feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
34
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/bindings.hpp
vendored
Normal file
34
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/bindings.hpp
vendored
Normal file
@ -0,0 +1,34 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_IMGPROC_BINDINGS_HPP
|
||||
#define OPENCV_IMGPROC_BINDINGS_HPP
|
||||
|
||||
// This file contains special overloads for OpenCV bindings
|
||||
// No need to use these functions in C++ code.
|
||||
|
||||
namespace cv {
|
||||
|
||||
/** @brief Finds lines in a binary image using the standard Hough transform and get accumulator.
|
||||
*
|
||||
* @note This function is for bindings use only. Use original function in C++ code
|
||||
*
|
||||
* @sa HoughLines
|
||||
*/
|
||||
CV_WRAP static inline
|
||||
void HoughLinesWithAccumulator(
|
||||
InputArray image, OutputArray lines,
|
||||
double rho, double theta, int threshold,
|
||||
double srn = 0, double stn = 0,
|
||||
double min_theta = 0, double max_theta = CV_PI
|
||||
)
|
||||
{
|
||||
std::vector<Vec3f> lines_acc;
|
||||
HoughLines(image, lines_acc, rho, theta, threshold, srn, stn, min_theta, max_theta);
|
||||
Mat(lines_acc).copyTo(lines);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
#endif // OPENCV_IMGPROC_BINDINGS_HPP
|
395
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/detail/gcgraph.hpp
vendored
Normal file
395
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/detail/gcgraph.hpp
vendored
Normal file
@ -0,0 +1,395 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_IMGPROC_DETAIL_GCGRAPH_HPP
|
||||
#define OPENCV_IMGPROC_DETAIL_GCGRAPH_HPP
|
||||
|
||||
//! @cond IGNORED
|
||||
|
||||
namespace cv { namespace detail {
|
||||
template <class TWeight> class GCGraph
|
||||
{
|
||||
public:
|
||||
GCGraph();
|
||||
GCGraph( unsigned int vtxCount, unsigned int edgeCount );
|
||||
~GCGraph();
|
||||
void create( unsigned int vtxCount, unsigned int edgeCount );
|
||||
int addVtx();
|
||||
void addEdges( int i, int j, TWeight w, TWeight revw );
|
||||
void addTermWeights( int i, TWeight sourceW, TWeight sinkW );
|
||||
TWeight maxFlow();
|
||||
bool inSourceSegment( int i );
|
||||
private:
|
||||
class Vtx
|
||||
{
|
||||
public:
|
||||
Vtx *next; // initialized and used in maxFlow() only
|
||||
int parent;
|
||||
int first;
|
||||
int ts;
|
||||
int dist;
|
||||
TWeight weight;
|
||||
uchar t;
|
||||
};
|
||||
class Edge
|
||||
{
|
||||
public:
|
||||
int dst;
|
||||
int next;
|
||||
TWeight weight;
|
||||
};
|
||||
|
||||
std::vector<Vtx> vtcs;
|
||||
std::vector<Edge> edges;
|
||||
TWeight flow;
|
||||
};
|
||||
|
||||
template <class TWeight>
|
||||
GCGraph<TWeight>::GCGraph()
|
||||
{
|
||||
flow = 0;
|
||||
}
|
||||
template <class TWeight>
|
||||
GCGraph<TWeight>::GCGraph( unsigned int vtxCount, unsigned int edgeCount )
|
||||
{
|
||||
create( vtxCount, edgeCount );
|
||||
}
|
||||
template <class TWeight>
|
||||
GCGraph<TWeight>::~GCGraph()
|
||||
{
|
||||
}
|
||||
template <class TWeight>
|
||||
void GCGraph<TWeight>::create( unsigned int vtxCount, unsigned int edgeCount )
|
||||
{
|
||||
vtcs.reserve( vtxCount );
|
||||
edges.reserve( edgeCount + 2 );
|
||||
flow = 0;
|
||||
}
|
||||
|
||||
template <class TWeight>
|
||||
int GCGraph<TWeight>::addVtx()
|
||||
{
|
||||
Vtx v;
|
||||
memset( &v, 0, sizeof(Vtx));
|
||||
vtcs.push_back(v);
|
||||
return (int)vtcs.size() - 1;
|
||||
}
|
||||
|
||||
template <class TWeight>
|
||||
void GCGraph<TWeight>::addEdges( int i, int j, TWeight w, TWeight revw )
|
||||
{
|
||||
CV_Assert( i>=0 && i<(int)vtcs.size() );
|
||||
CV_Assert( j>=0 && j<(int)vtcs.size() );
|
||||
CV_Assert( w>=0 && revw>=0 );
|
||||
CV_Assert( i != j );
|
||||
|
||||
if( !edges.size() )
|
||||
edges.resize( 2 );
|
||||
|
||||
Edge fromI, toI;
|
||||
fromI.dst = j;
|
||||
fromI.next = vtcs[i].first;
|
||||
fromI.weight = w;
|
||||
vtcs[i].first = (int)edges.size();
|
||||
edges.push_back( fromI );
|
||||
|
||||
toI.dst = i;
|
||||
toI.next = vtcs[j].first;
|
||||
toI.weight = revw;
|
||||
vtcs[j].first = (int)edges.size();
|
||||
edges.push_back( toI );
|
||||
}
|
||||
|
||||
template <class TWeight>
|
||||
void GCGraph<TWeight>::addTermWeights( int i, TWeight sourceW, TWeight sinkW )
|
||||
{
|
||||
CV_Assert( i>=0 && i<(int)vtcs.size() );
|
||||
|
||||
TWeight dw = vtcs[i].weight;
|
||||
if( dw > 0 )
|
||||
sourceW += dw;
|
||||
else
|
||||
sinkW -= dw;
|
||||
flow += (sourceW < sinkW) ? sourceW : sinkW;
|
||||
vtcs[i].weight = sourceW - sinkW;
|
||||
}
|
||||
|
||||
template <class TWeight>
|
||||
TWeight GCGraph<TWeight>::maxFlow()
|
||||
{
|
||||
CV_Assert(!vtcs.empty());
|
||||
CV_Assert(!edges.empty());
|
||||
const int TERMINAL = -1, ORPHAN = -2;
|
||||
Vtx stub, *nilNode = &stub, *first = nilNode, *last = nilNode;
|
||||
int curr_ts = 0;
|
||||
stub.next = nilNode;
|
||||
Vtx *vtxPtr = &vtcs[0];
|
||||
Edge *edgePtr = &edges[0];
|
||||
|
||||
std::vector<Vtx*> orphans;
|
||||
|
||||
// initialize the active queue and the graph vertices
|
||||
for( int i = 0; i < (int)vtcs.size(); i++ )
|
||||
{
|
||||
Vtx* v = vtxPtr + i;
|
||||
v->ts = 0;
|
||||
if( v->weight != 0 )
|
||||
{
|
||||
last = last->next = v;
|
||||
v->dist = 1;
|
||||
v->parent = TERMINAL;
|
||||
v->t = v->weight < 0;
|
||||
}
|
||||
else
|
||||
v->parent = 0;
|
||||
}
|
||||
first = first->next;
|
||||
last->next = nilNode;
|
||||
nilNode->next = 0;
|
||||
|
||||
// run the search-path -> augment-graph -> restore-trees loop
|
||||
for(;;)
|
||||
{
|
||||
Vtx* v, *u;
|
||||
int e0 = -1, ei = 0, ej = 0;
|
||||
TWeight minWeight, weight;
|
||||
uchar vt;
|
||||
|
||||
// grow S & T search trees, find an edge connecting them
|
||||
while( first != nilNode )
|
||||
{
|
||||
v = first;
|
||||
if( v->parent )
|
||||
{
|
||||
vt = v->t;
|
||||
for( ei = v->first; ei != 0; ei = edgePtr[ei].next )
|
||||
{
|
||||
if( edgePtr[ei^vt].weight == 0 )
|
||||
continue;
|
||||
u = vtxPtr+edgePtr[ei].dst;
|
||||
if( !u->parent )
|
||||
{
|
||||
u->t = vt;
|
||||
u->parent = ei ^ 1;
|
||||
u->ts = v->ts;
|
||||
u->dist = v->dist + 1;
|
||||
if( !u->next )
|
||||
{
|
||||
u->next = nilNode;
|
||||
last = last->next = u;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if( u->t != vt )
|
||||
{
|
||||
e0 = ei ^ vt;
|
||||
break;
|
||||
}
|
||||
|
||||
if( u->dist > v->dist+1 && u->ts <= v->ts )
|
||||
{
|
||||
// reassign the parent
|
||||
u->parent = ei ^ 1;
|
||||
u->ts = v->ts;
|
||||
u->dist = v->dist + 1;
|
||||
}
|
||||
}
|
||||
if( e0 > 0 )
|
||||
break;
|
||||
}
|
||||
// exclude the vertex from the active list
|
||||
first = first->next;
|
||||
v->next = 0;
|
||||
}
|
||||
|
||||
if( e0 <= 0 )
|
||||
break;
|
||||
|
||||
// find the minimum edge weight along the path
|
||||
minWeight = edgePtr[e0].weight;
|
||||
CV_Assert( minWeight > 0 );
|
||||
// k = 1: source tree, k = 0: destination tree
|
||||
for( int k = 1; k >= 0; k-- )
|
||||
{
|
||||
for( v = vtxPtr+edgePtr[e0^k].dst;; v = vtxPtr+edgePtr[ei].dst )
|
||||
{
|
||||
if( (ei = v->parent) < 0 )
|
||||
break;
|
||||
weight = edgePtr[ei^k].weight;
|
||||
minWeight = MIN(minWeight, weight);
|
||||
CV_Assert( minWeight > 0 );
|
||||
}
|
||||
weight = fabs(v->weight);
|
||||
minWeight = MIN(minWeight, weight);
|
||||
CV_Assert( minWeight > 0 );
|
||||
}
|
||||
|
||||
// modify weights of the edges along the path and collect orphans
|
||||
edgePtr[e0].weight -= minWeight;
|
||||
edgePtr[e0^1].weight += minWeight;
|
||||
flow += minWeight;
|
||||
|
||||
// k = 1: source tree, k = 0: destination tree
|
||||
for( int k = 1; k >= 0; k-- )
|
||||
{
|
||||
for( v = vtxPtr+edgePtr[e0^k].dst;; v = vtxPtr+edgePtr[ei].dst )
|
||||
{
|
||||
if( (ei = v->parent) < 0 )
|
||||
break;
|
||||
edgePtr[ei^(k^1)].weight += minWeight;
|
||||
if( (edgePtr[ei^k].weight -= minWeight) == 0 )
|
||||
{
|
||||
orphans.push_back(v);
|
||||
v->parent = ORPHAN;
|
||||
}
|
||||
}
|
||||
|
||||
v->weight = v->weight + minWeight*(1-k*2);
|
||||
if( v->weight == 0 )
|
||||
{
|
||||
orphans.push_back(v);
|
||||
v->parent = ORPHAN;
|
||||
}
|
||||
}
|
||||
|
||||
// restore the search trees by finding new parents for the orphans
|
||||
curr_ts++;
|
||||
while( !orphans.empty() )
|
||||
{
|
||||
Vtx* v2 = orphans.back();
|
||||
orphans.pop_back();
|
||||
|
||||
int d, minDist = INT_MAX;
|
||||
e0 = 0;
|
||||
vt = v2->t;
|
||||
|
||||
for( ei = v2->first; ei != 0; ei = edgePtr[ei].next )
|
||||
{
|
||||
if( edgePtr[ei^(vt^1)].weight == 0 )
|
||||
continue;
|
||||
u = vtxPtr+edgePtr[ei].dst;
|
||||
if( u->t != vt || u->parent == 0 )
|
||||
continue;
|
||||
// compute the distance to the tree root
|
||||
for( d = 0;; )
|
||||
{
|
||||
if( u->ts == curr_ts )
|
||||
{
|
||||
d += u->dist;
|
||||
break;
|
||||
}
|
||||
ej = u->parent;
|
||||
d++;
|
||||
if( ej < 0 )
|
||||
{
|
||||
if( ej == ORPHAN )
|
||||
d = INT_MAX-1;
|
||||
else
|
||||
{
|
||||
u->ts = curr_ts;
|
||||
u->dist = 1;
|
||||
}
|
||||
break;
|
||||
}
|
||||
u = vtxPtr+edgePtr[ej].dst;
|
||||
}
|
||||
|
||||
// update the distance
|
||||
if( ++d < INT_MAX )
|
||||
{
|
||||
if( d < minDist )
|
||||
{
|
||||
minDist = d;
|
||||
e0 = ei;
|
||||
}
|
||||
for( u = vtxPtr+edgePtr[ei].dst; u->ts != curr_ts; u = vtxPtr+edgePtr[u->parent].dst )
|
||||
{
|
||||
u->ts = curr_ts;
|
||||
u->dist = --d;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( (v2->parent = e0) > 0 )
|
||||
{
|
||||
v2->ts = curr_ts;
|
||||
v2->dist = minDist;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* no parent is found */
|
||||
v2->ts = 0;
|
||||
for( ei = v2->first; ei != 0; ei = edgePtr[ei].next )
|
||||
{
|
||||
u = vtxPtr+edgePtr[ei].dst;
|
||||
ej = u->parent;
|
||||
if( u->t != vt || !ej )
|
||||
continue;
|
||||
if( edgePtr[ei^(vt^1)].weight && !u->next )
|
||||
{
|
||||
u->next = nilNode;
|
||||
last = last->next = u;
|
||||
}
|
||||
if( ej > 0 && vtxPtr+edgePtr[ej].dst == v2 )
|
||||
{
|
||||
orphans.push_back(u);
|
||||
u->parent = ORPHAN;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return flow;
|
||||
}
|
||||
|
||||
template <class TWeight>
|
||||
bool GCGraph<TWeight>::inSourceSegment( int i )
|
||||
{
|
||||
CV_Assert( i>=0 && i<(int)vtcs.size() );
|
||||
return vtcs[i].t == 0;
|
||||
}
|
||||
|
||||
}} // namespace detail, cv
|
||||
|
||||
|
||||
//! @endcond
|
||||
|
||||
#endif // OPENCV_IMGPROC_DETAIL_GCGRAPH_HPP
|
246
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/hal/hal.hpp
vendored
Normal file
246
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/hal/hal.hpp
vendored
Normal file
@ -0,0 +1,246 @@
|
||||
#ifndef CV_IMGPROC_HAL_HPP
|
||||
#define CV_IMGPROC_HAL_HPP
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
#include "opencv2/core/cvstd.hpp"
|
||||
#include "opencv2/core/hal/interface.h"
|
||||
|
||||
namespace cv { namespace hal {
|
||||
|
||||
//! @addtogroup imgproc_hal_functions
|
||||
//! @{
|
||||
|
||||
//---------------------------
|
||||
//! @cond IGNORED
|
||||
|
||||
struct CV_EXPORTS Filter2D
|
||||
{
|
||||
CV_DEPRECATED static Ptr<hal::Filter2D> create(uchar * , size_t , int ,
|
||||
int , int ,
|
||||
int , int ,
|
||||
int , int ,
|
||||
int , double ,
|
||||
int , int ,
|
||||
bool , bool );
|
||||
virtual void apply(uchar * , size_t ,
|
||||
uchar * , size_t ,
|
||||
int , int ,
|
||||
int , int ,
|
||||
int , int ) = 0;
|
||||
virtual ~Filter2D() {}
|
||||
};
|
||||
|
||||
struct CV_EXPORTS SepFilter2D
|
||||
{
|
||||
CV_DEPRECATED static Ptr<hal::SepFilter2D> create(int , int , int ,
|
||||
uchar * , int ,
|
||||
uchar * , int ,
|
||||
int , int ,
|
||||
double , int );
|
||||
virtual void apply(uchar * , size_t ,
|
||||
uchar * , size_t ,
|
||||
int , int ,
|
||||
int , int ,
|
||||
int , int ) = 0;
|
||||
virtual ~SepFilter2D() {}
|
||||
};
|
||||
|
||||
|
||||
struct CV_EXPORTS Morph
|
||||
{
|
||||
CV_DEPRECATED static Ptr<hal::Morph> create(int , int , int , int , int ,
|
||||
int , uchar * , size_t ,
|
||||
int , int ,
|
||||
int , int ,
|
||||
int , const double *,
|
||||
int , bool , bool );
|
||||
virtual void apply(uchar * , size_t , uchar * , size_t , int , int ,
|
||||
int , int , int , int ,
|
||||
int , int , int , int ) = 0;
|
||||
virtual ~Morph() {}
|
||||
};
|
||||
|
||||
//! @endcond
|
||||
//---------------------------
|
||||
|
||||
CV_EXPORTS void filter2D(int stype, int dtype, int kernel_type,
|
||||
uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int full_width, int full_height,
|
||||
int offset_x, int offset_y,
|
||||
uchar * kernel_data, size_t kernel_step,
|
||||
int kernel_width, int kernel_height,
|
||||
int anchor_x, int anchor_y,
|
||||
double delta, int borderType,
|
||||
bool isSubmatrix);
|
||||
|
||||
CV_EXPORTS void sepFilter2D(int stype, int dtype, int ktype,
|
||||
uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int full_width, int full_height,
|
||||
int offset_x, int offset_y,
|
||||
uchar * kernelx_data, int kernelx_len,
|
||||
uchar * kernely_data, int kernely_len,
|
||||
int anchor_x, int anchor_y,
|
||||
double delta, int borderType);
|
||||
|
||||
CV_EXPORTS void morph(int op, int src_type, int dst_type,
|
||||
uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int roi_width, int roi_height, int roi_x, int roi_y,
|
||||
int roi_width2, int roi_height2, int roi_x2, int roi_y2,
|
||||
int kernel_type, uchar * kernel_data, size_t kernel_step,
|
||||
int kernel_width, int kernel_height, int anchor_x, int anchor_y,
|
||||
int borderType, const double borderValue[4],
|
||||
int iterations, bool isSubmatrix);
|
||||
|
||||
|
||||
CV_EXPORTS void resize(int src_type,
|
||||
const uchar * src_data, size_t src_step, int src_width, int src_height,
|
||||
uchar * dst_data, size_t dst_step, int dst_width, int dst_height,
|
||||
double inv_scale_x, double inv_scale_y, int interpolation);
|
||||
|
||||
CV_EXPORTS void warpAffine(int src_type,
|
||||
const uchar * src_data, size_t src_step, int src_width, int src_height,
|
||||
uchar * dst_data, size_t dst_step, int dst_width, int dst_height,
|
||||
const double M[6], int interpolation, int borderType, const double borderValue[4]);
|
||||
|
||||
CV_EXPORTS void warpPerspective(int src_type,
|
||||
const uchar * src_data, size_t src_step, int src_width, int src_height,
|
||||
uchar * dst_data, size_t dst_step, int dst_width, int dst_height,
|
||||
const double M[9], int interpolation, int borderType, const double borderValue[4]);
|
||||
|
||||
CV_EXPORTS void cvtBGRtoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int scn, int dcn, bool swapBlue);
|
||||
|
||||
CV_EXPORTS void cvtBGRtoBGR5x5(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int scn, bool swapBlue, int greenBits);
|
||||
|
||||
CV_EXPORTS void cvtBGR5x5toBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int dcn, bool swapBlue, int greenBits);
|
||||
|
||||
CV_EXPORTS void cvtBGRtoGray(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int scn, bool swapBlue);
|
||||
|
||||
CV_EXPORTS void cvtGraytoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int dcn);
|
||||
|
||||
CV_EXPORTS void cvtBGR5x5toGray(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int greenBits);
|
||||
|
||||
CV_EXPORTS void cvtGraytoBGR5x5(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int greenBits);
|
||||
CV_EXPORTS void cvtBGRtoYUV(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int scn, bool swapBlue, bool isCbCr);
|
||||
|
||||
CV_EXPORTS void cvtYUVtoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int dcn, bool swapBlue, bool isCbCr);
|
||||
|
||||
CV_EXPORTS void cvtBGRtoXYZ(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int scn, bool swapBlue);
|
||||
|
||||
CV_EXPORTS void cvtXYZtoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int dcn, bool swapBlue);
|
||||
|
||||
CV_EXPORTS void cvtBGRtoHSV(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int scn, bool swapBlue, bool isFullRange, bool isHSV);
|
||||
|
||||
CV_EXPORTS void cvtHSVtoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int dcn, bool swapBlue, bool isFullRange, bool isHSV);
|
||||
|
||||
CV_EXPORTS void cvtBGRtoLab(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int scn, bool swapBlue, bool isLab, bool srgb);
|
||||
|
||||
CV_EXPORTS void cvtLabtoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int depth, int dcn, bool swapBlue, bool isLab, bool srgb);
|
||||
|
||||
CV_EXPORTS void cvtTwoPlaneYUVtoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int dst_width, int dst_height,
|
||||
int dcn, bool swapBlue, int uIdx);
|
||||
|
||||
//! Separate Y and UV planes
|
||||
CV_EXPORTS void cvtTwoPlaneYUVtoBGR(const uchar * y_data, const uchar * uv_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int dst_width, int dst_height,
|
||||
int dcn, bool swapBlue, int uIdx);
|
||||
|
||||
CV_EXPORTS void cvtTwoPlaneYUVtoBGR(const uchar * y_data, size_t y_step, const uchar * uv_data, size_t uv_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int dst_width, int dst_height,
|
||||
int dcn, bool swapBlue, int uIdx);
|
||||
|
||||
CV_EXPORTS void cvtThreePlaneYUVtoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int dst_width, int dst_height,
|
||||
int dcn, bool swapBlue, int uIdx);
|
||||
|
||||
CV_EXPORTS void cvtBGRtoThreePlaneYUV(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int scn, bool swapBlue, int uIdx);
|
||||
|
||||
//! Separate Y and UV planes
|
||||
CV_EXPORTS void cvtBGRtoTwoPlaneYUV(const uchar * src_data, size_t src_step,
|
||||
uchar * y_data, uchar * uv_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int scn, bool swapBlue, int uIdx);
|
||||
|
||||
CV_EXPORTS void cvtOnePlaneYUVtoBGR(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height,
|
||||
int dcn, bool swapBlue, int uIdx, int ycn);
|
||||
|
||||
CV_EXPORTS void cvtRGBAtoMultipliedRGBA(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height);
|
||||
|
||||
CV_EXPORTS void cvtMultipliedRGBAtoRGBA(const uchar * src_data, size_t src_step,
|
||||
uchar * dst_data, size_t dst_step,
|
||||
int width, int height);
|
||||
|
||||
CV_EXPORTS void integral(int depth, int sdepth, int sqdepth,
|
||||
const uchar* src, size_t srcstep,
|
||||
uchar* sum, size_t sumstep,
|
||||
uchar* sqsum, size_t sqsumstep,
|
||||
uchar* tilted, size_t tstep,
|
||||
int width, int height, int cn);
|
||||
|
||||
//! @}
|
||||
|
||||
}}
|
||||
|
||||
#endif // CV_IMGPROC_HAL_HPP
|
46
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/hal/interface.h
vendored
Normal file
46
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/hal/interface.h
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
#ifndef OPENCV_IMGPROC_HAL_INTERFACE_H
|
||||
#define OPENCV_IMGPROC_HAL_INTERFACE_H
|
||||
|
||||
//! @addtogroup imgproc_hal_interface
|
||||
//! @{
|
||||
|
||||
//! @name Interpolation modes
|
||||
//! @sa cv::InterpolationFlags
|
||||
//! @{
|
||||
#define CV_HAL_INTER_NEAREST 0
|
||||
#define CV_HAL_INTER_LINEAR 1
|
||||
#define CV_HAL_INTER_CUBIC 2
|
||||
#define CV_HAL_INTER_AREA 3
|
||||
#define CV_HAL_INTER_LANCZOS4 4
|
||||
//! @}
|
||||
|
||||
//! @name Morphology operations
|
||||
//! @sa cv::MorphTypes
|
||||
//! @{
|
||||
#define CV_HAL_MORPH_ERODE 0
|
||||
#define CV_HAL_MORPH_DILATE 1
|
||||
//! @}
|
||||
|
||||
//! @name Threshold types
|
||||
//! @sa cv::ThresholdTypes
|
||||
//! @{
|
||||
#define CV_HAL_THRESH_BINARY 0
|
||||
#define CV_HAL_THRESH_BINARY_INV 1
|
||||
#define CV_HAL_THRESH_TRUNC 2
|
||||
#define CV_HAL_THRESH_TOZERO 3
|
||||
#define CV_HAL_THRESH_TOZERO_INV 4
|
||||
#define CV_HAL_THRESH_MASK 7
|
||||
#define CV_HAL_THRESH_OTSU 8
|
||||
#define CV_HAL_THRESH_TRIANGLE 16
|
||||
//! @}
|
||||
|
||||
//! @name Adaptive threshold algorithm
|
||||
//! @sa cv::AdaptiveThresholdTypes
|
||||
//! @{
|
||||
#define CV_HAL_ADAPTIVE_THRESH_MEAN_C 0
|
||||
#define CV_HAL_ADAPTIVE_THRESH_GAUSSIAN_C 1
|
||||
//! @}
|
||||
|
||||
//! @}
|
||||
|
||||
#endif
|
48
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/imgproc.hpp
vendored
Normal file
48
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/imgproc.hpp
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef __OPENCV_BUILD
|
||||
#error this is a compatibility header which should not be used inside the OpenCV library
|
||||
#endif
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
1177
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/imgproc_c.h
vendored
Normal file
1177
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/imgproc_c.h
vendored
Normal file
File diff suppressed because it is too large
Load Diff
141
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/segmentation.hpp
vendored
Normal file
141
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/segmentation.hpp
vendored
Normal file
@ -0,0 +1,141 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_IMGPROC_SEGMENTATION_HPP
|
||||
#define OPENCV_IMGPROC_SEGMENTATION_HPP
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
namespace cv {
|
||||
|
||||
namespace segmentation {
|
||||
|
||||
//! @addtogroup imgproc_segmentation
|
||||
//! @{
|
||||
|
||||
|
||||
/** @brief Intelligent Scissors image segmentation
|
||||
*
|
||||
* This class is used to find the path (contour) between two points
|
||||
* which can be used for image segmentation.
|
||||
*
|
||||
* Usage example:
|
||||
* @snippet snippets/imgproc_segmentation.cpp usage_example_intelligent_scissors
|
||||
*
|
||||
* Reference: <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf">"Intelligent Scissors for Image Composition"</a>
|
||||
* algorithm designed by Eric N. Mortensen and William A. Barrett, Brigham Young University
|
||||
* @cite Mortensen95intelligentscissors
|
||||
*/
|
||||
class CV_EXPORTS_W_SIMPLE IntelligentScissorsMB
|
||||
{
|
||||
public:
|
||||
CV_WRAP
|
||||
IntelligentScissorsMB();
|
||||
|
||||
/** @brief Specify weights of feature functions
|
||||
*
|
||||
* Consider keeping weights normalized (sum of weights equals to 1.0)
|
||||
* Discrete dynamic programming (DP) goal is minimization of costs between pixels.
|
||||
*
|
||||
* @param weight_non_edge Specify cost of non-edge pixels (default: 0.43f)
|
||||
* @param weight_gradient_direction Specify cost of gradient direction function (default: 0.43f)
|
||||
* @param weight_gradient_magnitude Specify cost of gradient magnitude function (default: 0.14f)
|
||||
*/
|
||||
CV_WRAP
|
||||
IntelligentScissorsMB& setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude);
|
||||
|
||||
/** @brief Specify gradient magnitude max value threshold
|
||||
*
|
||||
* Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article).
|
||||
* Otherwize pixels with `gradient magnitude >= threshold` have zero cost.
|
||||
*
|
||||
* @note Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos).
|
||||
*
|
||||
* @param gradient_magnitude_threshold_max Specify gradient magnitude max value threshold (default: 0, disabled)
|
||||
*/
|
||||
CV_WRAP
|
||||
IntelligentScissorsMB& setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max = 0.0f);
|
||||
|
||||
/** @brief Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters
|
||||
*
|
||||
* This feature extractor is used by default according to article.
|
||||
*
|
||||
* Implementation has additional filtering for regions with low-amplitude noise.
|
||||
* This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16).
|
||||
*
|
||||
* @note Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first).
|
||||
*
|
||||
* @note Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters().
|
||||
*
|
||||
* @param gradient_magnitude_min_value Minimal gradient magnitude value for edge pixels (default: 0, check is disabled)
|
||||
*/
|
||||
CV_WRAP
|
||||
IntelligentScissorsMB& setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value = 0.0f);
|
||||
|
||||
/** @brief Switch edge feature extractor to use Canny edge detector
|
||||
*
|
||||
* @note "Laplacian Zero-Crossing" feature extractor is used by default (following to original article)
|
||||
*
|
||||
* @sa Canny
|
||||
*/
|
||||
CV_WRAP
|
||||
IntelligentScissorsMB& setEdgeFeatureCannyParameters(
|
||||
double threshold1, double threshold2,
|
||||
int apertureSize = 3, bool L2gradient = false
|
||||
);
|
||||
|
||||
/** @brief Specify input image and extract image features
|
||||
*
|
||||
* @param image input image. Type is #CV_8UC1 / #CV_8UC3
|
||||
*/
|
||||
CV_WRAP
|
||||
IntelligentScissorsMB& applyImage(InputArray image);
|
||||
|
||||
/** @brief Specify custom features of imput image
|
||||
*
|
||||
* Customized advanced variant of applyImage() call.
|
||||
*
|
||||
* @param non_edge Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are `{0, 1}`.
|
||||
* @param gradient_direction Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: `x^2 + y^2 == 1`
|
||||
* @param gradient_magnitude Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range `[0, 1]`.
|
||||
* @param image **Optional parameter**. Must be specified if subset of features is specified (non-specified features are calculated internally)
|
||||
*/
|
||||
CV_WRAP
|
||||
IntelligentScissorsMB& applyImageFeatures(
|
||||
InputArray non_edge, InputArray gradient_direction, InputArray gradient_magnitude,
|
||||
InputArray image = noArray()
|
||||
);
|
||||
|
||||
/** @brief Prepares a map of optimal paths for the given source point on the image
|
||||
*
|
||||
* @note applyImage() / applyImageFeatures() must be called before this call
|
||||
*
|
||||
* @param sourcePt The source point used to find the paths
|
||||
*/
|
||||
CV_WRAP void buildMap(const Point& sourcePt);
|
||||
|
||||
/** @brief Extracts optimal contour for the given target point on the image
|
||||
*
|
||||
* @note buildMap() must be called before this call
|
||||
*
|
||||
* @param targetPt The target point
|
||||
* @param[out] contour The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with `std::vector<Point>`)
|
||||
* @param backward Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point)
|
||||
*/
|
||||
CV_WRAP void getContour(const Point& targetPt, OutputArray contour, bool backward = false) const;
|
||||
|
||||
#ifndef CV_DOXYGEN
|
||||
struct Impl;
|
||||
inline Impl* getImpl() const { return impl.get(); }
|
||||
protected:
|
||||
std::shared_ptr<Impl> impl;
|
||||
#endif
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
||||
} // namespace segmentation
|
||||
} // namespace cv
|
||||
|
||||
#endif // OPENCV_IMGPROC_SEGMENTATION_HPP
|
659
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/types_c.h
vendored
Normal file
659
3rdparty/opencv-4.5.4/modules/imgproc/include/opencv2/imgproc/types_c.h
vendored
Normal file
@ -0,0 +1,659 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_IMGPROC_TYPES_C_H
|
||||
#define OPENCV_IMGPROC_TYPES_C_H
|
||||
|
||||
#include "opencv2/core/core_c.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/** @addtogroup imgproc_c
|
||||
@{
|
||||
*/
|
||||
|
||||
/** Connected component structure */
|
||||
typedef struct CvConnectedComp
|
||||
{
|
||||
double area; /**<area of the connected component */
|
||||
CvScalar value; /**<average color of the connected component */
|
||||
CvRect rect; /**<ROI of the component */
|
||||
CvSeq* contour; /**<optional component boundary
|
||||
(the contour might have child contours corresponding to the holes)*/
|
||||
}
|
||||
CvConnectedComp;
|
||||
|
||||
/** Image smooth methods */
|
||||
enum SmoothMethod_c
|
||||
{
|
||||
/** linear convolution with \f$\texttt{size1}\times\texttt{size2}\f$ box kernel (all 1's). If
|
||||
you want to smooth different pixels with different-size box kernels, you can use the integral
|
||||
image that is computed using integral */
|
||||
CV_BLUR_NO_SCALE =0,
|
||||
/** linear convolution with \f$\texttt{size1}\times\texttt{size2}\f$ box kernel (all
|
||||
1's) with subsequent scaling by \f$1/(\texttt{size1}\cdot\texttt{size2})\f$ */
|
||||
CV_BLUR =1,
|
||||
/** linear convolution with a \f$\texttt{size1}\times\texttt{size2}\f$ Gaussian kernel */
|
||||
CV_GAUSSIAN =2,
|
||||
/** median filter with a \f$\texttt{size1}\times\texttt{size1}\f$ square aperture */
|
||||
CV_MEDIAN =3,
|
||||
/** bilateral filter with a \f$\texttt{size1}\times\texttt{size1}\f$ square aperture, color
|
||||
sigma= sigma1 and spatial sigma= sigma2. If size1=0, the aperture square side is set to
|
||||
cvRound(sigma2\*1.5)\*2+1. See cv::bilateralFilter */
|
||||
CV_BILATERAL =4
|
||||
};
|
||||
|
||||
/** Filters used in pyramid decomposition */
|
||||
enum
|
||||
{
|
||||
CV_GAUSSIAN_5x5 = 7
|
||||
};
|
||||
|
||||
/** Special filters */
|
||||
enum
|
||||
{
|
||||
CV_SCHARR =-1,
|
||||
CV_MAX_SOBEL_KSIZE =7
|
||||
};
|
||||
|
||||
/** Constants for color conversion */
|
||||
enum
|
||||
{
|
||||
CV_BGR2BGRA =0,
|
||||
CV_RGB2RGBA =CV_BGR2BGRA,
|
||||
|
||||
CV_BGRA2BGR =1,
|
||||
CV_RGBA2RGB =CV_BGRA2BGR,
|
||||
|
||||
CV_BGR2RGBA =2,
|
||||
CV_RGB2BGRA =CV_BGR2RGBA,
|
||||
|
||||
CV_RGBA2BGR =3,
|
||||
CV_BGRA2RGB =CV_RGBA2BGR,
|
||||
|
||||
CV_BGR2RGB =4,
|
||||
CV_RGB2BGR =CV_BGR2RGB,
|
||||
|
||||
CV_BGRA2RGBA =5,
|
||||
CV_RGBA2BGRA =CV_BGRA2RGBA,
|
||||
|
||||
CV_BGR2GRAY =6,
|
||||
CV_RGB2GRAY =7,
|
||||
CV_GRAY2BGR =8,
|
||||
CV_GRAY2RGB =CV_GRAY2BGR,
|
||||
CV_GRAY2BGRA =9,
|
||||
CV_GRAY2RGBA =CV_GRAY2BGRA,
|
||||
CV_BGRA2GRAY =10,
|
||||
CV_RGBA2GRAY =11,
|
||||
|
||||
CV_BGR2BGR565 =12,
|
||||
CV_RGB2BGR565 =13,
|
||||
CV_BGR5652BGR =14,
|
||||
CV_BGR5652RGB =15,
|
||||
CV_BGRA2BGR565 =16,
|
||||
CV_RGBA2BGR565 =17,
|
||||
CV_BGR5652BGRA =18,
|
||||
CV_BGR5652RGBA =19,
|
||||
|
||||
CV_GRAY2BGR565 =20,
|
||||
CV_BGR5652GRAY =21,
|
||||
|
||||
CV_BGR2BGR555 =22,
|
||||
CV_RGB2BGR555 =23,
|
||||
CV_BGR5552BGR =24,
|
||||
CV_BGR5552RGB =25,
|
||||
CV_BGRA2BGR555 =26,
|
||||
CV_RGBA2BGR555 =27,
|
||||
CV_BGR5552BGRA =28,
|
||||
CV_BGR5552RGBA =29,
|
||||
|
||||
CV_GRAY2BGR555 =30,
|
||||
CV_BGR5552GRAY =31,
|
||||
|
||||
CV_BGR2XYZ =32,
|
||||
CV_RGB2XYZ =33,
|
||||
CV_XYZ2BGR =34,
|
||||
CV_XYZ2RGB =35,
|
||||
|
||||
CV_BGR2YCrCb =36,
|
||||
CV_RGB2YCrCb =37,
|
||||
CV_YCrCb2BGR =38,
|
||||
CV_YCrCb2RGB =39,
|
||||
|
||||
CV_BGR2HSV =40,
|
||||
CV_RGB2HSV =41,
|
||||
|
||||
CV_BGR2Lab =44,
|
||||
CV_RGB2Lab =45,
|
||||
|
||||
CV_BayerBG2BGR =46,
|
||||
CV_BayerGB2BGR =47,
|
||||
CV_BayerRG2BGR =48,
|
||||
CV_BayerGR2BGR =49,
|
||||
|
||||
CV_BayerBG2RGB =CV_BayerRG2BGR,
|
||||
CV_BayerGB2RGB =CV_BayerGR2BGR,
|
||||
CV_BayerRG2RGB =CV_BayerBG2BGR,
|
||||
CV_BayerGR2RGB =CV_BayerGB2BGR,
|
||||
|
||||
CV_BGR2Luv =50,
|
||||
CV_RGB2Luv =51,
|
||||
CV_BGR2HLS =52,
|
||||
CV_RGB2HLS =53,
|
||||
|
||||
CV_HSV2BGR =54,
|
||||
CV_HSV2RGB =55,
|
||||
|
||||
CV_Lab2BGR =56,
|
||||
CV_Lab2RGB =57,
|
||||
CV_Luv2BGR =58,
|
||||
CV_Luv2RGB =59,
|
||||
CV_HLS2BGR =60,
|
||||
CV_HLS2RGB =61,
|
||||
|
||||
CV_BayerBG2BGR_VNG =62,
|
||||
CV_BayerGB2BGR_VNG =63,
|
||||
CV_BayerRG2BGR_VNG =64,
|
||||
CV_BayerGR2BGR_VNG =65,
|
||||
|
||||
CV_BayerBG2RGB_VNG =CV_BayerRG2BGR_VNG,
|
||||
CV_BayerGB2RGB_VNG =CV_BayerGR2BGR_VNG,
|
||||
CV_BayerRG2RGB_VNG =CV_BayerBG2BGR_VNG,
|
||||
CV_BayerGR2RGB_VNG =CV_BayerGB2BGR_VNG,
|
||||
|
||||
CV_BGR2HSV_FULL = 66,
|
||||
CV_RGB2HSV_FULL = 67,
|
||||
CV_BGR2HLS_FULL = 68,
|
||||
CV_RGB2HLS_FULL = 69,
|
||||
|
||||
CV_HSV2BGR_FULL = 70,
|
||||
CV_HSV2RGB_FULL = 71,
|
||||
CV_HLS2BGR_FULL = 72,
|
||||
CV_HLS2RGB_FULL = 73,
|
||||
|
||||
CV_LBGR2Lab = 74,
|
||||
CV_LRGB2Lab = 75,
|
||||
CV_LBGR2Luv = 76,
|
||||
CV_LRGB2Luv = 77,
|
||||
|
||||
CV_Lab2LBGR = 78,
|
||||
CV_Lab2LRGB = 79,
|
||||
CV_Luv2LBGR = 80,
|
||||
CV_Luv2LRGB = 81,
|
||||
|
||||
CV_BGR2YUV = 82,
|
||||
CV_RGB2YUV = 83,
|
||||
CV_YUV2BGR = 84,
|
||||
CV_YUV2RGB = 85,
|
||||
|
||||
CV_BayerBG2GRAY = 86,
|
||||
CV_BayerGB2GRAY = 87,
|
||||
CV_BayerRG2GRAY = 88,
|
||||
CV_BayerGR2GRAY = 89,
|
||||
|
||||
//YUV 4:2:0 formats family
|
||||
CV_YUV2RGB_NV12 = 90,
|
||||
CV_YUV2BGR_NV12 = 91,
|
||||
CV_YUV2RGB_NV21 = 92,
|
||||
CV_YUV2BGR_NV21 = 93,
|
||||
CV_YUV420sp2RGB = CV_YUV2RGB_NV21,
|
||||
CV_YUV420sp2BGR = CV_YUV2BGR_NV21,
|
||||
|
||||
CV_YUV2RGBA_NV12 = 94,
|
||||
CV_YUV2BGRA_NV12 = 95,
|
||||
CV_YUV2RGBA_NV21 = 96,
|
||||
CV_YUV2BGRA_NV21 = 97,
|
||||
CV_YUV420sp2RGBA = CV_YUV2RGBA_NV21,
|
||||
CV_YUV420sp2BGRA = CV_YUV2BGRA_NV21,
|
||||
|
||||
CV_YUV2RGB_YV12 = 98,
|
||||
CV_YUV2BGR_YV12 = 99,
|
||||
CV_YUV2RGB_IYUV = 100,
|
||||
CV_YUV2BGR_IYUV = 101,
|
||||
CV_YUV2RGB_I420 = CV_YUV2RGB_IYUV,
|
||||
CV_YUV2BGR_I420 = CV_YUV2BGR_IYUV,
|
||||
CV_YUV420p2RGB = CV_YUV2RGB_YV12,
|
||||
CV_YUV420p2BGR = CV_YUV2BGR_YV12,
|
||||
|
||||
CV_YUV2RGBA_YV12 = 102,
|
||||
CV_YUV2BGRA_YV12 = 103,
|
||||
CV_YUV2RGBA_IYUV = 104,
|
||||
CV_YUV2BGRA_IYUV = 105,
|
||||
CV_YUV2RGBA_I420 = CV_YUV2RGBA_IYUV,
|
||||
CV_YUV2BGRA_I420 = CV_YUV2BGRA_IYUV,
|
||||
CV_YUV420p2RGBA = CV_YUV2RGBA_YV12,
|
||||
CV_YUV420p2BGRA = CV_YUV2BGRA_YV12,
|
||||
|
||||
CV_YUV2GRAY_420 = 106,
|
||||
CV_YUV2GRAY_NV21 = CV_YUV2GRAY_420,
|
||||
CV_YUV2GRAY_NV12 = CV_YUV2GRAY_420,
|
||||
CV_YUV2GRAY_YV12 = CV_YUV2GRAY_420,
|
||||
CV_YUV2GRAY_IYUV = CV_YUV2GRAY_420,
|
||||
CV_YUV2GRAY_I420 = CV_YUV2GRAY_420,
|
||||
CV_YUV420sp2GRAY = CV_YUV2GRAY_420,
|
||||
CV_YUV420p2GRAY = CV_YUV2GRAY_420,
|
||||
|
||||
//YUV 4:2:2 formats family
|
||||
CV_YUV2RGB_UYVY = 107,
|
||||
CV_YUV2BGR_UYVY = 108,
|
||||
//CV_YUV2RGB_VYUY = 109,
|
||||
//CV_YUV2BGR_VYUY = 110,
|
||||
CV_YUV2RGB_Y422 = CV_YUV2RGB_UYVY,
|
||||
CV_YUV2BGR_Y422 = CV_YUV2BGR_UYVY,
|
||||
CV_YUV2RGB_UYNV = CV_YUV2RGB_UYVY,
|
||||
CV_YUV2BGR_UYNV = CV_YUV2BGR_UYVY,
|
||||
|
||||
CV_YUV2RGBA_UYVY = 111,
|
||||
CV_YUV2BGRA_UYVY = 112,
|
||||
//CV_YUV2RGBA_VYUY = 113,
|
||||
//CV_YUV2BGRA_VYUY = 114,
|
||||
CV_YUV2RGBA_Y422 = CV_YUV2RGBA_UYVY,
|
||||
CV_YUV2BGRA_Y422 = CV_YUV2BGRA_UYVY,
|
||||
CV_YUV2RGBA_UYNV = CV_YUV2RGBA_UYVY,
|
||||
CV_YUV2BGRA_UYNV = CV_YUV2BGRA_UYVY,
|
||||
|
||||
CV_YUV2RGB_YUY2 = 115,
|
||||
CV_YUV2BGR_YUY2 = 116,
|
||||
CV_YUV2RGB_YVYU = 117,
|
||||
CV_YUV2BGR_YVYU = 118,
|
||||
CV_YUV2RGB_YUYV = CV_YUV2RGB_YUY2,
|
||||
CV_YUV2BGR_YUYV = CV_YUV2BGR_YUY2,
|
||||
CV_YUV2RGB_YUNV = CV_YUV2RGB_YUY2,
|
||||
CV_YUV2BGR_YUNV = CV_YUV2BGR_YUY2,
|
||||
|
||||
CV_YUV2RGBA_YUY2 = 119,
|
||||
CV_YUV2BGRA_YUY2 = 120,
|
||||
CV_YUV2RGBA_YVYU = 121,
|
||||
CV_YUV2BGRA_YVYU = 122,
|
||||
CV_YUV2RGBA_YUYV = CV_YUV2RGBA_YUY2,
|
||||
CV_YUV2BGRA_YUYV = CV_YUV2BGRA_YUY2,
|
||||
CV_YUV2RGBA_YUNV = CV_YUV2RGBA_YUY2,
|
||||
CV_YUV2BGRA_YUNV = CV_YUV2BGRA_YUY2,
|
||||
|
||||
CV_YUV2GRAY_UYVY = 123,
|
||||
CV_YUV2GRAY_YUY2 = 124,
|
||||
//CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY,
|
||||
CV_YUV2GRAY_Y422 = CV_YUV2GRAY_UYVY,
|
||||
CV_YUV2GRAY_UYNV = CV_YUV2GRAY_UYVY,
|
||||
CV_YUV2GRAY_YVYU = CV_YUV2GRAY_YUY2,
|
||||
CV_YUV2GRAY_YUYV = CV_YUV2GRAY_YUY2,
|
||||
CV_YUV2GRAY_YUNV = CV_YUV2GRAY_YUY2,
|
||||
|
||||
// alpha premultiplication
|
||||
CV_RGBA2mRGBA = 125,
|
||||
CV_mRGBA2RGBA = 126,
|
||||
|
||||
CV_RGB2YUV_I420 = 127,
|
||||
CV_BGR2YUV_I420 = 128,
|
||||
CV_RGB2YUV_IYUV = CV_RGB2YUV_I420,
|
||||
CV_BGR2YUV_IYUV = CV_BGR2YUV_I420,
|
||||
|
||||
CV_RGBA2YUV_I420 = 129,
|
||||
CV_BGRA2YUV_I420 = 130,
|
||||
CV_RGBA2YUV_IYUV = CV_RGBA2YUV_I420,
|
||||
CV_BGRA2YUV_IYUV = CV_BGRA2YUV_I420,
|
||||
CV_RGB2YUV_YV12 = 131,
|
||||
CV_BGR2YUV_YV12 = 132,
|
||||
CV_RGBA2YUV_YV12 = 133,
|
||||
CV_BGRA2YUV_YV12 = 134,
|
||||
|
||||
// Edge-Aware Demosaicing
|
||||
CV_BayerBG2BGR_EA = 135,
|
||||
CV_BayerGB2BGR_EA = 136,
|
||||
CV_BayerRG2BGR_EA = 137,
|
||||
CV_BayerGR2BGR_EA = 138,
|
||||
|
||||
CV_BayerBG2RGB_EA = CV_BayerRG2BGR_EA,
|
||||
CV_BayerGB2RGB_EA = CV_BayerGR2BGR_EA,
|
||||
CV_BayerRG2RGB_EA = CV_BayerBG2BGR_EA,
|
||||
CV_BayerGR2RGB_EA = CV_BayerGB2BGR_EA,
|
||||
|
||||
CV_BayerBG2BGRA =139,
|
||||
CV_BayerGB2BGRA =140,
|
||||
CV_BayerRG2BGRA =141,
|
||||
CV_BayerGR2BGRA =142,
|
||||
|
||||
CV_BayerBG2RGBA =CV_BayerRG2BGRA,
|
||||
CV_BayerGB2RGBA =CV_BayerGR2BGRA,
|
||||
CV_BayerRG2RGBA =CV_BayerBG2BGRA,
|
||||
CV_BayerGR2RGBA =CV_BayerGB2BGRA,
|
||||
|
||||
CV_COLORCVT_MAX = 143
|
||||
};
|
||||
|
||||
|
||||
/** Sub-pixel interpolation methods */
|
||||
enum
|
||||
{
|
||||
CV_INTER_NN =0,
|
||||
CV_INTER_LINEAR =1,
|
||||
CV_INTER_CUBIC =2,
|
||||
CV_INTER_AREA =3,
|
||||
CV_INTER_LANCZOS4 =4
|
||||
};
|
||||
|
||||
/** ... and other image warping flags */
|
||||
enum
|
||||
{
|
||||
CV_WARP_FILL_OUTLIERS =8,
|
||||
CV_WARP_INVERSE_MAP =16
|
||||
};
|
||||
|
||||
/** Shapes of a structuring element for morphological operations
|
||||
@see cv::MorphShapes, cv::getStructuringElement
|
||||
*/
|
||||
enum MorphShapes_c
|
||||
{
|
||||
CV_SHAPE_RECT =0,
|
||||
CV_SHAPE_CROSS =1,
|
||||
CV_SHAPE_ELLIPSE =2,
|
||||
CV_SHAPE_CUSTOM =100 //!< custom structuring element
|
||||
};
|
||||
|
||||
/** Morphological operations */
|
||||
enum
|
||||
{
|
||||
CV_MOP_ERODE =0,
|
||||
CV_MOP_DILATE =1,
|
||||
CV_MOP_OPEN =2,
|
||||
CV_MOP_CLOSE =3,
|
||||
CV_MOP_GRADIENT =4,
|
||||
CV_MOP_TOPHAT =5,
|
||||
CV_MOP_BLACKHAT =6
|
||||
};
|
||||
|
||||
/** Spatial and central moments */
|
||||
typedef struct CvMoments
|
||||
{
|
||||
double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; /**< spatial moments */
|
||||
double mu20, mu11, mu02, mu30, mu21, mu12, mu03; /**< central moments */
|
||||
double inv_sqrt_m00; /**< m00 != 0 ? 1/sqrt(m00) : 0 */
|
||||
|
||||
#if defined(CV__ENABLE_C_API_CTORS) && defined(__cplusplus)
|
||||
CvMoments(){}
|
||||
CvMoments(const cv::Moments& m)
|
||||
{
|
||||
m00 = m.m00; m10 = m.m10; m01 = m.m01;
|
||||
m20 = m.m20; m11 = m.m11; m02 = m.m02;
|
||||
m30 = m.m30; m21 = m.m21; m12 = m.m12; m03 = m.m03;
|
||||
mu20 = m.mu20; mu11 = m.mu11; mu02 = m.mu02;
|
||||
mu30 = m.mu30; mu21 = m.mu21; mu12 = m.mu12; mu03 = m.mu03;
|
||||
double am00 = std::abs(m.m00);
|
||||
inv_sqrt_m00 = am00 > DBL_EPSILON ? 1./std::sqrt(am00) : 0;
|
||||
}
|
||||
operator cv::Moments() const
|
||||
{
|
||||
return cv::Moments(m00, m10, m01, m20, m11, m02, m30, m21, m12, m03);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
CvMoments;
|
||||
|
||||
#ifdef __cplusplus
|
||||
} // extern "C"
|
||||
|
||||
CV_INLINE CvMoments cvMoments()
|
||||
{
|
||||
#if !defined(CV__ENABLE_C_API_CTORS)
|
||||
CvMoments self = CV_STRUCT_INITIALIZER; return self;
|
||||
#else
|
||||
return CvMoments();
|
||||
#endif
|
||||
}
|
||||
|
||||
CV_INLINE CvMoments cvMoments(const cv::Moments& m)
|
||||
{
|
||||
#if !defined(CV__ENABLE_C_API_CTORS)
|
||||
double am00 = std::abs(m.m00);
|
||||
CvMoments self = {
|
||||
m.m00, m.m10, m.m01, m.m20, m.m11, m.m02, m.m30, m.m21, m.m12, m.m03,
|
||||
m.mu20, m.mu11, m.mu02, m.mu30, m.mu21, m.mu12, m.mu03,
|
||||
am00 > DBL_EPSILON ? 1./std::sqrt(am00) : 0
|
||||
};
|
||||
return self;
|
||||
#else
|
||||
return CvMoments(m);
|
||||
#endif
|
||||
}
|
||||
|
||||
extern "C" {
|
||||
#endif // __cplusplus
|
||||
|
||||
/** Hu invariants */
|
||||
typedef struct CvHuMoments
|
||||
{
|
||||
double hu1, hu2, hu3, hu4, hu5, hu6, hu7; /**< Hu invariants */
|
||||
}
|
||||
CvHuMoments;
|
||||
|
||||
/** Template matching methods */
|
||||
enum
|
||||
{
|
||||
CV_TM_SQDIFF =0,
|
||||
CV_TM_SQDIFF_NORMED =1,
|
||||
CV_TM_CCORR =2,
|
||||
CV_TM_CCORR_NORMED =3,
|
||||
CV_TM_CCOEFF =4,
|
||||
CV_TM_CCOEFF_NORMED =5
|
||||
};
|
||||
|
||||
typedef float (CV_CDECL * CvDistanceFunction)( const float* a, const float* b, void* user_param );
|
||||
|
||||
/** Contour retrieval modes */
|
||||
enum
|
||||
{
|
||||
CV_RETR_EXTERNAL=0,
|
||||
CV_RETR_LIST=1,
|
||||
CV_RETR_CCOMP=2,
|
||||
CV_RETR_TREE=3,
|
||||
CV_RETR_FLOODFILL=4
|
||||
};
|
||||
|
||||
/** Contour approximation methods */
|
||||
enum
|
||||
{
|
||||
CV_CHAIN_CODE=0,
|
||||
CV_CHAIN_APPROX_NONE=1,
|
||||
CV_CHAIN_APPROX_SIMPLE=2,
|
||||
CV_CHAIN_APPROX_TC89_L1=3,
|
||||
CV_CHAIN_APPROX_TC89_KCOS=4,
|
||||
CV_LINK_RUNS=5
|
||||
};
|
||||
|
||||
/*
|
||||
Internal structure that is used for sequential retrieving contours from the image.
|
||||
It supports both hierarchical and plane variants of Suzuki algorithm.
|
||||
*/
|
||||
typedef struct _CvContourScanner* CvContourScanner;
|
||||
|
||||
/** Freeman chain reader state */
|
||||
typedef struct CvChainPtReader
|
||||
{
|
||||
CV_SEQ_READER_FIELDS()
|
||||
char code;
|
||||
CvPoint pt;
|
||||
schar deltas[8][2];
|
||||
}
|
||||
CvChainPtReader;
|
||||
|
||||
/** initializes 8-element array for fast access to 3x3 neighborhood of a pixel */
|
||||
#define CV_INIT_3X3_DELTAS( deltas, step, nch ) \
|
||||
((deltas)[0] = (nch), (deltas)[1] = -(step) + (nch), \
|
||||
(deltas)[2] = -(step), (deltas)[3] = -(step) - (nch), \
|
||||
(deltas)[4] = -(nch), (deltas)[5] = (step) - (nch), \
|
||||
(deltas)[6] = (step), (deltas)[7] = (step) + (nch))
|
||||
|
||||
|
||||
/** Contour approximation algorithms */
|
||||
enum
|
||||
{
|
||||
CV_POLY_APPROX_DP = 0
|
||||
};
|
||||
|
||||
/** Shape matching methods */
|
||||
enum
|
||||
{
|
||||
CV_CONTOURS_MATCH_I1 =1, //!< \f[I_1(A,B) = \sum _{i=1...7} \left | \frac{1}{m^A_i} - \frac{1}{m^B_i} \right |\f]
|
||||
CV_CONTOURS_MATCH_I2 =2, //!< \f[I_2(A,B) = \sum _{i=1...7} \left | m^A_i - m^B_i \right |\f]
|
||||
CV_CONTOURS_MATCH_I3 =3 //!< \f[I_3(A,B) = \max _{i=1...7} \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f]
|
||||
};
|
||||
|
||||
/** Shape orientation */
|
||||
enum
|
||||
{
|
||||
CV_CLOCKWISE =1,
|
||||
CV_COUNTER_CLOCKWISE =2
|
||||
};
|
||||
|
||||
|
||||
/** Convexity defect */
|
||||
typedef struct CvConvexityDefect
|
||||
{
|
||||
CvPoint* start; /**< point of the contour where the defect begins */
|
||||
CvPoint* end; /**< point of the contour where the defect ends */
|
||||
CvPoint* depth_point; /**< the farthest from the convex hull point within the defect */
|
||||
float depth; /**< distance between the farthest point and the convex hull */
|
||||
} CvConvexityDefect;
|
||||
|
||||
|
||||
/** Histogram comparison methods */
|
||||
enum
|
||||
{
|
||||
CV_COMP_CORREL =0,
|
||||
CV_COMP_CHISQR =1,
|
||||
CV_COMP_INTERSECT =2,
|
||||
CV_COMP_BHATTACHARYYA =3,
|
||||
CV_COMP_HELLINGER =CV_COMP_BHATTACHARYYA,
|
||||
CV_COMP_CHISQR_ALT =4,
|
||||
CV_COMP_KL_DIV =5
|
||||
};
|
||||
|
||||
/** Mask size for distance transform */
|
||||
enum
|
||||
{
|
||||
CV_DIST_MASK_3 =3,
|
||||
CV_DIST_MASK_5 =5,
|
||||
CV_DIST_MASK_PRECISE =0
|
||||
};
|
||||
|
||||
/** Content of output label array: connected components or pixels */
|
||||
enum
|
||||
{
|
||||
CV_DIST_LABEL_CCOMP = 0,
|
||||
CV_DIST_LABEL_PIXEL = 1
|
||||
};
|
||||
|
||||
/** Distance types for Distance Transform and M-estimators */
|
||||
enum
|
||||
{
|
||||
CV_DIST_USER =-1, /**< User defined distance */
|
||||
CV_DIST_L1 =1, /**< distance = |x1-x2| + |y1-y2| */
|
||||
CV_DIST_L2 =2, /**< the simple euclidean distance */
|
||||
CV_DIST_C =3, /**< distance = max(|x1-x2|,|y1-y2|) */
|
||||
CV_DIST_L12 =4, /**< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) */
|
||||
CV_DIST_FAIR =5, /**< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 */
|
||||
CV_DIST_WELSCH =6, /**< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 */
|
||||
CV_DIST_HUBER =7 /**< distance = |x|<c ? x^2/2 : c(|x|-c/2), c=1.345 */
|
||||
};
|
||||
|
||||
|
||||
/** Threshold types */
|
||||
enum
|
||||
{
|
||||
CV_THRESH_BINARY =0, /**< value = value > threshold ? max_value : 0 */
|
||||
CV_THRESH_BINARY_INV =1, /**< value = value > threshold ? 0 : max_value */
|
||||
CV_THRESH_TRUNC =2, /**< value = value > threshold ? threshold : value */
|
||||
CV_THRESH_TOZERO =3, /**< value = value > threshold ? value : 0 */
|
||||
CV_THRESH_TOZERO_INV =4, /**< value = value > threshold ? 0 : value */
|
||||
CV_THRESH_MASK =7,
|
||||
CV_THRESH_OTSU =8, /**< use Otsu algorithm to choose the optimal threshold value;
|
||||
combine the flag with one of the above CV_THRESH_* values */
|
||||
CV_THRESH_TRIANGLE =16 /**< use Triangle algorithm to choose the optimal threshold value;
|
||||
combine the flag with one of the above CV_THRESH_* values, but not
|
||||
with CV_THRESH_OTSU */
|
||||
};
|
||||
|
||||
/** Adaptive threshold methods */
|
||||
enum
|
||||
{
|
||||
CV_ADAPTIVE_THRESH_MEAN_C =0,
|
||||
CV_ADAPTIVE_THRESH_GAUSSIAN_C =1
|
||||
};
|
||||
|
||||
/** FloodFill flags */
|
||||
enum
|
||||
{
|
||||
CV_FLOODFILL_FIXED_RANGE =(1 << 16),
|
||||
CV_FLOODFILL_MASK_ONLY =(1 << 17)
|
||||
};
|
||||
|
||||
|
||||
/** Canny edge detector flags */
|
||||
enum
|
||||
{
|
||||
CV_CANNY_L2_GRADIENT =(1 << 31)
|
||||
};
|
||||
|
||||
/** Variants of a Hough transform */
|
||||
enum
|
||||
{
|
||||
CV_HOUGH_STANDARD =0,
|
||||
CV_HOUGH_PROBABILISTIC =1,
|
||||
CV_HOUGH_MULTI_SCALE =2,
|
||||
CV_HOUGH_GRADIENT =3
|
||||
};
|
||||
|
||||
|
||||
/* Fast search data structures */
|
||||
struct CvFeatureTree;
|
||||
struct CvLSH;
|
||||
struct CvLSHOperations;
|
||||
|
||||
/** @} */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user