feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,220 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#include "../test_precomp.hpp"
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/core.hpp>
#include <opencv2/gapi/fluid/imgproc.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/streaming/sync.hpp>
namespace opencv_test {
namespace {
using ts_t = int64_t;
using ts_vec = std::vector<ts_t>;
using cv::gapi::streaming::sync_policy;
ts_t calcLeastCommonMultiple(const ts_vec& values) {
ts_t res = *std::max_element(values.begin(), values.end());
auto isDivisor = [&](ts_t v) { return res % v == 0; };
while(!std::all_of(values.begin(), values.end(), isDivisor)) {
res++;
}
return res;
}
struct TimestampGenerationParams {
const ts_vec frame_times;
sync_policy policy;
ts_t end_time;
TimestampGenerationParams(const ts_vec& ft, sync_policy sp, ts_t et = 25)
: frame_times(ft), policy(sp), end_time(et) {
}
};
class MultiFrameSource {
class SingleSource : public cv::gapi::wip::IStreamSource {
MultiFrameSource& m_source;
std::size_t m_idx;
public:
SingleSource(MultiFrameSource& s, std::size_t idx)
: m_source(s)
, m_idx(idx)
{}
virtual bool pull(cv::gapi::wip::Data& data) {
return m_source.pull(data, m_idx);
}
virtual GMetaArg descr_of() const { return GMetaArg{m_source.desc()}; }
};
TimestampGenerationParams p;
ts_vec m_current_times;
cv::Mat m_mat;
public:
MultiFrameSource(const TimestampGenerationParams& params)
: p(params)
, m_current_times(p.frame_times.size(), 0u)
, m_mat(8, 8, CV_8UC1) {
}
bool pull(cv::gapi::wip::Data& data, std::size_t idx) {
cv::randn(m_mat, 127, 32);
GAPI_Assert(idx < p.frame_times.size());
m_current_times[idx] += p.frame_times[idx];
if (m_current_times[idx] >= p.end_time) {
return false;
}
data = m_mat.clone();
data.meta[cv::gapi::streaming::meta_tag::timestamp] = m_current_times[idx];
return true;
}
cv::gapi::wip::IStreamSource::Ptr getSource(std::size_t idx) {
return cv::gapi::wip::IStreamSource::Ptr{new SingleSource(*this, idx)};
}
GMatDesc desc() const { return cv::descr_of(m_mat); }
};
class TimestampChecker {
TimestampGenerationParams p;
ts_t m_synced_time = 0u;
ts_t m_synced_frame_time = 0u;
public:
TimestampChecker(const TimestampGenerationParams& params)
: p(params)
, m_synced_frame_time(calcLeastCommonMultiple(p.frame_times)) {
}
void checkNext(const ts_vec& timestamps) {
if (p.policy == sync_policy::dont_sync) {
// don't check timestamps if the policy is dont_sync
return;
}
m_synced_time += m_synced_frame_time;
for (const auto& ts : timestamps) {
EXPECT_EQ(m_synced_time, ts);
}
}
std::size_t nFrames() const {
auto frame_time = p.policy == sync_policy::dont_sync
? *std::max_element(p.frame_times.begin(), p.frame_times.end())
: m_synced_frame_time;
auto n_frames = p.end_time / frame_time;
GAPI_Assert(n_frames > 0u);
return (std::size_t)n_frames;
}
};
struct TimestampSyncTest : public ::testing::TestWithParam<sync_policy> {
void run(cv::GProtoInputArgs&& ins, cv::GProtoOutputArgs&& outs,
const ts_vec& frame_times) {
auto video_in_n = frame_times.size();
GAPI_Assert(video_in_n <= ins.m_args.size());
// Assume that all remaining inputs are const
auto const_in_n = ins.m_args.size() - video_in_n;
auto out_n = outs.m_args.size();
auto policy = GetParam();
TimestampGenerationParams ts_params(frame_times, policy);
MultiFrameSource source(ts_params);
GRunArgs gins;
for (std::size_t i = 0; i < video_in_n; i++) {
gins += cv::gin(source.getSource(i));
}
auto desc = source.desc();
cv::Mat const_mat = cv::Mat::eye(desc.size.height,
desc.size.width,
CV_MAKE_TYPE(desc.depth, desc.chan));
for (std::size_t i = 0; i < const_in_n; i++) {
gins += cv::gin(const_mat);
}
ts_vec out_timestamps(out_n);
cv::GRunArgsP gouts{};
for (auto& t : out_timestamps) {
gouts += cv::gout(t);
}
auto pipe = cv::GComputation(std::move(ins), std::move(outs))
.compileStreaming(cv::compile_args(policy));
pipe.setSource(std::move(gins));
pipe.start();
std::size_t frames = 0u;
TimestampChecker checker(ts_params);
while(pipe.pull(std::move(gouts))) {
checker.checkNext(out_timestamps);
frames++;
}
EXPECT_EQ(checker.nFrames(), frames);
}
};
} // anonymous namespace
TEST_P(TimestampSyncTest, Basic)
{
cv::GMat in1, in2;
auto out = cv::gapi::add(in1, in2);
auto ts = cv::gapi::streaming::timestamp(out);
run(cv::GIn(in1, in2), cv::GOut(ts), {1,2});
}
TEST_P(TimestampSyncTest, ThreeInputs)
{
cv::GMat in1, in2, in3;
auto tmp = cv::gapi::add(in1, in2);
auto out = cv::gapi::add(tmp, in3);
auto ts = cv::gapi::streaming::timestamp(out);
run(cv::GIn(in1, in2, in3), cv::GOut(ts), {2,4,3});
}
TEST_P(TimestampSyncTest, TwoOutputs)
{
cv::GMat in1, in2, in3;
auto out1 = cv::gapi::add(in1, in3);
auto out2 = cv::gapi::add(in2, in3);
auto ts1 = cv::gapi::streaming::timestamp(out1);
auto ts2 = cv::gapi::streaming::timestamp(out2);
run(cv::GIn(in1, in2, in3), cv::GOut(ts1, ts2), {1,4,2});
}
TEST_P(TimestampSyncTest, ConstInput)
{
cv::GMat in1, in2, in3;
auto out1 = cv::gapi::add(in1, in3);
auto out2 = cv::gapi::add(in2, in3);
auto ts1 = cv::gapi::streaming::timestamp(out1);
auto ts2 = cv::gapi::streaming::timestamp(out2);
run(cv::GIn(in1, in2, in3), cv::GOut(ts1, ts2), {1,2});
}
TEST_P(TimestampSyncTest, ChangeSource)
{
cv::GMat in1, in2, in3;
auto out1 = cv::gapi::add(in1, in3);
auto out2 = cv::gapi::add(in2, in3);
auto ts1 = cv::gapi::streaming::timestamp(out1);
auto ts2 = cv::gapi::streaming::timestamp(out2);
run(cv::GIn(in1, in2, in3), cv::GOut(ts1, ts2), {1,2});
run(cv::GIn(in1, in2, in3), cv::GOut(ts1, ts2), {1,2});
}
INSTANTIATE_TEST_CASE_P(InputSynchronization, TimestampSyncTest,
Values(sync_policy::dont_sync,
sync_policy::drop));
} // namespace opencv_test

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,446 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2021 Intel Corporation
#include "../test_precomp.hpp"
#include "../common/gapi_tests_common.hpp"
#include <chrono>
#include <future>
#include <opencv2/gapi/media.hpp>
#include <opencv2/gapi/cpu/core.hpp>
#include <opencv2/gapi/cpu/imgproc.hpp>
#include <opencv2/gapi/fluid/core.hpp>
#include <opencv2/gapi/fluid/imgproc.hpp>
#include <opencv2/gapi/fluid/gfluidkernel.hpp>
#include <opencv2/gapi/ocl/core.hpp>
#include <opencv2/gapi/ocl/imgproc.hpp>
#include <opencv2/gapi/streaming/cap.hpp>
#include <opencv2/gapi/streaming/desync.hpp>
#include <opencv2/gapi/streaming/format.hpp>
#include <opencv2/gapi/streaming/onevpl/source.hpp>
#ifdef HAVE_ONEVPL
#include <opencv2/gapi/streaming/onevpl/data_provider_interface.hpp>
#include "streaming/onevpl/accelerators/surface/surface.hpp"
#include "streaming/onevpl/accelerators/surface/cpu_frame_adapter.hpp"
#include "streaming/onevpl/accelerators/accel_policy_cpu.hpp"
#include "streaming/onevpl/engine/processing_engine_base.hpp"
#include "streaming/onevpl/engine/engine_session.hpp"
namespace opencv_test
{
namespace
{
struct EmptyDataProvider : public cv::gapi::wip::onevpl::IDataProvider {
size_t fetch_data(size_t, void*) override {
return 0;
}
bool empty() const override {
return true;
}
};
struct TestProcessingSession : public cv::gapi::wip::onevpl::EngineSession {
TestProcessingSession(mfxSession mfx_session) :
EngineSession(mfx_session, {}) {
}
};
struct TestProcessingEngine: public cv::gapi::wip::onevpl::ProcessingEngineBase {
size_t pipeline_stage_num = 0;
TestProcessingEngine(std::unique_ptr<cv::gapi::wip::onevpl::VPLAccelerationPolicy>&& accel) :
cv::gapi::wip::onevpl::ProcessingEngineBase(std::move(accel)) {
using cv::gapi::wip::onevpl::EngineSession;
create_pipeline(
// 0)
[this] (EngineSession&) -> ExecutionStatus
{
pipeline_stage_num = 0;
return ExecutionStatus::Continue;
},
// 1)
[this] (EngineSession&) -> ExecutionStatus
{
pipeline_stage_num = 1;
return ExecutionStatus::Continue;
},
// 2)
[this] (EngineSession&) -> ExecutionStatus
{
pipeline_stage_num = 2;
return ExecutionStatus::Continue;
},
// 3)
[this] (EngineSession&) -> ExecutionStatus
{
pipeline_stage_num = 3;
ready_frames.emplace(cv::MediaFrame());
return ExecutionStatus::Processed;
}
);
}
void initialize_session(mfxSession mfx_session,
cv::gapi::wip::onevpl::DecoderParams&&,
std::shared_ptr<cv::gapi::wip::onevpl::IDataProvider>) override {
register_session<TestProcessingSession>(mfx_session);
}
};
cv::gapi::wip::onevpl::surface_ptr_t create_test_surface(std::shared_ptr<void> out_buf_ptr,
size_t, size_t) {
std::unique_ptr<mfxFrameSurface1> handle(new mfxFrameSurface1{});
return cv::gapi::wip::onevpl::Surface::create_surface(std::move(handle), out_buf_ptr);
}
TEST(OneVPL_Source_Surface, InitSurface)
{
using namespace cv::gapi::wip::onevpl;
// create raw MFX handle
std::unique_ptr<mfxFrameSurface1> handle(new mfxFrameSurface1{});
mfxFrameSurface1 *mfx_core_handle = handle.get();
// create preallocate surface memory: empty for test
std::shared_ptr<void> associated_memory {};
auto surf = Surface::create_surface(std::move(handle), associated_memory);
// check self consistency
EXPECT_EQ(reinterpret_cast<void*>(surf->get_handle()),
reinterpret_cast<void*>(mfx_core_handle));
EXPECT_EQ(surf->get_locks_count(), 0);
EXPECT_EQ(surf->obtain_lock(), 0);
EXPECT_EQ(surf->get_locks_count(), 1);
EXPECT_EQ(surf->release_lock(), 1);
EXPECT_EQ(surf->get_locks_count(), 0);
}
TEST(OneVPL_Source_Surface, ConcurrentLock)
{
using namespace cv::gapi::wip::onevpl;
// create raw MFX handle
std::unique_ptr<mfxFrameSurface1> handle(new mfxFrameSurface1{});
// create preallocate surface memory: empty for test
std::shared_ptr<void> associated_memory {};
auto surf = Surface::create_surface(std::move(handle), associated_memory);
// check self consistency
EXPECT_EQ(surf->get_locks_count(), 0);
// MFX internal limitation: do not exceede U16 range
// so I16 is using here
int16_t lock_counter = std::numeric_limits<int16_t>::max() - 1;
std::promise<void> barrier;
std::future<void> sync = barrier.get_future();
std::thread worker_thread([&barrier, surf, lock_counter] () {
barrier.set_value();
// concurrent lock
for (int16_t i = 0; i < lock_counter; i ++) {
surf->obtain_lock();
}
});
sync.wait();
// concurrent lock
for (int16_t i = 0; i < lock_counter; i ++) {
surf->obtain_lock();
}
worker_thread.join();
EXPECT_EQ(surf->get_locks_count(), lock_counter * 2);
}
TEST(OneVPL_Source_Surface, MemoryLifeTime)
{
using namespace cv::gapi::wip::onevpl;
// create preallocate surface memory
std::unique_ptr<char> preallocated_memory_ptr(new char);
std::shared_ptr<void> associated_memory (preallocated_memory_ptr.get(),
[&preallocated_memory_ptr] (void* ptr) {
EXPECT_TRUE(preallocated_memory_ptr);
EXPECT_EQ(preallocated_memory_ptr.get(), ptr);
preallocated_memory_ptr.reset();
});
// generate surfaces
constexpr size_t surface_num = 10000;
std::vector<std::shared_ptr<Surface>> surfaces(surface_num);
std::generate(surfaces.begin(), surfaces.end(), [surface_num, associated_memory](){
std::unique_ptr<mfxFrameSurface1> handle(new mfxFrameSurface1{});
return Surface::create_surface(std::move(handle), associated_memory);
});
// destroy surfaces
{
std::thread deleter_thread([&surfaces]() {
surfaces.clear();
});
deleter_thread.join();
}
// workspace memory must be alive
EXPECT_EQ(surfaces.size(), 0);
EXPECT_TRUE(associated_memory != nullptr);
EXPECT_TRUE(preallocated_memory_ptr.get() != nullptr);
// generate surfaces again + 1
constexpr size_t surface_num_plus_one = 10001;
surfaces.resize(surface_num_plus_one);
std::generate(surfaces.begin(), surfaces.end(), [surface_num_plus_one, associated_memory](){
std::unique_ptr<mfxFrameSurface1> handle(new mfxFrameSurface1{});
return Surface::create_surface(std::move(handle), associated_memory);
});
// remember one surface
std::shared_ptr<Surface> last_surface = surfaces.back();
// destroy another surfaces
surfaces.clear();
// destroy associated_memory
associated_memory.reset();
// workspace memory must be still alive
EXPECT_EQ(surfaces.size(), 0);
EXPECT_TRUE(associated_memory == nullptr);
EXPECT_TRUE(preallocated_memory_ptr.get() != nullptr);
// destroy last surface
last_surface.reset();
// workspace memory must be freed
EXPECT_TRUE(preallocated_memory_ptr.get() == nullptr);
}
TEST(OneVPL_Source_CPU_FrameAdapter, InitFrameAdapter)
{
using namespace cv::gapi::wip::onevpl;
// create raw MFX handle
std::unique_ptr<mfxFrameSurface1> handle(new mfxFrameSurface1{});
// create preallocate surface memory: empty for test
std::shared_ptr<void> associated_memory {};
auto surf = Surface::create_surface(std::move(handle), associated_memory);
// check consistency
EXPECT_EQ(surf->get_locks_count(), 0);
{
VPLMediaFrameCPUAdapter adapter(surf);
EXPECT_EQ(surf->get_locks_count(), 1);
}
EXPECT_EQ(surf->get_locks_count(), 0);
}
TEST(OneVPL_Source_CPU_Accelerator, InitDestroy)
{
using cv::gapi::wip::onevpl::VPLCPUAccelerationPolicy;
using cv::gapi::wip::onevpl::VPLAccelerationPolicy;
auto acceleration_policy = std::make_shared<VPLCPUAccelerationPolicy>();
size_t surface_count = 10;
size_t surface_size_bytes = 1024;
size_t pool_count = 3;
std::vector<VPLAccelerationPolicy::pool_key_t> pool_export_keys;
pool_export_keys.reserve(pool_count);
// create several pools
for (size_t i = 0; i < pool_count; i++)
{
VPLAccelerationPolicy::pool_key_t key =
acceleration_policy->create_surface_pool(surface_count,
surface_size_bytes,
create_test_surface);
// check consistency
EXPECT_EQ(acceleration_policy->get_surface_count(key), surface_count);
EXPECT_EQ(acceleration_policy->get_free_surface_count(key), surface_count);
pool_export_keys.push_back(key);
}
EXPECT_NO_THROW(acceleration_policy.reset());
}
TEST(OneVPL_Source_CPU_Accelerator, PoolProduceConsume)
{
using cv::gapi::wip::onevpl::VPLCPUAccelerationPolicy;
using cv::gapi::wip::onevpl::VPLAccelerationPolicy;
using cv::gapi::wip::onevpl::Surface;
auto acceleration_policy = std::make_shared<VPLCPUAccelerationPolicy>();
size_t surface_count = 10;
size_t surface_size_bytes = 1024;
VPLAccelerationPolicy::pool_key_t key =
acceleration_policy->create_surface_pool(surface_count,
surface_size_bytes,
create_test_surface);
// check consistency
EXPECT_EQ(acceleration_policy->get_surface_count(key), surface_count);
EXPECT_EQ(acceleration_policy->get_free_surface_count(key), surface_count);
// consume available surfaces
std::vector<std::shared_ptr<Surface>> surfaces;
surfaces.reserve(surface_count);
for (size_t i = 0; i < surface_count; i++) {
std::shared_ptr<Surface> surf = acceleration_policy->get_free_surface(key).lock();
EXPECT_TRUE(surf.get() != nullptr);
EXPECT_EQ(surf->obtain_lock(), 0);
surfaces.push_back(std::move(surf));
}
// check consistency (no free surfaces)
EXPECT_EQ(acceleration_policy->get_surface_count(key), surface_count);
EXPECT_EQ(acceleration_policy->get_free_surface_count(key), 0);
// fail consume non-free surfaces
for (size_t i = 0; i < surface_count; i++) {
EXPECT_THROW(acceleration_policy->get_free_surface(key), std::runtime_error);
}
// release surfaces
for (auto& surf : surfaces) {
EXPECT_EQ(surf->release_lock(), 1);
}
surfaces.clear();
// check consistency
EXPECT_EQ(acceleration_policy->get_surface_count(key), surface_count);
EXPECT_EQ(acceleration_policy->get_free_surface_count(key), surface_count);
//check availability after release
for (size_t i = 0; i < surface_count; i++) {
std::shared_ptr<Surface> surf = acceleration_policy->get_free_surface(key).lock();
EXPECT_TRUE(surf.get() != nullptr);
EXPECT_EQ(surf->obtain_lock(), 0);
}
}
TEST(OneVPL_Source_CPU_Accelerator, PoolProduceConcurrentConsume)
{
using cv::gapi::wip::onevpl::VPLCPUAccelerationPolicy;
using cv::gapi::wip::onevpl::VPLAccelerationPolicy;
using cv::gapi::wip::onevpl::Surface;
auto acceleration_policy = std::make_shared<VPLCPUAccelerationPolicy>();
size_t surface_count = 10;
size_t surface_size_bytes = 1024;
VPLAccelerationPolicy::pool_key_t key =
acceleration_policy->create_surface_pool(surface_count,
surface_size_bytes,
create_test_surface);
// check consistency
EXPECT_EQ(acceleration_policy->get_surface_count(key), surface_count);
EXPECT_EQ(acceleration_policy->get_free_surface_count(key), surface_count);
// consume available surfaces
std::vector<std::shared_ptr<Surface>> surfaces;
surfaces.reserve(surface_count);
for (size_t i = 0; i < surface_count; i++) {
std::shared_ptr<Surface> surf = acceleration_policy->get_free_surface(key).lock();
EXPECT_TRUE(surf.get() != nullptr);
EXPECT_EQ(surf->obtain_lock(), 0);
surfaces.push_back(std::move(surf));
}
std::promise<void> launch_promise;
std::future<void> sync = launch_promise.get_future();
std::promise<size_t> surface_released_promise;
std::future<size_t> released_result = surface_released_promise.get_future();
std::thread worker_thread([&launch_promise, &surface_released_promise, &surfaces] () {
launch_promise.set_value();
// concurrent release surfaces
size_t surfaces_count = surfaces.size();
for (auto& surf : surfaces) {
EXPECT_EQ(surf->release_lock(), 1);
std::this_thread::sleep_for(std::chrono::seconds(1));
}
surfaces.clear();
surface_released_promise.set_value(surfaces_count);
});
sync.wait();
// check free surface concurrently
std::future_status status;
size_t free_surface_count = 0;
size_t free_surface_count_prev = 0;
do {
status = released_result.wait_for(std::chrono::seconds(1));
free_surface_count = acceleration_policy->get_free_surface_count(key);
EXPECT_TRUE(free_surface_count >= free_surface_count_prev);
free_surface_count_prev = free_surface_count;
} while (status != std::future_status::ready);
std::cerr<< "Ready" << std::endl;
free_surface_count = acceleration_policy->get_free_surface_count(key);
worker_thread.join();
EXPECT_TRUE(free_surface_count >= free_surface_count_prev);
}
TEST(OneVPL_Source_ProcessingEngine, Init)
{
using namespace cv::gapi::wip::onevpl;
std::unique_ptr<VPLAccelerationPolicy> accel;
TestProcessingEngine engine(std::move(accel));
mfxSession mfx_session{};
engine.initialize_session(mfx_session, DecoderParams{}, std::shared_ptr<IDataProvider>{});
EXPECT_EQ(engine.get_ready_frames_count(), 0);
ProcessingEngineBase::ExecutionStatus ret = engine.process(mfx_session);
EXPECT_EQ(ret, ProcessingEngineBase::ExecutionStatus::Continue);
EXPECT_EQ(engine.pipeline_stage_num, 0);
ret = engine.process(mfx_session);
EXPECT_EQ(ret, ProcessingEngineBase::ExecutionStatus::Continue);
EXPECT_EQ(engine.pipeline_stage_num, 1);
ret = engine.process(mfx_session);
EXPECT_EQ(ret, ProcessingEngineBase::ExecutionStatus::Continue);
EXPECT_EQ(engine.pipeline_stage_num, 2);
ret = engine.process(mfx_session);
EXPECT_EQ(ret, ProcessingEngineBase::ExecutionStatus::Processed);
EXPECT_EQ(engine.pipeline_stage_num, 3);
EXPECT_EQ(engine.get_ready_frames_count(), 1);
ret = engine.process(mfx_session);
EXPECT_EQ(ret, ProcessingEngineBase::ExecutionStatus::SessionNotFound);
EXPECT_EQ(engine.pipeline_stage_num, 3);
EXPECT_EQ(engine.get_ready_frames_count(), 1);
cv::gapi::wip::Data frame;
engine.get_frame(frame);
}
}
} // namespace opencv_test
#endif // HAVE_ONEVPL