decide whether a pixel is close to that sample.
double threshold = 16;
//! If true, the algorithm will detect shadows and mark them.
bool detectShadows = true;
//! The value between 0 and 1 that indicates how fast
//! the background model is learnt.
//! Negative parameter value makes the algorithm use some automatically
//! chosen learning rate.
double learningRate = -1;
//! default constructor
BackgroundSubtractorParams() {}
/** Full constructor
@param op MOG2/KNN Background Subtractor type.
@param histLength Length of the history.
@param thrshld For MOG2: Threshold on the squared Mahalanobis distance between
the pixel and the model to decide whether a pixel is well described by the background model.
For KNN: Threshold on the squared distance between the pixel and the sample to decide
whether a pixel is close to that sample.
@param detect If true, the algorithm will detect shadows and mark them. It decreases the
speed a bit, so if you do not need this feature, set the parameter to false.
@param lRate The value between 0 and 1 that indicates how fast the background model is learnt.
Negative parameter value makes the algorithm to use some automatically chosen learning rate.
*/
BackgroundSubtractorParams(BackgroundSubtractorType op, int histLength,
double thrshld, bool detect, double lRate) : operation(op),
history(histLength),
threshold(thrshld),
detectShadows(detect),
learningRate(lRate){}
};
G_TYPED_KERNEL(GBackgroundSubtractor, <GMat(GMat, BackgroundSubtractorParams)>,
"org.opencv.video.BackgroundSubtractor")
{
static GMatDesc outMeta(const GMatDesc& in, const BackgroundSubtractorParams& bsParams)
{
GAPI_Assert(bsParams.history >= 0);
GAPI_Assert(bsParams.learningRate <= 1);
return in.withType(CV_8U, 1);
}
};
void checkParams(const cv::gapi::KalmanParams& kfParams,
const cv::GMatDesc& measurement, const cv::GMatDesc& control = {});
G_TYPED_KERNEL(GKalmanFilter, <GMat(GMat, GOpaque<bool>, GMat, KalmanParams)>,
"org.opencv.video.KalmanFilter")
{
static GMatDesc outMeta(const GMatDesc& measurement, const GOpaqueDesc&,
const GMatDesc& control, const KalmanParams& kfParams)
{
checkParams(kfParams, measurement, control);
return measurement.withSize(Size(1, kfParams.transitionMatrix.rows));
}
};
G_TYPED_KERNEL(GKalmanFilterNoControl, <GMat(GMat, GOpaque<bool>, KalmanParams)>, "org.opencv.video.KalmanFilterNoControl")
{
static GMatDesc outMeta(const GMatDesc& measurement, const GOpaqueDesc&, const KalmanParams& kfParams)
{
checkParams(kfParams, measurement);
return measurement.withSize(Size(1, kfParams.transitionMatrix.rows));
}
};
} //namespace video
//! @addtogroup gapi_video
//! @{
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
@note Function textual ID is "org.opencv.video.buildOpticalFlowPyramid"
@param img 8-bit input image.
@param winSize window size of optical flow algorithm. Must be not less than winSize
argument of calcOpticalFlowPyrLK. It is needed to calculate required
padding for pyramid levels.
@param maxLevel 0-based maximal pyramid level number.
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
constructed without the gradients then calcOpticalFlowPyrLK will calculate
them internally.
@param pyrBorder the border mode for pyramid layers.
@param derivBorder the border mode for gradients.
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
to force data copying.
@return
- output pyramid.
- number of levels in constructed pyramid. Can be less than maxLevel.
*/
GAPI_EXPORTS std::tuple<GArray<GMat>, GScalar>
buildOpticalFlowPyramid(const GMat &img,
const Size &winSize,
const GScalar &maxLevel,
bool withDerivatives = true,
int pyrBorder = BORDER_REFLECT_101,
int derivBorder = BORDER_CONSTANT,
bool tryReuseInputImage = true);
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade
method with pyramids.
See @cite Bouguet00 .
@note Function textual ID is "org.opencv.video.calcOpticalFlowPyrLK"
@param prevImg first 8-bit input image (GMat) or pyramid (GArray<GMat>) constructed by
buildOpticalFlowPyramid.
@param nextImg second input image (GMat) or pyramid (GArray<GMat>) of the same size and the same
type as prevImg.
@param prevPts GArray of 2D points for which the flow needs to be found; point coordinates must be
single-precision floating-point numbers.
@param predPts GArray of 2D points initial for the flow search; make sense only when
OPTFLOW_USE_INITIAL_FLOW flag is passed; in that case the vector must have the same size as in
the input.
@param winSize size of the search window at each pyramid level.
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
algorithm will use as many levels as pyramids have but no more than maxLevel.
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
(after the specified maximum number of iterations criteria.maxCount or when the search window
moves by less than criteria.epsilon).
@param flags operation flags:
- **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
not set, then prevPts is copied to nextPts and is considered the initial estimate.
- **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
minEigThreshold description); if the flag is not set, then L1 distance between patches
around the original and a moved point, divided by number of pixels in a window, is used as a
error measure.
@param minEigThresh the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
performance boost.
@return
- GArray of 2D points (with single-precision floating-point coordinates)
containing the calculated new positions of input features in the second image.
- status GArray (of unsigned chars); each element of the vector is set to 1 if
the flow for the corresponding features has been found, otherwise, it is set to 0.
- GArray of errors (doubles); each element of the vector is set to an error for the
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
found then the error is not defined (use the status parameter to find such cases).
*/
GAPI_EXPORTS std::tuple<GArray<Point2f>, GArray<uchar>, GArray<float>>
calcOpticalFlowPyrLK(const GMat &prevImg,
const GMat &nextImg,
const GArray<Point2f> &prevPts,
const GArray<Point2f> &predPts,
const Size &winSize = Size(21, 21),
const GScalar &maxLevel = 3,
const TermCriteria &criteria = TermCriteria(TermCriteria::COUNT |
TermCriteria::EPS,
30, 0.01),
int flags = 0,
double minEigThresh = 1e-4);
/**
@overload
@note Function textual ID is "org.opencv.video.calcOpticalFlowPyrLKForPyr"
*/
GAPI_EXPORTS std::tuple<GArray<Point2f>, GArray<uchar>, GArray<float>>
calcOpticalFlowPyrLK(const GArray<GMat> &prevPyr,
const GArray<GMat> &nextPyr,
const GArray<Point2f> &prevPts,
const GArray<Point2f> &predPts,
const Size &winSize = Size(21, 21),
const GScalar &maxLevel = 3,
const TermCriteria &criteria = TermCriteria(TermCriteria::COUNT |
TermCriteria::EPS,
30, 0.01),
int flags = 0,
double minEigThresh = 1e-4);
/** @brief Gaussian Mixture-based or K-nearest neighbours-based Background/Foreground Segmentation Algorithm.
The operation generates a foreground mask.
@return Output image is foreground mask, i.e. 8-bit unsigned 1-channel (binary) matrix @ref CV_8UC1.
@note Functional textual ID is "org.opencv.video.BackgroundSubtractor"
@param src input image: Floating point frame is used without scaling and should be in range [0,255].
@param bsParams Set of initialization parameters for Background Subtractor kernel.
*/
GAPI_EXPORTS GMat BackgroundSubtractor(const GMat& src, const cv::gapi::video::BackgroundSubtractorParams& bsParams);
/** @brief Standard Kalman filter algorithm <http://en.wikipedia.org/wiki/Kalman_filter>.
@note Functional textual ID is "org.opencv.video.KalmanFilter"
@param measurement input matrix: 32-bit or 64-bit float 1-channel matrix containing measurements.
@param haveMeasurement dynamic input flag that indicates whether we get measurements
at a particular iteration .
@param control input matrix: 32-bit or 64-bit float 1-channel matrix contains control data
for changing dynamic system.
@param kfParams Set of initialization parameters for Kalman filter kernel.
@return Output matrix is predicted or corrected state. They can be 32-bit or 64-bit float
1-channel matrix @ref CV_32FC1 or @ref CV_64FC1.
@details If measurement matrix is given (haveMeasurements == true), corrected state will
be returned which corresponds to the pipeline
cv::KalmanFilter::predict(control) -> cv::KalmanFilter::correct(measurement).
Otherwise, predicted state will be returned which corresponds to the call of
cv::KalmanFilter::predict(control).
@sa cv::KalmanFilter
*/
GAPI_EXPORTS GMat KalmanFilter(const GMat& measurement, const GOpaque<bool>& haveMeasurement,
const GMat& control, const cv::gapi::KalmanParams& kfParams);
/** @overload
The case of Standard Kalman filter algorithm when there is no control in a dynamic system.
In this case the controlMatrix is empty and control vector is absent.
@note Function textual ID is "org.opencv.video.KalmanFilterNoControl"
@param measurement input matrix: 32-bit or 64-bit float 1-channel matrix containing measurements.
@param haveMeasurement dynamic input flag that indicates whether we get measurements
at a particular iteration.
@param kfParams Set of initialization parameters for Kalman filter kernel.
@return Output matrix is predicted or corrected state. They can be 32-bit or 64-bit float
1-channel matrix @ref CV_32FC1 or @ref CV_64FC1.
@sa cv::KalmanFilter
*/
GAPI_EXPORTS GMat KalmanFilter(const GMat& measurement, const GOpaque<bool>& haveMeasurement,
const cv::gapi::KalmanParams& kfParams);
//! @} gapi_video
} //namespace gapi
} //namespace cv
namespace cv { namespace detail {
template<> struct CompileArgTag<cv::gapi::video::BackgroundSubtractorParams>
{
static const char* tag()
{
return "org.opencv.video.background_substractor_params";
}
};
} // namespace detail
} // namespace cv
#endif // OPENCV_GAPI_VIDEO_HPP