feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,212 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
class gapi_core_test(NewOpenCVTests):
def test_add(self):
# TODO: Extend to use any type and size here
sz = (720, 1280)
in1 = np.full(sz, 100)
in2 = np.full(sz, 50)
# OpenCV
expected = cv.add(in1, in2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = cv.gapi.add(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1, in2), args=cv.gapi.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
self.assertEqual(expected.dtype, actual.dtype, 'Failed on ' + pkg_name + ' backend')
def test_add_uint8(self):
sz = (720, 1280)
in1 = np.full(sz, 100, dtype=np.uint8)
in2 = np.full(sz, 50 , dtype=np.uint8)
# OpenCV
expected = cv.add(in1, in2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = cv.gapi.add(g_in1, g_in2)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1, in2), args=cv.gapi.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
self.assertEqual(expected.dtype, actual.dtype, 'Failed on ' + pkg_name + ' backend')
def test_mean(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.mean(in_mat)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.mean(g_in)
comp = cv.GComputation(g_in, g_out)
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_split3(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.split(in_mat)
# G-API
g_in = cv.GMat()
b, g, r = cv.gapi.split3(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(b, g, r))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
# Comparison
for e, a in zip(expected, actual):
self.assertEqual(0.0, cv.norm(e, a, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
self.assertEqual(e.dtype, a.dtype, 'Failed on ' + pkg_name + ' backend')
def test_threshold(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
maxv = (30, 30)
# OpenCV
expected_thresh, expected_mat = cv.threshold(in_mat, maxv[0], maxv[0], cv.THRESH_TRIANGLE)
# G-API
g_in = cv.GMat()
g_sc = cv.GScalar()
mat, threshold = cv.gapi.threshold(g_in, g_sc, cv.THRESH_TRIANGLE)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(mat, threshold))
for pkg_name, pkg in pkgs:
actual_mat, actual_thresh = comp.apply(cv.gin(in_mat, maxv), args=cv.gapi.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected_mat, actual_mat, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
self.assertEqual(expected_mat.dtype, actual_mat.dtype,
'Failed on ' + pkg_name + ' backend')
self.assertEqual(expected_thresh, actual_thresh[0],
'Failed on ' + pkg_name + ' backend')
def test_kmeans(self):
# K-means params
count = 100
sz = (count, 2)
in_mat = np.random.random(sz).astype(np.float32)
K = 5
flags = cv.KMEANS_RANDOM_CENTERS
attempts = 1
criteria = (cv.TERM_CRITERIA_MAX_ITER + cv.TERM_CRITERIA_EPS, 30, 0)
# G-API
g_in = cv.GMat()
compactness, out_labels, centers = cv.gapi.kmeans(g_in, K, criteria, attempts, flags)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(compactness, out_labels, centers))
compact, labels, centers = comp.apply(cv.gin(in_mat))
# Assert
self.assertTrue(compact >= 0)
self.assertEqual(sz[0], labels.shape[0])
self.assertEqual(1, labels.shape[1])
self.assertTrue(labels.size != 0)
self.assertEqual(centers.shape[1], sz[1])
self.assertEqual(centers.shape[0], K)
self.assertTrue(centers.size != 0)
def generate_random_points(self, sz):
arr = np.random.random(sz).astype(np.float32).T
return list(zip(arr[0], arr[1]))
def test_kmeans_2d(self):
# K-means 2D params
count = 100
sz = (count, 2)
amount = sz[0]
K = 5
flags = cv.KMEANS_RANDOM_CENTERS
attempts = 1
criteria = (cv.TERM_CRITERIA_MAX_ITER + cv.TERM_CRITERIA_EPS, 30, 0)
in_vector = self.generate_random_points(sz)
in_labels = []
# G-API
data = cv.GArrayT(cv.gapi.CV_POINT2F)
best_labels = cv.GArrayT(cv.gapi.CV_INT)
compactness, out_labels, centers = cv.gapi.kmeans(data, K, best_labels, criteria, attempts, flags)
comp = cv.GComputation(cv.GIn(data, best_labels), cv.GOut(compactness, out_labels, centers))
compact, labels, centers = comp.apply(cv.gin(in_vector, in_labels))
# Assert
self.assertTrue(compact >= 0)
self.assertEqual(amount, len(labels))
self.assertEqual(K, len(centers))
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@ -0,0 +1,127 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
class gapi_imgproc_test(NewOpenCVTests):
def test_good_features_to_track(self):
# TODO: Extend to use any type and size here
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in1 = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
expected = cv.goodFeaturesToTrack(in1, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.goodFeaturesToTrack(g_in, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1), args=cv.gapi.compile_args(pkg))
# NB: OpenCV & G-API have different output shapes:
# OpenCV - (num_points, 1, 2)
# G-API - (num_points, 2)
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(),
cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_rgb2gray(self):
# TODO: Extend to use any type and size here
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in1 = cv.imread(img_path)
# OpenCV
expected = cv.cvtColor(in1, cv.COLOR_RGB2GRAY)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.RGB2Gray(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(in1), args=cv.gapi.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
def test_bounding_rect(self):
sz = 1280
fscale = 256
def sample_value(fscale):
return np.random.uniform(0, 255 * fscale) / fscale
points = np.array([(sample_value(fscale), sample_value(fscale)) for _ in range(1280)], np.float32)
# OpenCV
expected = cv.boundingRect(points)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.boundingRect(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
for pkg_name, pkg in pkgs:
actual = comp.apply(cv.gin(points), args=cv.gapi.compile_args(pkg))
# Comparison
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF),
'Failed on ' + pkg_name + ' backend')
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@ -0,0 +1,341 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
class test_gapi_infer(NewOpenCVTests):
def infer_reference_network(self, model_path, weights_path, img):
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
net.setInput(blob)
return net.forward(net.getUnconnectedOutLayersNames())
def make_roi(self, img, roi):
return img[roi[1]:roi[1] + roi[3], roi[0]:roi[0] + roi[2], ...]
def test_age_gender_infer(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.resize(cv.imread(img_path), (62,62))
# OpenCV DNN
dnn_age, dnn_gender = self.infer_reference_network(model_path, weights_path, img)
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Check
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer_roi(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
roi = (10, 10, 62, 62)
# OpenCV DNN
dnn_age, dnn_gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
# OpenCV G-API
g_in = cv.GMat()
g_roi = cv.GOpaqueT(cv.gapi.CV_RECT)
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", g_roi, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_roi), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age, gapi_gender = comp.apply(cv.gin(img, roi), args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Check
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer_roi_list(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
# OpenCV DNN
dnn_age_list = []
dnn_gender_list = []
for roi in rois:
age, gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
dnn_age_list.append(age)
dnn_gender_list.append(gender)
# OpenCV G-API
g_in = cv.GMat()
g_rois = cv.GArrayT(cv.gapi.CV_RECT)
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", g_rois, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Check
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
gapi_gender_list,
dnn_age_list,
dnn_gender_list):
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_age_gender_infer2_roi(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
device_id = 'CPU'
rois = [(10, 15, 62, 62), (23, 50, 62, 62), (14, 100, 62, 62), (80, 50, 62, 62)]
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
# OpenCV DNN
dnn_age_list = []
dnn_gender_list = []
for roi in rois:
age, gender = self.infer_reference_network(model_path,
weights_path,
self.make_roi(img, roi))
dnn_age_list.append(age)
dnn_gender_list.append(gender)
# OpenCV G-API
g_in = cv.GMat()
g_rois = cv.GArrayT(cv.gapi.CV_RECT)
inputs = cv.GInferListInputs()
inputs.setInput('data', g_rois)
outputs = cv.gapi.infer2("net", g_in, inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in, g_rois), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age_list, gapi_gender_list = comp.apply(cv.gin(img, rois),
args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Check
for gapi_age, gapi_gender, dnn_age, dnn_gender in zip(gapi_age_list,
gapi_gender_list,
dnn_age_list,
dnn_gender_list):
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_person_detection_retail_0013(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
device_id = 'CPU'
img = cv.resize(cv.imread(img_path), (544, 320))
# OpenCV DNN
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
def parseSSD(detections, size):
h, w = size
bboxes = []
detections = detections.reshape(-1, 7)
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
if confidence >= 0.5:
x = int(xmin * w)
y = int(ymin * h)
width = int(xmax * w - x)
height = int(ymax * h - y)
bboxes.append((x, y, width, height))
return bboxes
net.setInput(blob)
dnn_detections = net.forward()
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
g_sz = cv.gapi.streaming.size(g_in)
outputs = cv.gapi.infer("net", inputs)
detections = outputs.at("detection_out")
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Comparison
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
np.array(gapi_boxes).flatten(),
cv.NORM_INF))
def test_person_detection_retail_0013(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
device_id = 'CPU'
img = cv.resize(cv.imread(img_path), (544, 320))
# OpenCV DNN
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
def parseSSD(detections, size):
h, w = size
bboxes = []
detections = detections.reshape(-1, 7)
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
if confidence >= 0.5:
x = int(xmin * w)
y = int(ymin * h)
width = int(xmax * w - x)
height = int(ymax * h - y)
bboxes.append((x, y, width, height))
return bboxes
net.setInput(blob)
dnn_detections = net.forward()
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
g_sz = cv.gapi.streaming.size(g_in)
outputs = cv.gapi.infer("net", inputs)
detections = outputs.at("detection_out")
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
args=cv.gapi.compile_args(cv.gapi.networks(pp)))
# Comparison
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
np.array(gapi_boxes).flatten(),
cv.NORM_INF))
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@ -0,0 +1,227 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
# FIXME: FText isn't supported yet.
class gapi_render_test(NewOpenCVTests):
def __init__(self, *args):
super().__init__(*args)
self.size = (300, 300, 3)
# Rect
self.rect = (30, 30, 50, 50)
self.rcolor = (0, 255, 0)
self.rlt = cv.LINE_4
self.rthick = 2
self.rshift = 3
# Text
self.text = 'Hello, world!'
self.org = (100, 100)
self.ff = cv.FONT_HERSHEY_SIMPLEX
self.fs = 1.0
self.tthick = 2
self.tlt = cv.LINE_8
self.tcolor = (255, 255, 255)
self.blo = False
# Circle
self.center = (200, 200)
self.radius = 200
self.ccolor = (255, 255, 0)
self.cthick = 2
self.clt = cv.LINE_4
self.cshift = 1
# Line
self.pt1 = (50, 50)
self.pt2 = (200, 200)
self.lcolor = (0, 255, 128)
self.lthick = 5
self.llt = cv.LINE_8
self.lshift = 2
# Poly
self.pts = [(50, 100), (100, 200), (25, 250)]
self.pcolor = (0, 0, 255)
self.pthick = 3
self.plt = cv.LINE_4
self.pshift = 1
# Image
self.iorg = (150, 150)
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
self.img = cv.resize(cv.imread(img_path), (50, 50))
self.alpha = np.full(self.img.shape[:2], 0.8, dtype=np.float32)
# Mosaic
self.mos = (100, 100, 100, 100)
self.cell_sz = 25
self.decim = 0
# Render primitives
self.prims = [cv.gapi.wip.draw.Rect(self.rect, self.rcolor, self.rthick, self.rlt, self.rshift),
cv.gapi.wip.draw.Text(self.text, self.org, self.ff, self.fs, self.tcolor, self.tthick, self.tlt, self.blo),
cv.gapi.wip.draw.Circle(self.center, self.radius, self.ccolor, self.cthick, self.clt, self.cshift),
cv.gapi.wip.draw.Line(self.pt1, self.pt2, self.lcolor, self.lthick, self.llt, self.lshift),
cv.gapi.wip.draw.Mosaic(self.mos, self.cell_sz, self.decim),
cv.gapi.wip.draw.Image(self.iorg, self.img, self.alpha),
cv.gapi.wip.draw.Poly(self.pts, self.pcolor, self.pthick, self.plt, self.pshift)]
def cvt_nv12_to_yuv(self, y, uv):
h,w,_ = uv.shape
upsample_uv = cv.resize(uv, (h * 2, w * 2))
return cv.merge([y, upsample_uv])
def cvt_yuv_to_nv12(self, yuv, y_out, uv_out):
chs = cv.split(yuv, [y_out, None, None])
uv = cv.merge([chs[1], chs[2]])
uv_out = cv.resize(uv, (uv.shape[0] // 2, uv.shape[1] // 2), dst=uv_out)
return y_out, uv_out
def cvt_bgr_to_yuv_color(self, bgr):
y = bgr[2] * 0.299000 + bgr[1] * 0.587000 + bgr[0] * 0.114000;
u = bgr[2] * -0.168736 + bgr[1] * -0.331264 + bgr[0] * 0.500000 + 128;
v = bgr[2] * 0.500000 + bgr[1] * -0.418688 + bgr[0] * -0.081312 + 128;
return (y, u, v)
def blend_img(self, background, org, img, alpha):
x, y = org
h, w, _ = img.shape
roi_img = background[x:x+w, y:y+h, :]
img32f_w = cv.merge([alpha] * 3).astype(np.float32)
roi32f_w = np.full(roi_img.shape, 1.0, dtype=np.float32)
roi32f_w -= img32f_w
img32f = (img / 255).astype(np.float32)
roi32f = (roi_img / 255).astype(np.float32)
cv.multiply(img32f, img32f_w, dst=img32f)
cv.multiply(roi32f, roi32f_w, dst=roi32f)
roi32f += img32f
roi_img[...] = np.round(roi32f * 255)
# This is quite naive implementations used as a simple reference
# doesn't consider corner cases.
def draw_mosaic(self, img, mos, cell_sz, decim):
x,y,w,h = mos
mosaic_area = img[x:x+w, y:y+h, :]
for i in range(0, mosaic_area.shape[0], cell_sz):
for j in range(0, mosaic_area.shape[1], cell_sz):
cell_roi = mosaic_area[j:j+cell_sz, i:i+cell_sz, :]
s0, s1, s2 = cv.mean(cell_roi)[:3]
mosaic_area[j:j+cell_sz, i:i+cell_sz] = (round(s0), round(s1), round(s2))
def render_primitives_bgr_ref(self, img):
cv.rectangle(img, self.rect, self.rcolor, self.rthick, self.rlt, self.rshift)
cv.putText(img, self.text, self.org, self.ff, self.fs, self.tcolor, self.tthick, self.tlt, self.blo)
cv.circle(img, self.center, self.radius, self.ccolor, self.cthick, self.clt, self.cshift)
cv.line(img, self.pt1, self.pt2, self.lcolor, self.lthick, self.llt, self.lshift)
cv.fillPoly(img, np.expand_dims(np.array([self.pts]), axis=0), self.pcolor, self.plt, self.pshift)
self.draw_mosaic(img, self.mos, self.cell_sz, self.decim)
self.blend_img(img, self.iorg, self.img, self.alpha)
def render_primitives_nv12_ref(self, y_plane, uv_plane):
yuv = self.cvt_nv12_to_yuv(y_plane, uv_plane)
cv.rectangle(yuv, self.rect, self.cvt_bgr_to_yuv_color(self.rcolor), self.rthick, self.rlt, self.rshift)
cv.putText(yuv, self.text, self.org, self.ff, self.fs, self.cvt_bgr_to_yuv_color(self.tcolor), self.tthick, self.tlt, self.blo)
cv.circle(yuv, self.center, self.radius, self.cvt_bgr_to_yuv_color(self.ccolor), self.cthick, self.clt, self.cshift)
cv.line(yuv, self.pt1, self.pt2, self.cvt_bgr_to_yuv_color(self.lcolor), self.lthick, self.llt, self.lshift)
cv.fillPoly(yuv, np.expand_dims(np.array([self.pts]), axis=0), self.cvt_bgr_to_yuv_color(self.pcolor), self.plt, self.pshift)
self.draw_mosaic(yuv, self.mos, self.cell_sz, self.decim)
self.blend_img(yuv, self.iorg, cv.cvtColor(self.img, cv.COLOR_BGR2YUV), self.alpha)
self.cvt_yuv_to_nv12(yuv, y_plane, uv_plane)
def test_render_primitives_on_bgr_graph(self):
expected = np.zeros(self.size, dtype=np.uint8)
actual = np.array(expected, copy=True)
# OpenCV
self.render_primitives_bgr_ref(expected)
# G-API
g_in = cv.GMat()
g_prims = cv.GArray.Prim()
g_out = cv.gapi.wip.draw.render3ch(g_in, g_prims)
comp = cv.GComputation(cv.GIn(g_in, g_prims), cv.GOut(g_out))
actual = comp.apply(cv.gin(actual, self.prims))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_render_primitives_on_bgr_function(self):
expected = np.zeros(self.size, dtype=np.uint8)
actual = np.array(expected, copy=True)
# OpenCV
self.render_primitives_bgr_ref(expected)
# G-API
cv.gapi.wip.draw.render(actual, self.prims)
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_render_primitives_on_nv12_graph(self):
y_expected = np.zeros((self.size[0], self.size[1], 1), dtype=np.uint8)
uv_expected = np.zeros((self.size[0] // 2, self.size[1] // 2, 2), dtype=np.uint8)
y_actual = np.array(y_expected, copy=True)
uv_actual = np.array(uv_expected, copy=True)
# OpenCV
self.render_primitives_nv12_ref(y_expected, uv_expected)
# G-API
g_y = cv.GMat()
g_uv = cv.GMat()
g_prims = cv.GArray.Prim()
g_out_y, g_out_uv = cv.gapi.wip.draw.renderNV12(g_y, g_uv, g_prims)
comp = cv.GComputation(cv.GIn(g_y, g_uv, g_prims), cv.GOut(g_out_y, g_out_uv))
y_actual, uv_actual = comp.apply(cv.gin(y_actual, uv_actual, self.prims))
self.assertEqual(0.0, cv.norm(y_expected, y_actual, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(uv_expected, uv_actual, cv.NORM_INF))
def test_render_primitives_on_nv12_function(self):
y_expected = np.zeros((self.size[0], self.size[1], 1), dtype=np.uint8)
uv_expected = np.zeros((self.size[0] // 2, self.size[1] // 2, 2), dtype=np.uint8)
y_actual = np.array(y_expected, copy=True)
uv_actual = np.array(uv_expected, copy=True)
# OpenCV
self.render_primitives_nv12_ref(y_expected, uv_expected)
# G-API
cv.gapi.wip.draw.render(y_actual, uv_actual, self.prims)
self.assertEqual(0.0, cv.norm(y_expected, y_actual, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(uv_expected, uv_actual, cv.NORM_INF))
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@ -0,0 +1,681 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
# Plaidml is an optional backend
pkgs = [
('ocl' , cv.gapi.core.ocl.kernels()),
('cpu' , cv.gapi.core.cpu.kernels()),
('fluid' , cv.gapi.core.fluid.kernels())
# ('plaidml', cv.gapi.core.plaidml.kernels())
]
@cv.gapi.op('custom.add', in_types=[cv.GMat, cv.GMat, int], out_types=[cv.GMat])
class GAdd:
"""Calculates sum of two matrices."""
@staticmethod
def outMeta(desc1, desc2, depth):
return desc1
@cv.gapi.kernel(GAdd)
class GAddImpl:
"""Implementation for GAdd operation."""
@staticmethod
def run(img1, img2, dtype):
return cv.add(img1, img2)
@cv.gapi.op('custom.split3', in_types=[cv.GMat], out_types=[cv.GMat, cv.GMat, cv.GMat])
class GSplit3:
"""Divides a 3-channel matrix into 3 single-channel matrices."""
@staticmethod
def outMeta(desc):
out_desc = desc.withType(desc.depth, 1)
return out_desc, out_desc, out_desc
@cv.gapi.kernel(GSplit3)
class GSplit3Impl:
"""Implementation for GSplit3 operation."""
@staticmethod
def run(img):
# NB: cv.split return list but g-api requires tuple in multiple output case
return tuple(cv.split(img))
@cv.gapi.op('custom.mean', in_types=[cv.GMat], out_types=[cv.GScalar])
class GMean:
"""Calculates the mean value M of matrix elements."""
@staticmethod
def outMeta(desc):
return cv.empty_scalar_desc()
@cv.gapi.kernel(GMean)
class GMeanImpl:
"""Implementation for GMean operation."""
@staticmethod
def run(img):
# NB: cv.split return list but g-api requires tuple in multiple output case
return cv.mean(img)
@cv.gapi.op('custom.addC', in_types=[cv.GMat, cv.GScalar, int], out_types=[cv.GMat])
class GAddC:
"""Adds a given scalar value to each element of given matrix."""
@staticmethod
def outMeta(mat_desc, scalar_desc, dtype):
return mat_desc
@cv.gapi.kernel(GAddC)
class GAddCImpl:
"""Implementation for GAddC operation."""
@staticmethod
def run(img, sc, dtype):
# NB: dtype is just ignored in this implementation.
# Moreover from G-API kernel got scalar as tuples with 4 elements
# where the last element is equal to zero, just cut him for broadcasting.
return img + np.array(sc, dtype=np.uint8)[:-1]
@cv.gapi.op('custom.size', in_types=[cv.GMat], out_types=[cv.GOpaque.Size])
class GSize:
"""Gets dimensions from input matrix."""
@staticmethod
def outMeta(mat_desc):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GSize)
class GSizeImpl:
"""Implementation for GSize operation."""
@staticmethod
def run(img):
# NB: Take only H, W, because the operation should return cv::Size which is 2D.
return img.shape[:2]
@cv.gapi.op('custom.sizeR', in_types=[cv.GOpaque.Rect], out_types=[cv.GOpaque.Size])
class GSizeR:
"""Gets dimensions from rectangle."""
@staticmethod
def outMeta(opaq_desc):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GSizeR)
class GSizeRImpl:
"""Implementation for GSizeR operation."""
@staticmethod
def run(rect):
# NB: rect - is tuple (x, y, h, w)
return (rect[2], rect[3])
@cv.gapi.op('custom.boundingRect', in_types=[cv.GArray.Point], out_types=[cv.GOpaque.Rect])
class GBoundingRect:
"""Calculates minimal up-right bounding rectangle for the specified
9 point set or non-zero pixels of gray-scale image."""
@staticmethod
def outMeta(arr_desc):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GBoundingRect)
class GBoundingRectImpl:
"""Implementation for GBoundingRect operation."""
@staticmethod
def run(array):
# NB: OpenCV - numpy array (n_points x 2).
# G-API - array of tuples (n_points).
return cv.boundingRect(np.array(array))
@cv.gapi.op('custom.goodFeaturesToTrack',
in_types=[cv.GMat, int, float, float, int, bool, float],
out_types=[cv.GArray.Point2f])
class GGoodFeatures:
"""Finds the most prominent corners in the image
or in the specified image region."""
@staticmethod
def outMeta(desc, max_corners, quality_lvl,
min_distance, block_sz,
use_harris_detector, k):
return cv.empty_array_desc()
@cv.gapi.kernel(GGoodFeatures)
class GGoodFeaturesImpl:
"""Implementation for GGoodFeatures operation."""
@staticmethod
def run(img, max_corners, quality_lvl,
min_distance, block_sz,
use_harris_detector, k):
features = cv.goodFeaturesToTrack(img, max_corners, quality_lvl,
min_distance, mask=None,
blockSize=block_sz,
useHarrisDetector=use_harris_detector, k=k)
# NB: The operation output is cv::GArray<cv::Pointf>, so it should be mapped
# to python paramaters like this: [(1.2, 3.4), (5.2, 3.2)], because the cv::Point2f
# according to opencv rules mapped to the tuple and cv::GArray<> mapped to the list.
# OpenCV returns np.array with shape (n_features, 1, 2), so let's to convert it to list
# tuples with size == n_features.
features = list(map(tuple, features.reshape(features.shape[0], -1)))
return features
# To validate invalid cases
def create_op(in_types, out_types):
@cv.gapi.op('custom.op', in_types=in_types, out_types=out_types)
class Op:
"""Custom operation for testing."""
@staticmethod
def outMeta(desc):
raise NotImplementedError("outMeta isn't imlemented")
return Op
class gapi_sample_pipelines(NewOpenCVTests):
def test_custom_op_add(self):
sz = (3, 3)
in_mat1 = np.full(sz, 45, dtype=np.uint8)
in_mat2 = np.full(sz, 50, dtype=np.uint8)
# OpenCV
expected = cv.add(in_mat1, in_mat2)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
g_out = GAdd.on(g_in1, g_in2, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(g_out))
pkg = cv.gapi.kernels(GAddImpl)
actual = comp.apply(cv.gin(in_mat1, in_mat2), args=cv.gapi.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_split3(self):
sz = (4, 4)
in_ch1 = np.full(sz, 1, dtype=np.uint8)
in_ch2 = np.full(sz, 2, dtype=np.uint8)
in_ch3 = np.full(sz, 3, dtype=np.uint8)
# H x W x C
in_mat = np.stack((in_ch1, in_ch2, in_ch3), axis=2)
# G-API
g_in = cv.GMat()
g_ch1, g_ch2, g_ch3 = GSplit3.on(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ch1, g_ch2, g_ch3))
pkg = cv.gapi.kernels(GSplit3Impl)
ch1, ch2, ch3 = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
self.assertEqual(0.0, cv.norm(in_ch1, ch1, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(in_ch2, ch2, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(in_ch3, ch3, cv.NORM_INF))
def test_custom_op_mean(self):
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.imread(img_path)
# OpenCV
expected = cv.mean(in_mat)
# G-API
g_in = cv.GMat()
g_out = GMean.on(g_in)
comp = cv.GComputation(g_in, g_out)
pkg = cv.gapi.kernels(GMeanImpl)
actual = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
# Comparison
self.assertEqual(expected, actual)
def test_custom_op_addC(self):
sz = (3, 3, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
sc = (50, 10, 20)
# Numpy reference, make array from sc to keep uint8 dtype.
expected = in_mat + np.array(sc, dtype=np.uint8)
# G-API
g_in = cv.GMat()
g_sc = cv.GScalar()
g_out = GAddC.on(g_in, g_sc, cv.CV_8UC1)
comp = cv.GComputation(cv.GIn(g_in, g_sc), cv.GOut(g_out))
pkg = cv.gapi.kernels(GAddCImpl)
actual = comp.apply(cv.gin(in_mat, sc), args=cv.gapi.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_size(self):
sz = (100, 150, 3)
in_mat = np.full(sz, 45, dtype=np.uint8)
# Open_cV
expected = (100, 150)
# G-API
g_in = cv.GMat()
g_sz = GSize.on(g_in)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_sz))
pkg = cv.gapi.kernels(GSizeImpl)
actual = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_sizeR(self):
# x, y, h, w
roi = (10, 15, 100, 150)
expected = (100, 150)
# G-API
g_r = cv.GOpaque.Rect()
g_sz = GSizeR.on(g_r)
comp = cv.GComputation(cv.GIn(g_r), cv.GOut(g_sz))
pkg = cv.gapi.kernels(GSizeRImpl)
actual = comp.apply(cv.gin(roi), args=cv.gapi.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_boundingRect(self):
points = [(0,0), (0,1), (1,0), (1,1)]
# OpenCV
expected = cv.boundingRect(np.array(points))
# G-API
g_pts = cv.GArray.Point()
g_br = GBoundingRect.on(g_pts)
comp = cv.GComputation(cv.GIn(g_pts), cv.GOut(g_br))
pkg = cv.gapi.kernels(GBoundingRectImpl)
actual = comp.apply(cv.gin(points), args=cv.gapi.compile_args(pkg))
# cv.norm works with tuples ?
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_custom_op_goodFeaturesToTrack(self):
# G-API
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
in_mat = cv.cvtColor(cv.imread(img_path), cv.COLOR_RGB2GRAY)
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10.0
block_sz = 3
use_harris_detector = True
k = 0.04
# OpenCV
expected = cv.goodFeaturesToTrack(in_mat, max_corners, quality_lvl,
min_distance, mask=None,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
# G-API
g_in = cv.GMat()
g_out = GGoodFeatures.on(g_in, max_corners, quality_lvl,
min_distance, block_sz, use_harris_detector, k)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
pkg = cv.gapi.kernels(GGoodFeaturesImpl)
actual = comp.apply(cv.gin(in_mat), args=cv.gapi.compile_args(pkg))
# NB: OpenCV & G-API have different output types.
# OpenCV - numpy array with shape (num_points, 1, 2)
# G-API - list of tuples with size - num_points
# Comparison
self.assertEqual(0.0, cv.norm(expected.flatten(),
np.array(actual, dtype=np.float32).flatten(), cv.NORM_INF))
def test_invalid_op(self):
# NB: Empty input types list
with self.assertRaises(Exception): create_op(in_types=[], out_types=[cv.GMat])
# NB: Empty output types list
with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[])
# Invalid output types
with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[int])
with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[cv.GMat, int])
with self.assertRaises(Exception): create_op(in_types=[cv.GMat], out_types=[str, cv.GScalar])
def test_invalid_op_input(self):
# NB: Check GMat/GScalar
with self.assertRaises(Exception): create_op([cv.GMat] , [cv.GScalar]).on(cv.GScalar())
with self.assertRaises(Exception): create_op([cv.GScalar], [cv.GScalar]).on(cv.GMat())
# NB: Check GOpaque
op = create_op([cv.GOpaque.Rect], [cv.GMat])
with self.assertRaises(Exception): op.on(cv.GOpaque.Bool())
with self.assertRaises(Exception): op.on(cv.GOpaque.Int())
with self.assertRaises(Exception): op.on(cv.GOpaque.Double())
with self.assertRaises(Exception): op.on(cv.GOpaque.Float())
with self.assertRaises(Exception): op.on(cv.GOpaque.String())
with self.assertRaises(Exception): op.on(cv.GOpaque.Point())
with self.assertRaises(Exception): op.on(cv.GOpaque.Point2f())
with self.assertRaises(Exception): op.on(cv.GOpaque.Size())
# NB: Check GArray
op = create_op([cv.GArray.Rect], [cv.GMat])
with self.assertRaises(Exception): op.on(cv.GArray.Bool())
with self.assertRaises(Exception): op.on(cv.GArray.Int())
with self.assertRaises(Exception): op.on(cv.GArray.Double())
with self.assertRaises(Exception): op.on(cv.GArray.Float())
with self.assertRaises(Exception): op.on(cv.GArray.String())
with self.assertRaises(Exception): op.on(cv.GArray.Point())
with self.assertRaises(Exception): op.on(cv.GArray.Point2f())
with self.assertRaises(Exception): op.on(cv.GArray.Size())
# Check other possible invalid options
with self.assertRaises(Exception): op.on(cv.GMat())
with self.assertRaises(Exception): op.on(cv.GScalar())
with self.assertRaises(Exception): op.on(1)
with self.assertRaises(Exception): op.on('foo')
with self.assertRaises(Exception): op.on(False)
with self.assertRaises(Exception): create_op([cv.GMat, int], [cv.GMat]).on(cv.GMat(), 'foo')
with self.assertRaises(Exception): create_op([cv.GMat, int], [cv.GMat]).on(cv.GMat())
def test_stateful_kernel(self):
@cv.gapi.op('custom.sum', in_types=[cv.GArray.Int], out_types=[cv.GOpaque.Int])
class GSum:
@staticmethod
def outMeta(arr_desc):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GSum)
class GSumImpl:
last_result = 0
@staticmethod
def run(arr):
GSumImpl.last_result = sum(arr)
return GSumImpl.last_result
g_in = cv.GArray.Int()
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(GSum.on(g_in)))
s = comp.apply(cv.gin([1, 2, 3, 4]), args=cv.gapi.compile_args(cv.gapi.kernels(GSumImpl)))
self.assertEqual(10, s)
s = comp.apply(cv.gin([1, 2, 8, 7]), args=cv.gapi.compile_args(cv.gapi.kernels(GSumImpl)))
self.assertEqual(18, s)
self.assertEqual(18, GSumImpl.last_result)
def test_opaq_with_custom_type(self):
@cv.gapi.op('custom.op', in_types=[cv.GOpaque.Any, cv.GOpaque.String], out_types=[cv.GOpaque.Any])
class GLookUp:
@staticmethod
def outMeta(opaq_desc0, opaq_desc1):
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GLookUp)
class GLookUpImpl:
@staticmethod
def run(table, key):
return table[key]
g_table = cv.GOpaque.Any()
g_key = cv.GOpaque.String()
g_out = GLookUp.on(g_table, g_key)
comp = cv.GComputation(cv.GIn(g_table, g_key), cv.GOut(g_out))
table = {
'int': 42,
'str': 'hello, world!',
'tuple': (42, 42)
}
out = comp.apply(cv.gin(table, 'int'), args=cv.gapi.compile_args(cv.gapi.kernels(GLookUpImpl)))
self.assertEqual(42, out)
out = comp.apply(cv.gin(table, 'str'), args=cv.gapi.compile_args(cv.gapi.kernels(GLookUpImpl)))
self.assertEqual('hello, world!', out)
out = comp.apply(cv.gin(table, 'tuple'), args=cv.gapi.compile_args(cv.gapi.kernels(GLookUpImpl)))
self.assertEqual((42, 42), out)
def test_array_with_custom_type(self):
@cv.gapi.op('custom.op', in_types=[cv.GArray.Any, cv.GArray.Any], out_types=[cv.GArray.Any])
class GConcat:
@staticmethod
def outMeta(arr_desc0, arr_desc1):
return cv.empty_array_desc()
@cv.gapi.kernel(GConcat)
class GConcatImpl:
@staticmethod
def run(arr0, arr1):
return arr0 + arr1
g_arr0 = cv.GArray.Any()
g_arr1 = cv.GArray.Any()
g_out = GConcat.on(g_arr0, g_arr1)
comp = cv.GComputation(cv.GIn(g_arr0, g_arr1), cv.GOut(g_out))
arr0 = ((2, 2), 2.0)
arr1 = (3, 'str')
out = comp.apply(cv.gin(arr0, arr1),
args=cv.gapi.compile_args(cv.gapi.kernels(GConcatImpl)))
self.assertEqual(arr0 + arr1, out)
def test_raise_in_kernel(self):
@cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
class GAdd:
@staticmethod
def outMeta(desc0, desc1):
return desc0
@cv.gapi.kernel(GAdd)
class GAddImpl:
@staticmethod
def run(img0, img1):
raise Exception('Error')
return img0 + img1
g_in0 = cv.GMat()
g_in1 = cv.GMat()
g_out = GAdd.on(g_in0, g_in1)
comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
img0 = np.array([1, 2, 3])
img1 = np.array([1, 2, 3])
with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
args=cv.gapi.compile_args(
cv.gapi.kernels(GAddImpl)))
def test_raise_in_outMeta(self):
@cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
class GAdd:
@staticmethod
def outMeta(desc0, desc1):
raise NotImplementedError("outMeta isn't implemented")
@cv.gapi.kernel(GAdd)
class GAddImpl:
@staticmethod
def run(img0, img1):
return img0 + img1
g_in0 = cv.GMat()
g_in1 = cv.GMat()
g_out = GAdd.on(g_in0, g_in1)
comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
img0 = np.array([1, 2, 3])
img1 = np.array([1, 2, 3])
with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
args=cv.gapi.compile_args(
cv.gapi.kernels(GAddImpl)))
def test_invalid_outMeta(self):
@cv.gapi.op('custom.op', in_types=[cv.GMat, cv.GMat], out_types=[cv.GMat])
class GAdd:
@staticmethod
def outMeta(desc0, desc1):
# Invalid outMeta
return cv.empty_gopaque_desc()
@cv.gapi.kernel(GAdd)
class GAddImpl:
@staticmethod
def run(img0, img1):
return img0 + img1
g_in0 = cv.GMat()
g_in1 = cv.GMat()
g_out = GAdd.on(g_in0, g_in1)
comp = cv.GComputation(cv.GIn(g_in0, g_in1), cv.GOut(g_out))
img0 = np.array([1, 2, 3])
img1 = np.array([1, 2, 3])
# FIXME: Cause Bad variant access.
# Need to provide more descriptive error messsage.
with self.assertRaises(Exception): comp.apply(cv.gin(img0, img1),
args=cv.gapi.compile_args(
cv.gapi.kernels(GAddImpl)))
def test_pipeline_with_custom_kernels(self):
@cv.gapi.op('custom.resize', in_types=[cv.GMat, tuple], out_types=[cv.GMat])
class GResize:
@staticmethod
def outMeta(desc, size):
return desc.withSize(size)
@cv.gapi.kernel(GResize)
class GResizeImpl:
@staticmethod
def run(img, size):
return cv.resize(img, size)
@cv.gapi.op('custom.transpose', in_types=[cv.GMat, tuple], out_types=[cv.GMat])
class GTranspose:
@staticmethod
def outMeta(desc, order):
return desc
@cv.gapi.kernel(GTranspose)
class GTransposeImpl:
@staticmethod
def run(img, order):
return np.transpose(img, order)
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
img = cv.imread(img_path)
size = (32, 32)
order = (1, 0, 2)
# Dummy pipeline just to validate this case:
# gapi -> custom -> custom -> gapi
# OpenCV
expected = cv.cvtColor(img, cv.COLOR_BGR2RGB)
expected = cv.resize(expected, size)
expected = np.transpose(expected, order)
expected = cv.mean(expected)
# G-API
g_bgr = cv.GMat()
g_rgb = cv.gapi.BGR2RGB(g_bgr)
g_resized = GResize.on(g_rgb, size)
g_transposed = GTranspose.on(g_resized, order)
g_mean = cv.gapi.mean(g_transposed)
comp = cv.GComputation(cv.GIn(g_bgr), cv.GOut(g_mean))
actual = comp.apply(cv.gin(img), args=cv.gapi.compile_args(
cv.gapi.kernels(GResizeImpl, GTransposeImpl)))
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@ -0,0 +1,369 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
import time
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
@cv.gapi.op('custom.delay', in_types=[cv.GMat], out_types=[cv.GMat])
class GDelay:
"""Delay for 10 ms."""
@staticmethod
def outMeta(desc):
return desc
@cv.gapi.kernel(GDelay)
class GDelayImpl:
"""Implementation for GDelay operation."""
@staticmethod
def run(img):
time.sleep(0.01)
return img
class test_gapi_streaming(NewOpenCVTests):
def test_image_input(self):
sz = (1280, 720)
in_mat = np.random.randint(0, 100, sz).astype(np.uint8)
# OpenCV
expected = cv.medianBlur(in_mat, 3)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.medianBlur(g_in, 3)
c = cv.GComputation(g_in, g_out)
ccomp = c.compileStreaming(cv.gapi.descr_of(in_mat))
ccomp.setSource(cv.gin(in_mat))
ccomp.start()
_, actual = ccomp.pull()
# Assert
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
def test_video_input(self):
ksize = 3
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# OpenCV
cap = cv.VideoCapture(path)
# G-API
g_in = cv.GMat()
g_out = cv.gapi.medianBlur(g_in, ksize)
c = cv.GComputation(g_in, g_out)
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(cv.gin(source))
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
while cap.isOpened():
has_expected, expected = cap.read()
has_actual, actual = ccomp.pull()
self.assertEqual(has_expected, has_actual)
if not has_actual:
break
self.assertEqual(0.0, cv.norm(cv.medianBlur(expected, ksize), actual, cv.NORM_INF))
proc_num_frames += 1
if proc_num_frames == max_num_frames:
break
def test_video_split3(self):
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# OpenCV
cap = cv.VideoCapture(path)
# G-API
g_in = cv.GMat()
b, g, r = cv.gapi.split3(g_in)
c = cv.GComputation(cv.GIn(g_in), cv.GOut(b, g, r))
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(cv.gin(source))
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
while cap.isOpened():
has_expected, frame = cap.read()
has_actual, actual = ccomp.pull()
self.assertEqual(has_expected, has_actual)
if not has_actual:
break
expected = cv.split(frame)
for e, a in zip(expected, actual):
self.assertEqual(0.0, cv.norm(e, a, cv.NORM_INF))
proc_num_frames += 1
if proc_num_frames == max_num_frames:
break
def test_video_add(self):
sz = (576, 768, 3)
in_mat = np.random.randint(0, 100, sz).astype(np.uint8)
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# OpenCV
cap = cv.VideoCapture(path)
# G-API
g_in1 = cv.GMat()
g_in2 = cv.GMat()
out = cv.gapi.add(g_in1, g_in2)
c = cv.GComputation(cv.GIn(g_in1, g_in2), cv.GOut(out))
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(cv.gin(source, in_mat))
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
while cap.isOpened():
has_expected, frame = cap.read()
has_actual, actual = ccomp.pull()
self.assertEqual(has_expected, has_actual)
if not has_actual:
break
expected = cv.add(frame, in_mat)
self.assertEqual(0.0, cv.norm(expected, actual, cv.NORM_INF))
proc_num_frames += 1
if proc_num_frames == max_num_frames:
break
def test_video_good_features_to_track(self):
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# NB: goodFeaturesToTrack configuration
max_corners = 50
quality_lvl = 0.01
min_distance = 10
block_sz = 3
use_harris_detector = True
k = 0.04
mask = None
# OpenCV
cap = cv.VideoCapture(path)
# G-API
g_in = cv.GMat()
g_gray = cv.gapi.RGB2Gray(g_in)
g_out = cv.gapi.goodFeaturesToTrack(g_gray, max_corners, quality_lvl,
min_distance, mask, block_sz, use_harris_detector, k)
c = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out))
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(cv.gin(source))
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
while cap.isOpened():
has_expected, frame = cap.read()
has_actual, actual = ccomp.pull()
self.assertEqual(has_expected, has_actual)
if not has_actual:
break
# OpenCV
frame = cv.cvtColor(frame, cv.COLOR_RGB2GRAY)
expected = cv.goodFeaturesToTrack(frame, max_corners, quality_lvl,
min_distance, mask=mask,
blockSize=block_sz, useHarrisDetector=use_harris_detector, k=k)
for e, a in zip(expected, actual):
# NB: OpenCV & G-API have different output shapes:
# OpenCV - (num_points, 1, 2)
# G-API - (num_points, 2)
self.assertEqual(0.0, cv.norm(e.flatten(),
np.array(a, np.float32).flatten(),
cv.NORM_INF))
proc_num_frames += 1
if proc_num_frames == max_num_frames:
break
def test_gapi_streaming_meta(self):
ksize = 3
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# G-API
g_in = cv.GMat()
g_ts = cv.gapi.streaming.timestamp(g_in)
g_seqno = cv.gapi.streaming.seqNo(g_in)
g_seqid = cv.gapi.streaming.seq_id(g_in)
c = cv.GComputation(cv.GIn(g_in), cv.GOut(g_ts, g_seqno, g_seqid))
ccomp = c.compileStreaming()
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(cv.gin(source))
ccomp.start()
# Assert
max_num_frames = 10
curr_frame_number = 0
while True:
has_frame, (ts, seqno, seqid) = ccomp.pull()
if not has_frame:
break
self.assertEqual(curr_frame_number, seqno)
self.assertEqual(curr_frame_number, seqid)
curr_frame_number += 1
if curr_frame_number == max_num_frames:
break
def test_desync(self):
path = self.find_file('cv/video/768x576.avi', [os.environ['OPENCV_TEST_DATA_PATH']])
# G-API
g_in = cv.GMat()
g_out1 = cv.gapi.copy(g_in)
des = cv.gapi.streaming.desync(g_in)
g_out2 = GDelay.on(des)
c = cv.GComputation(cv.GIn(g_in), cv.GOut(g_out1, g_out2))
kernels = cv.gapi.kernels(GDelayImpl)
ccomp = c.compileStreaming(args=cv.gapi.compile_args(kernels))
source = cv.gapi.wip.make_capture_src(path)
ccomp.setSource(cv.gin(source))
ccomp.start()
# Assert
max_num_frames = 10
proc_num_frames = 0
out_counter = 0
desync_out_counter = 0
none_counter = 0
while True:
has_frame, (out1, out2) = ccomp.pull()
if not has_frame:
break
if not out1 is None:
out_counter += 1
if not out2 is None:
desync_out_counter += 1
else:
none_counter += 1
proc_num_frames += 1
if proc_num_frames == max_num_frames:
ccomp.stop()
break
self.assertLess(0, proc_num_frames)
self.assertLess(desync_out_counter, out_counter)
self.assertLess(0, none_counter)
def test_compile_streaming_empty(self):
g_in = cv.GMat()
comp = cv.GComputation(g_in, cv.gapi.medianBlur(g_in, 3))
comp.compileStreaming()
def test_compile_streaming_args(self):
g_in = cv.GMat()
comp = cv.GComputation(g_in, cv.gapi.medianBlur(g_in, 3))
comp.compileStreaming(cv.gapi.compile_args(cv.gapi.streaming.queue_capacity(1)))
def test_compile_streaming_descr_of(self):
g_in = cv.GMat()
comp = cv.GComputation(g_in, cv.gapi.medianBlur(g_in, 3))
img = np.zeros((3,300,300), dtype=np.float32)
comp.compileStreaming(cv.gapi.descr_of(img))
def test_compile_streaming_descr_of_and_args(self):
g_in = cv.GMat()
comp = cv.GComputation(g_in, cv.gapi.medianBlur(g_in, 3))
img = np.zeros((3,300,300), dtype=np.float32)
comp.compileStreaming(cv.gapi.descr_of(img),
cv.gapi.compile_args(cv.gapi.streaming.queue_capacity(1)))
def test_compile_streaming_meta(self):
g_in = cv.GMat()
comp = cv.GComputation(g_in, cv.gapi.medianBlur(g_in, 3))
img = np.zeros((3,300,300), dtype=np.float32)
comp.compileStreaming([cv.GMatDesc(cv.CV_8U, 3, (300, 300))])
def test_compile_streaming_meta_and_args(self):
g_in = cv.GMat()
comp = cv.GComputation(g_in, cv.gapi.medianBlur(g_in, 3))
img = np.zeros((3,300,300), dtype=np.float32)
comp.compileStreaming([cv.GMatDesc(cv.CV_8U, 3, (300, 300))],
cv.gapi.compile_args(cv.gapi.streaming.queue_capacity(1)))
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()

View File

@ -0,0 +1,54 @@
#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
import sys
import unittest
from tests_common import NewOpenCVTests
try:
if sys.version_info[:2] < (3, 0):
raise unittest.SkipTest('Python 2.x is not supported')
class gapi_types_test(NewOpenCVTests):
def test_garray_type(self):
types = [cv.gapi.CV_BOOL , cv.gapi.CV_INT , cv.gapi.CV_DOUBLE , cv.gapi.CV_FLOAT,
cv.gapi.CV_STRING, cv.gapi.CV_POINT , cv.gapi.CV_POINT2F, cv.gapi.CV_SIZE ,
cv.gapi.CV_RECT , cv.gapi.CV_SCALAR, cv.gapi.CV_MAT , cv.gapi.CV_GMAT]
for t in types:
g_array = cv.GArrayT(t)
self.assertEqual(t, g_array.type())
def test_gopaque_type(self):
types = [cv.gapi.CV_BOOL , cv.gapi.CV_INT , cv.gapi.CV_DOUBLE , cv.gapi.CV_FLOAT,
cv.gapi.CV_STRING, cv.gapi.CV_POINT , cv.gapi.CV_POINT2F, cv.gapi.CV_SIZE ,
cv.gapi.CV_RECT]
for t in types:
g_opaque = cv.GOpaqueT(t)
self.assertEqual(t, g_opaque.type())
except unittest.SkipTest as e:
message = str(e)
class TestSkip(unittest.TestCase):
def setUp(self):
self.skipTest('Skip tests: ' + message)
def test_skip():
pass
pass
if __name__ == '__main__':
NewOpenCVTests.bootstrap()