feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,12 @@
{
"extends": "google",
"parserOptions": {
"ecmaVersion": 6
},
"rules": {
"max-len": ["error", 100, {"ignoreUrls": true}],
"quotes": ["error", "single"],
"indent": ["error", 4, {"ArrayExpression": "first",
"CallExpression": {"arguments": "first"}}]
}
}

View File

@ -0,0 +1,28 @@
{
"name": "opencv_js_tests",
"description": "Tests for opencv js bindings",
"version": "1.0.1",
"dependencies": {
"ansi-colors": "^4.1.1",
"minimist": "^1.2.0",
"node-qunit": "latest"
},
"devDependencies": {
"eslint": "latest",
"eslint-config-google": "latest"
},
"scripts": {
"test": "node tests.js"
},
"repository": {
"type": "git",
"url": "https://github.com/opencv/opencv.git"
},
"keywords": [],
"author": "",
"license": "Apache 2.0 License",
"bugs": {
"url": "https://github.com/opencv/opencv/issues"
},
"homepage": "https://github.com/opencv/opencv"
}

View File

@ -0,0 +1,214 @@
try {
require('puppeteer')
} catch (e) {
console.error(
"\nFATAL ERROR:" +
"\n Package 'puppeteer' is not available." +
"\n Run 'npm install --no-save puppeteer' before running this script" +
"\n * You may use PUPPETEER_SKIP_CHROMIUM_DOWNLOAD=1 environment variable to avoid automatic Chromium downloading" +
"\n (specify own Chromium/Chrome version through PUPPETEER_EXECUTABLE_PATH=`which google-chrome` environment variable)" +
"\n");
process.exit(1);
}
const puppeteer = require('puppeteer')
const colors = require("ansi-colors")
const path = require("path");
const fs = require("fs");
const http = require("http");
run_main(require('minimist')(process.argv.slice(2)));
async function run_main(o = {}) {
try {
await main(o);
console.magenta("FATAL: Unexpected exit!");
process.exit(1);
} catch (e) {
console.error(colors.magenta("FATAL: Unexpected exception!"));
console.error(e);
process.exit(1);
}
}
async function main(o = {}) {
o = Object.assign({}, {
buildFolder: __dirname,
port: 8080,
debug: false,
noHeadless: false,
serverPrefix: `http://localhost`,
noExit: false,
screenshot: undefined,
help: false,
noTryCatch: false,
maxBlockDuration: 30000
}, o)
if (typeof o.screenshot == 'string' && o.screenshot == 'false') {
console.log(colors.red('ERROR: misused screenshot option, use --no-screenshot instead'));
}
if (o.noExit) {
o.maxBlockDuration = 999999999
}
o.debug && console.log('Current Options', o);
if (o.help) {
printHelpAndExit();
}
const serverAddress = `${o.serverPrefix}:${o.port}`
const url = `${serverAddress}/tests.html${o.noTryCatch ? '?notrycatch=1' : ''}`;
if (!fs.existsSync(o.buildFolder)) {
console.error(`Expected folder "${o.buildFolder}" to exists. Aborting`);
}
o.debug && debug('Server Listening at ' + url);
const server = await staticServer(o.buildFolder, o.port, m => debug, m => error);
o.debug && debug(`Browser launching ${!o.noHeadless ? 'headless' : 'not headless'}`);
const browser = await puppeteer.launch({ headless: !o.noHeadless });
const page = await browser.newPage();
page.on('console', e => {
locationMsg = formatMessage(`${e.location().url}:${e.location().lineNumber}:${e.location().columnNumber}`);
if (e.type() === 'error') {
console.log(colors.red(formatMessage('' + e.text(), `-- ERROR:${locationMsg}: `, )));
}
else if (o.debug) {
o.debug && console.log(colors.grey(formatMessage('' + e.text(), `-- ${locationMsg}: `)));
}
});
o.debug && debug(`Opening page address ${url}`);
await page.goto(url);
await page.waitForFunction(() => (document.querySelector(`#qunit-testresult`) && document.querySelector(`#qunit-testresult`).textContent || '').trim().toLowerCase().startsWith('tests completed'));
const text = await getText(`#qunit-testresult`);
if (!text) {
return await fail(`An error occurred extracting test results. Check the build folder ${o.buildFolder} is correct and has build with tests enabled.`);
}
o.debug && debug(colors.blackBright("* UserAgent: " + await getText('#qunit-userAgent')));
const testFailed = !text.includes(' 0 failed');
if (testFailed && !o.debug) {
process.stdout.write(colors.grey("* Use '--debug' parameter to see details of failed tests.\n"));
}
if (o.screenshot || (o.screenshot === undefined && testFailed)) {
await page.screenshot({ path: 'screenshot.png', fullPage: 'true' });
process.stdout.write(colors.grey(`* Screenshot taken: ${o.buildFolder}/screenshot.png\n`));
}
if (testFailed) {
const report = await failReport();
process.stdout.write(`
${colors.red.bold.underline('Failed tests ! :(')}
${colors.redBright(colors.symbols.cross + ' ' + report.join(`\n${colors.symbols.cross} `))}
${colors.redBright(`=== Summary ===\n${text}`)}
`);
}
else {
process.stdout.write(colors.green(`
${colors.symbols.check} No Errors :)
=== Summary ===\n${text}
`));
}
if (o.noExit) {
while (true) {
await new Promise(r => setTimeout(r, 5000));
}
}
await server && server.close();
await browser.close();
process.exit(testFailed ? 1 : 0);
async function getText(s) {
return await page.evaluate((s) => (document.querySelector(s) && document.querySelector(s).innerText) || ''.trim(), s);
}
async function failReport() {
const failures = await page.evaluate(() => Array.from(document.querySelectorAll('#qunit-tests .fail')).filter(e => e.querySelector('.module-name')).map(e => ({
moduleName: e.querySelector('.module-name') && e.querySelector('.module-name').textContent,
testName: e.querySelector('.test-name') && e.querySelector('.test-name').textContent,
expected: e.querySelector('.test-expected pre') && e.querySelector('.test-expected pre').textContent,
actual: e.querySelector('.test-actual pre') && e.querySelector('.test-actual pre').textContent,
code: e.querySelector('.test-source') && e.querySelector('.test-source').textContent.replace("Source: at ", ""),
})));
return failures.map(f => `${f.moduleName}: ${f.testName} (${formatMessage(f.code)})`);
}
async function fail(s) {
await failReport();
process.stdout.write(colors.red(s) + '\n');
if (o.screenshot || o.screenshot === undefined) {
await page.screenshot({ path: 'screenshot.png', fullPage: 'true' });
process.stdout.write(colors.grey(`* Screenshot taken: ${o.buildFolder}/screenshot.png\n`));
}
process.exit(1);
}
async function debug(s) {
process.stdout.write(s + '\n');
}
async function error(s) {
process.stdout.write(s + '\n');
}
function formatMessage(message, prefix) {
prefix = prefix || '';
return prefix + ('' + message).split('\n').map(l => l.replace(serverAddress, o.buildFolder)).join('\n' + prefix);
}
}
function printHelpAndExit() {
console.log(`
Usage:
# First, remember to build opencv.js with tests enabled:
${colors.blueBright(`python ./platforms/js/build_js.py build_js --build_test`)}
# Install the tool locally (needed only once) and run it
${colors.blueBright(`cd build_js/bin`)}
${colors.blueBright(`npm install`)}
${colors.blueBright(`node run_puppeteer`)}
By default will run a headless browser silently printing a small report in the terminal.
But it could used to debug the tests in the browser, take screenshots, global tool or
targeting external servers exposing the tests.
TIP: you could install the tool globally (npm install --global build_js/bin) to execute it from any local folder.
# Options
* port?: number. Default 8080
* buildFolder?: string. Default __dirname (this folder)
* debug?: boolean. Default false
* noHeadless?: boolean. Default false
* serverPrefix?: string . Default http://localhost
* help?: boolean
* screenshot?: boolean . Make screenshot on failure by default. Use --no-screenshot to disable screenshots completely.
* noExit?: boolean default false. If true it will keep running the server - together with noHeadless you can debug in the browser.
* noTryCatch?: boolean will disable Qunit tryCatch - so exceptions are dump to stdout rather than in the browser.
* maxBlockDuration: QUnit timeout. If noExit is given then is infinity.
`);
process.exit(0);
}
async function staticServer(basePath, port, onFound, onNotFound) {
return new Promise(async (resolve) => {
const server = http.createServer((req, res) => {
var url = resolveUrl(req.url);
onFound && onFound(url);
var stream = fs.createReadStream(path.join(basePath, url || ''));
stream.on('error', function () {
onNotFound && onNotFound(url);
res.writeHead(404);
res.end();
});
stream.pipe(res);
}).listen(port);
server.on('listening', () => {
resolve(server);
});
});
function resolveUrl(url = '') {
var i = url.indexOf('?');
if (i != -1) {
url = url.substr(0, i);
}
i = url.indexOf('#');
if (i != -1) {
url = url.substr(0, i);
}
return url;
}
}

View File

@ -0,0 +1,91 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
QUnit.module('Camera Calibration and 3D Reconstruction', {});
QUnit.test('constants', function(assert) {
assert.strictEqual(typeof cv.LMEDS, 'number');
assert.strictEqual(typeof cv.RANSAC, 'number');
assert.strictEqual(typeof cv.RHO, 'number');
});
QUnit.test('findHomography', function(assert) {
let srcPoints = cv.matFromArray(4, 1, cv.CV_32FC2, [
56,
65,
368,
52,
28,
387,
389,
390,
]);
let dstPoints = cv.matFromArray(4, 1, cv.CV_32FC2, [
0,
0,
300,
0,
0,
300,
300,
300,
]);
const mat = cv.findHomography(srcPoints, dstPoints);
assert.ok(mat instanceof cv.Mat);
});
QUnit.test('Rodrigues', function(assert) {
// Converts a rotation matrix to a rotation vector and vice versa
// data64F is the output array
const rvec0 = cv.matFromArray(1, 3, cv.CV_64F, [1,1,1]);
let rMat0 = new cv.Mat();
let rvec1 = new cv.Mat();
// Args: input Mat, output Mat. The function mutates the output Mat, so the function does not return anything.
// cv.Rodrigues (InputArray=src, OutputArray=dst, jacobian=0)
// https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#void%20Rodrigues(InputArray%20src,%20OutputArray%20dst,%20OutputArray%20jacobian)
// vec to Mat, starting number is 3 long and each element is 1.
cv.Rodrigues(rvec0, rMat0);
assert.ok(rMat0.data64F.length == 9);
assert.ok(0.23 > rMat0.data64F[0] > 0.22);
// convert Mat to Vec, should be same as what we started with, 3 long and each item should be a 1.
cv.Rodrigues(rMat0, rvec1);
assert.ok(rvec1.data64F.length == 3);
assert.ok(1.01 > rvec1.data64F[0] > 0.9);
// Answer should be around 1: 0.9999999999999999
});
QUnit.test('estimateAffine2D', function(assert) {
const inputs = cv.matFromArray(4, 1, cv.CV_32FC2, [
1, 1,
80, 0,
0, 80,
80, 80
]);
const outputs = cv.matFromArray(4, 1, cv.CV_32FC2, [
21, 51,
70, 77,
40, 40,
10, 70
]);
const M = cv.estimateAffine2D(inputs, outputs);
assert.ok(M instanceof cv.Mat);
assert.deepEqual(Array.from(M.data), [
23, 55, 97, 126, 87, 139, 227, 63, 0, 0,
0, 0, 0, 0, 232, 191, 71, 246, 12, 68,
165, 35, 53, 64, 99, 56, 27, 66, 14, 254,
212, 63, 103, 102, 102, 102, 102, 102, 182, 191,
195, 252, 174, 22, 55, 97, 73, 64
]);
});

View File

@ -0,0 +1,115 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
function generateTestFrame(width, height) {
let w = width || 200;
let h = height || 200;
let img = new cv.Mat(h, w, cv.CV_8UC1, new cv.Scalar(0, 0, 0, 0));
let s = new cv.Scalar(255, 255, 255, 255);
let s128 = new cv.Scalar(128, 128, 128, 128);
let rect = new cv.Rect(w / 4, h / 4, w / 2, h / 2);
img.roi(rect).setTo(s);
img.roi(new cv.Rect(w / 2 - w / 8, h / 2 - h / 8, w / 4, h / 4)).setTo(s128);
cv.rectangle(img, new cv.Point(w / 8, h / 8), new cv.Point(w - w / 8, h - h / 8), s, 5);
cv.rectangle(img, new cv.Point(w / 5, h / 5), new cv.Point(w - w / 5, h - h / 5), s128, 3);
cv.line(img, new cv.Point(-w, 0), new cv.Point(w / 2, h / 2), s128, 5);
cv.line(img, new cv.Point(2*w, 0), new cv.Point(w / 2, h / 2), s, 5);
return img;
}
QUnit.module('Features2D', {});
QUnit.test('Detectors', function(assert) {
let image = generateTestFrame();
let kp = new cv.KeyPointVector();
let orb = new cv.ORB();
orb.detect(image, kp);
assert.equal(kp.size(), 67, 'ORB');
let mser = new cv.MSER();
mser.detect(image, kp);
assert.equal(kp.size(), 7, 'MSER');
let brisk = new cv.BRISK();
brisk.detect(image, kp);
assert.equal(kp.size(), 191, 'BRISK');
let ffd = new cv.FastFeatureDetector();
ffd.detect(image, kp);
assert.equal(kp.size(), 12, 'FastFeatureDetector');
let afd = new cv.AgastFeatureDetector();
afd.detect(image, kp);
assert.equal(kp.size(), 67, 'AgastFeatureDetector');
let gftt = new cv.GFTTDetector();
gftt.detect(image, kp);
assert.equal(kp.size(), 168, 'GFTTDetector');
let kaze = new cv.KAZE();
kaze.detect(image, kp);
assert.equal(kp.size(), 159, 'KAZE');
let akaze = new cv.AKAZE();
akaze.detect(image, kp);
assert.equal(kp.size(), 53, 'AKAZE');
});
QUnit.test('BFMatcher', function(assert) {
// Generate key points.
let image = generateTestFrame();
let kp = new cv.KeyPointVector();
let descriptors = new cv.Mat();
let orb = new cv.ORB();
orb.detectAndCompute(image, new cv.Mat(), kp, descriptors);
assert.equal(kp.size(), 67);
// Run a matcher.
let dm = new cv.DMatchVector();
let matcher = new cv.BFMatcher();
matcher.match(descriptors, descriptors, dm);
assert.equal(dm.size(), 67);
});
QUnit.test('Drawing', function(assert) {
// Generate key points.
let image = generateTestFrame();
let kp = new cv.KeyPointVector();
let descriptors = new cv.Mat();
let orb = new cv.ORB();
orb.detectAndCompute(image, new cv.Mat(), kp, descriptors);
assert.equal(kp.size(), 67);
let dst = new cv.Mat();
cv.drawKeypoints(image, kp, dst);
assert.equal(dst.rows, image.rows);
assert.equal(dst.cols, image.cols);
// Run a matcher.
let dm = new cv.DMatchVector();
let matcher = new cv.BFMatcher();
matcher.match(descriptors, descriptors, dm);
assert.equal(dm.size(), 67);
cv.drawMatches(image, kp, image, kp, dm, dst);
assert.equal(dst.rows, image.rows);
assert.equal(dst.cols, 2 * image.cols);
dm = new cv.DMatchVectorVector();
matcher.knnMatch(descriptors, descriptors, dm, 2);
assert.equal(dm.size(), 67);
cv.drawMatchesKnn(image, kp, image, kp, dm, dst);
assert.equal(dst.rows, image.rows);
assert.equal(dst.cols, 2 * image.cols);
});

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,987 @@
// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//
// //////////////////////////////////////////////////////////////////////////////////////
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
//
// LICENSE AGREEMENT
// Copyright (c) 2015 The Regents of the University of California (Regents)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the University nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
QUnit.module('Core', {});
QUnit.test('test_mat_creation', function(assert) {
// Mat constructors.
// Mat::Mat(int rows, int cols, int type)
{
let mat = new cv.Mat(10, 20, cv.CV_8UC3);
assert.equal(mat.type(), cv.CV_8UC3);
assert.equal(mat.depth(), cv.CV_8U);
assert.equal(mat.channels(), 3);
assert.ok(mat.empty() === false);
let size = mat.size();
assert.equal(size.height, 10);
assert.equal(size.width, 20);
mat.delete();
}
// Mat::Mat(const Mat &)
{
// Copy from another Mat
let mat1 = new cv.Mat(10, 20, cv.CV_8UC3);
let mat2 = new cv.Mat(mat1);
assert.equal(mat2.type(), mat1.type());
assert.equal(mat2.depth(), mat1.depth());
assert.equal(mat2.channels(), mat1.channels());
assert.equal(mat2.empty(), mat1.empty());
let size1 = mat1.size;
let size2 = mat2.size();
assert.ok(size1[0] === size2[0]);
assert.ok(size1[1] === size2[1]);
mat1.delete();
mat2.delete();
}
// Mat::Mat(int rows, int cols, int type, void *data, size_t step=AUTO_STEP)
{
// 10 * 10 and one channel
let data = cv._malloc(10 * 10 * 1);
let mat = new cv.Mat(10, 10, cv.CV_8UC1, data, 0);
assert.equal(mat.type(), cv.CV_8UC1);
assert.equal(mat.depth(), cv.CV_8U);
assert.equal(mat.channels(), 1);
assert.ok(mat.empty() === false);
let size = mat.size();
assert.ok(size.height === 10);
assert.ok(size.width === 10);
mat.delete();
}
// Mat::Mat(int rows, int cols, int type, const Scalar& scalar)
{
// 2 * 2 8UC4 mat
let mat = new cv.Mat(2, 2, cv.CV_8UC4, [0, 1, 2, 3]);
for (let r = 0; r < mat.rows; r++) {
for (let c = 0; c < mat.cols; c++) {
let element = mat.ptr(r, c);
assert.equal(element[0], 0);
assert.equal(element[1], 1);
assert.equal(element[2], 2);
assert.equal(element[3], 3);
}
}
mat.delete();
}
// Mat::create(int, int, int)
{
let mat = new cv.Mat();
mat.create(10, 5, cv.CV_8UC3);
let size = mat.size();
assert.ok(mat.type() === cv.CV_8UC3);
assert.ok(size.height === 10);
assert.ok(size.width === 5);
assert.ok(mat.channels() === 3);
mat.delete();
}
// Mat::create(Size, int)
{
let mat = new cv.Mat();
mat.create({height: 10, width: 5}, cv.CV_8UC4);
let size = mat.size();
assert.ok(mat.type() === cv.CV_8UC4);
assert.ok(size.height === 10);
assert.ok(size.width === 5);
assert.ok(mat.channels() === 4);
mat.delete();
}
// clone
{
let mat = cv.Mat.ones(5, 5, cv.CV_8UC1);
let mat2 = mat.clone();
assert.equal(mat.channels, mat2.channels);
assert.equal(mat.size().height, mat2.size().height);
assert.equal(mat.size().width, mat2.size().width);
assert.deepEqual(mat.data, mat2.data);
mat.delete();
mat2.delete();
}
// copyTo
{
let mat = cv.Mat.ones(5, 5, cv.CV_8UC1);
let mat2 = new cv.Mat();
mat.copyTo(mat2);
assert.equal(mat.channels, mat2.channels);
assert.equal(mat.size().height, mat2.size().height);
assert.equal(mat.size().width, mat2.size().width);
assert.deepEqual(mat.data, mat2.data);
mat.delete();
mat2.delete();
}
// copyTo1
{
let mat = cv.Mat.ones(5, 5, cv.CV_8UC1);
let mat2 = new cv.Mat();
let mask = new cv.Mat(5, 5, cv.CV_8UC1, new cv.Scalar(1));
mat.copyTo(mat2, mask);
assert.equal(mat.channels, mat2.channels);
assert.equal(mat.size().height, mat2.size().height);
assert.equal(mat.size().width, mat2.size().width);
assert.deepEqual(mat.data, mat2.data);
mat.delete();
mat2.delete();
mask.delete();
}
// matFromArray
{
let arrayC1 = [0, -1, 2, -3];
let arrayC2 = [0, -1, 2, -3, 4, -5, 6, -7];
let arrayC3 = [0, -1, 2, -3, 4, -5, 6, -7, 9, -9, 10, -11];
let arrayC4 = [0, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, 13, 14, 15];
let mat8UC1 = cv.matFromArray(2, 2, cv.CV_8UC1, arrayC1);
let mat8UC2 = cv.matFromArray(2, 2, cv.CV_8UC2, arrayC2);
let mat8UC3 = cv.matFromArray(2, 2, cv.CV_8UC3, arrayC3);
let mat8UC4 = cv.matFromArray(2, 2, cv.CV_8UC4, arrayC4);
let mat8SC1 = cv.matFromArray(2, 2, cv.CV_8SC1, arrayC1);
let mat8SC2 = cv.matFromArray(2, 2, cv.CV_8SC2, arrayC2);
let mat8SC3 = cv.matFromArray(2, 2, cv.CV_8SC3, arrayC3);
let mat8SC4 = cv.matFromArray(2, 2, cv.CV_8SC4, arrayC4);
let mat16UC1 = cv.matFromArray(2, 2, cv.CV_16UC1, arrayC1);
let mat16UC2 = cv.matFromArray(2, 2, cv.CV_16UC2, arrayC2);
let mat16UC3 = cv.matFromArray(2, 2, cv.CV_16UC3, arrayC3);
let mat16UC4 = cv.matFromArray(2, 2, cv.CV_16UC4, arrayC4);
let mat16SC1 = cv.matFromArray(2, 2, cv.CV_16SC1, arrayC1);
let mat16SC2 = cv.matFromArray(2, 2, cv.CV_16SC2, arrayC2);
let mat16SC3 = cv.matFromArray(2, 2, cv.CV_16SC3, arrayC3);
let mat16SC4 = cv.matFromArray(2, 2, cv.CV_16SC4, arrayC4);
let mat32SC1 = cv.matFromArray(2, 2, cv.CV_32SC1, arrayC1);
let mat32SC2 = cv.matFromArray(2, 2, cv.CV_32SC2, arrayC2);
let mat32SC3 = cv.matFromArray(2, 2, cv.CV_32SC3, arrayC3);
let mat32SC4 = cv.matFromArray(2, 2, cv.CV_32SC4, arrayC4);
let mat32FC1 = cv.matFromArray(2, 2, cv.CV_32FC1, arrayC1);
let mat32FC2 = cv.matFromArray(2, 2, cv.CV_32FC2, arrayC2);
let mat32FC3 = cv.matFromArray(2, 2, cv.CV_32FC3, arrayC3);
let mat32FC4 = cv.matFromArray(2, 2, cv.CV_32FC4, arrayC4);
let mat64FC1 = cv.matFromArray(2, 2, cv.CV_64FC1, arrayC1);
let mat64FC2 = cv.matFromArray(2, 2, cv.CV_64FC2, arrayC2);
let mat64FC3 = cv.matFromArray(2, 2, cv.CV_64FC3, arrayC3);
let mat64FC4 = cv.matFromArray(2, 2, cv.CV_64FC4, arrayC4);
assert.deepEqual(mat8UC1.data, new Uint8Array(arrayC1));
assert.deepEqual(mat8UC2.data, new Uint8Array(arrayC2));
assert.deepEqual(mat8UC3.data, new Uint8Array(arrayC3));
assert.deepEqual(mat8UC4.data, new Uint8Array(arrayC4));
assert.deepEqual(mat8SC1.data8S, new Int8Array(arrayC1));
assert.deepEqual(mat8SC2.data8S, new Int8Array(arrayC2));
assert.deepEqual(mat8SC3.data8S, new Int8Array(arrayC3));
assert.deepEqual(mat8SC4.data8S, new Int8Array(arrayC4));
assert.deepEqual(mat16UC1.data16U, new Uint16Array(arrayC1));
assert.deepEqual(mat16UC2.data16U, new Uint16Array(arrayC2));
assert.deepEqual(mat16UC3.data16U, new Uint16Array(arrayC3));
assert.deepEqual(mat16UC4.data16U, new Uint16Array(arrayC4));
assert.deepEqual(mat16SC1.data16S, new Int16Array(arrayC1));
assert.deepEqual(mat16SC2.data16S, new Int16Array(arrayC2));
assert.deepEqual(mat16SC3.data16S, new Int16Array(arrayC3));
assert.deepEqual(mat16SC4.data16S, new Int16Array(arrayC4));
assert.deepEqual(mat32SC1.data32S, new Int32Array(arrayC1));
assert.deepEqual(mat32SC2.data32S, new Int32Array(arrayC2));
assert.deepEqual(mat32SC3.data32S, new Int32Array(arrayC3));
assert.deepEqual(mat32SC4.data32S, new Int32Array(arrayC4));
assert.deepEqual(mat32FC1.data32F, new Float32Array(arrayC1));
assert.deepEqual(mat32FC2.data32F, new Float32Array(arrayC2));
assert.deepEqual(mat32FC3.data32F, new Float32Array(arrayC3));
assert.deepEqual(mat32FC4.data32F, new Float32Array(arrayC4));
assert.deepEqual(mat64FC1.data64F, new Float64Array(arrayC1));
assert.deepEqual(mat64FC2.data64F, new Float64Array(arrayC2));
assert.deepEqual(mat64FC3.data64F, new Float64Array(arrayC3));
assert.deepEqual(mat64FC4.data64F, new Float64Array(arrayC4));
mat8UC1.delete();
mat8UC2.delete();
mat8UC3.delete();
mat8UC4.delete();
mat8SC1.delete();
mat8SC2.delete();
mat8SC3.delete();
mat8SC4.delete();
mat16UC1.delete();
mat16UC2.delete();
mat16UC3.delete();
mat16UC4.delete();
mat16SC1.delete();
mat16SC2.delete();
mat16SC3.delete();
mat16SC4.delete();
mat32SC1.delete();
mat32SC2.delete();
mat32SC3.delete();
mat32SC4.delete();
mat32FC1.delete();
mat32FC2.delete();
mat32FC3.delete();
mat32FC4.delete();
mat64FC1.delete();
mat64FC2.delete();
mat64FC3.delete();
mat64FC4.delete();
}
// matFromImageData
{
// Only test in browser
if (typeof window === 'undefined') {
return;
}
let canvas = window.document.createElement('canvas');
canvas.width = 2;
canvas.height = 2;
let ctx = canvas.getContext('2d');
ctx.fillStyle='#FF0000';
ctx.fillRect(0, 0, 1, 1);
ctx.fillRect(1, 1, 1, 1);
let imageData = ctx.getImageData(0, 0, 2, 2);
let mat = cv.matFromImageData(imageData);
assert.deepEqual(mat.data, new Uint8Array(imageData.data));
mat.delete();
}
// Mat(mat)
{
let mat = new cv.Mat(2, 2, cv.CV_8UC4, new cv.Scalar(1, 0, 1, 0));
let mat1 = new cv.Mat(mat);
let mat2 = mat;
assert.equal(mat.rows, mat1.rows);
assert.equal(mat.cols, mat1.cols);
assert.equal(mat.type(), mat1.type());
assert.deepEqual(mat.data, mat1.data);
mat.delete();
assert.equal(mat1.isDeleted(), false);
assert.equal(mat2.isDeleted(), true);
mat1.delete();
}
// mat.setTo
{
let mat = new cv.Mat(2, 2, cv.CV_8UC4);
let s = [0, 1, 2, 3];
mat.setTo(s);
assert.deepEqual(mat.ptr(0, 0), new Uint8Array(s));
assert.deepEqual(mat.ptr(0, 1), new Uint8Array(s));
assert.deepEqual(mat.ptr(1, 0), new Uint8Array(s));
assert.deepEqual(mat.ptr(1, 1), new Uint8Array(s));
let s1 = [0, 0, 0, 0];
mat.setTo(s1);
let mask = cv.matFromArray(2, 2, cv.CV_8UC1, [0, 1, 0, 1]);
mat.setTo(s, mask);
assert.deepEqual(mat.ptr(0, 0), new Uint8Array(s1));
assert.deepEqual(mat.ptr(0, 1), new Uint8Array(s));
assert.deepEqual(mat.ptr(1, 0), new Uint8Array(s1));
assert.deepEqual(mat.ptr(1, 1), new Uint8Array(s));
mat.delete();
mask.delete();
}
});
QUnit.test('test_mat_ptr', function(assert) {
const RValue = 3;
const GValue = 7;
const BValue = 197;
// cv.CV_8UC1 + Mat::ptr(int).
{
let mat = new cv.Mat(10, 10, cv.CV_8UC1);
let view = mat.data;
// Alter matrix[2, 1].
let step = 10;
view[2 * step + 1] = RValue;
// Access matrix[2, 1].
view = mat.ptr(2);
assert.equal(view[1], RValue);
mat.delete();
}
// cv.CV_8UC3 + Mat::ptr(int).
{
let mat = new cv.Mat(10, 10, cv.CV_8UC3);
let view = mat.data;
// Alter matrix[2, 1].
let step = 3 * 10;
view[2 * step + 3] = RValue;
view[2 * step + 3 + 1] = GValue;
view[2 * step + 3 + 2] = BValue;
// Access matrix[2, 1].
view = mat.ptr(2);
assert.equal(view[3], RValue);
assert.equal(view[3 + 1], GValue);
assert.equal(view[3 + 2], BValue);
mat.delete();
}
// cv.CV_8UC3 + Mat::ptr(int, int).
{
let mat = new cv.Mat(10, 10, cv.CV_8UC3);
let view = mat.data;
// Alter matrix[2, 1].
let step = 3 * 10;
view[2 * step + 3] = RValue;
view[2 * step + 3 + 1] = GValue;
view[2 * step + 3 + 2] = BValue;
// Access matrix[2, 1].
view = mat.ptr(2, 1);
assert.equal(view[0], RValue);
assert.equal(view[1], GValue);
assert.equal(view[2], BValue);
mat.delete();
}
const RValueF32 = 3.3;
const GValueF32 = 7.3;
const BValueF32 = 197.3;
const EPSILON = 0.001;
// cv.CV_32FC1 + Mat::ptr(int).
{
let mat = new cv.Mat(10, 10, cv.CV_32FC1);
let view = mat.data32F;
// Alter matrix[2, 1].
let step = 10;
view[2 * step + 1] = RValueF32;
// Access matrix[2, 1].
view = mat.floatPtr(2);
assert.ok(Math.abs(view[1] - RValueF32) < EPSILON);
mat.delete();
}
// cv.CV_32FC3 + Mat::ptr(int).
{
let mat = new cv.Mat(10, 10, cv.CV_32FC3);
let view = mat.data32F;
// Alter matrix[2, 1].
let step = mat.step1(0);
view[2 * step + 3] = RValueF32;
view[2 * step + 3 + 1] = GValueF32;
view[2 * step + 3 + 2] = BValueF32;
// Access matrix[2, 1].
view = mat.floatPtr(2);
assert.ok(Math.abs(view[3] - RValueF32) < EPSILON);
assert.ok(Math.abs(view[3 + 1] - GValueF32) < EPSILON);
assert.ok(Math.abs(view[3 + 2] - BValueF32) < EPSILON);
mat.delete();
}
// cv.CV_32FC3 + Mat::ptr(int, int).
{
let mat = new cv.Mat(10, 10, cv.CV_32FC3);
let view = mat.data32F;
// Alter matrix[2, 1].
let step = mat.step1(0);
view[2 * step + 3] = RValueF32;
view[2 * step + 3 + 1] = GValueF32;
view[2 * step + 3 + 2] = BValueF32;
// Access matrix[2, 1].
view = mat.floatPtr(2, 1);
assert.ok(Math.abs(view[0] - RValueF32) < EPSILON);
assert.ok(Math.abs(view[1] - GValueF32) < EPSILON);
assert.ok(Math.abs(view[2] - BValueF32) < EPSILON);
mat.delete();
}
});
QUnit.test('test_mat_zeros', function(assert) {
let zeros = new Uint8Array(10*10).fill(0);
// Mat::zeros(int, int, int)
{
let mat = cv.Mat.zeros(10, 10, cv.CV_8UC1);
let view = mat.data;
assert.deepEqual(view, zeros);
mat.delete();
}
// Mat::zeros(Size, int)
{
let mat = cv.Mat.zeros({height: 10, width: 10}, cv.CV_8UC1);
let view = mat.data;
assert.deepEqual(view, zeros);
mat.delete();
}
});
QUnit.test('test_mat_ones', function(assert) {
let ones = new Uint8Array(10*10).fill(1);
// Mat::ones(int, int, int)
{
let mat = cv.Mat.ones(10, 10, cv.CV_8UC1);
let view = mat.data;
assert.deepEqual(view, ones);
}
// Mat::ones(Size, int)
{
let mat = cv.Mat.ones({height: 10, width: 10}, cv.CV_8UC1);
let view = mat.data;
assert.deepEqual(view, ones);
}
});
QUnit.test('test_mat_eye', function(assert) {
let eye4by4 = new Uint8Array([1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
0, 0, 0, 1]);
// Mat::eye(int, int, int)
{
let mat = cv.Mat.eye(4, 4, cv.CV_8UC1);
let view = mat.data;
assert.deepEqual(view, eye4by4);
}
// Mat::eye(Size, int)
{
let mat = cv.Mat.eye({height: 4, width: 4}, cv.CV_8UC1);
let view = mat.data;
assert.deepEqual(view, eye4by4);
}
});
QUnit.test('test_mat_miscs', function(assert) {
// Mat::col(int)
{
let mat = cv.matFromArray(2, 2, cv.CV_8UC2, [1, 2, 3, 4, 5, 6, 7, 8]);
let col = mat.col(1);
assert.equal(col.isContinuous(), false);
assert.equal(col.ptr(0, 0)[0], 3);
assert.equal(col.ptr(0, 0)[1], 4);
assert.equal(col.ptr(1, 0)[0], 7);
assert.equal(col.ptr(1, 0)[1], 8);
col.delete();
mat.delete();
}
// Mat::row(int)
{
let mat = cv.Mat.zeros(5, 5, cv.CV_8UC2);
let row = mat.row(1);
let view = row.data;
assert.equal(view[0], 0);
assert.equal(view[4], 0);
row.delete();
mat.delete();
}
// Mat::convertTo(Mat, int, double, double)
{
let mat = cv.Mat.ones(5, 5, cv.CV_8UC3);
let grayMat = cv.Mat.zeros(5, 5, cv.CV_8UC1);
mat.convertTo(grayMat, cv.CV_8U, 2, 1);
// dest = 2 * source(x, y) + 1.
let view = grayMat.data;
assert.equal(view[0], (1 * 2) + 1);
mat.convertTo(grayMat, cv.CV_8U);
// dest = 1 * source(x, y) + 0.
assert.equal(view[0], 1);
mat.convertTo(grayMat, cv.CV_8U, 2);
// dest = 2 * source(x, y) + 0.
assert.equal(view[0], 2);
grayMat.delete();
mat.delete();
}
// split
{
const R =7;
const G =13;
const B =29;
let mat = cv.Mat.ones(5, 5, cv.CV_8UC3);
let view = mat.data;
view[0] = R;
view[1] = G;
view[2] = B;
let bgrPlanes = new cv.MatVector();
cv.split(mat, bgrPlanes);
assert.equal(bgrPlanes.size(), 3);
let rMat = bgrPlanes.get(0);
view = rMat.data;
assert.equal(view[0], R);
let gMat = bgrPlanes.get(1);
view = gMat.data;
assert.equal(view[0], G);
let bMat = bgrPlanes.get(2);
view = bMat.data;
assert.equal(view[0], B);
mat.delete();
rMat.delete();
gMat.delete();
bgrPlanes.delete();
bMat.delete();
}
// elemSize
{
let mat = cv.Mat.ones(5, 5, cv.CV_8UC3);
assert.equal(mat.elemSize(), 3);
assert.equal(mat.elemSize1(), 1);
let mat2 = cv.Mat.zeros(5, 5, cv.CV_8UC1);
assert.equal(mat2.elemSize(), 1);
assert.equal(mat2.elemSize1(), 1);
let mat3 = cv.Mat.eye(5, 5, cv.CV_16UC3);
assert.equal(mat3.elemSize(), 2 * 3);
assert.equal(mat3.elemSize1(), 2);
mat.delete();
mat2.delete();
mat3.delete();
}
// step
{
let mat = cv.Mat.ones(5, 5, cv.CV_8UC3);
assert.equal(mat.step[0], 15);
assert.equal(mat.step[1], 3);
let mat2 = cv.Mat.zeros(5, 5, cv.CV_8UC1);
assert.equal(mat2.step[0], 5);
assert.equal(mat2.step[1], 1);
let mat3 = cv.Mat.eye(5, 5, cv.CV_16UC3);
assert.equal(mat3.step[0], 30);
assert.equal(mat3.step[1], 6);
mat.delete();
mat2.delete();
mat3.delete();
}
// dot
{
let mat = cv.Mat.ones(5, 5, cv.CV_8UC1);
let mat2 = cv.Mat.eye(5, 5, cv.CV_8UC1);
assert.equal(mat.dot(mat), 25);
assert.equal(mat.dot(mat2), 5);
assert.equal(mat2.dot(mat2), 5);
mat.delete();
mat2.delete();
}
// mul
{
const FACTOR = 5;
let mat = cv.Mat.ones(4, 4, cv.CV_8UC1);
let mat2 = cv.Mat.eye(4, 4, cv.CV_8UC1);
let expected = new Uint8Array([FACTOR, 0, 0, 0,
0, FACTOR, 0, 0,
0, 0, FACTOR, 0,
0, 0, 0, FACTOR]);
let mat3 = mat.mul(mat2, FACTOR);
assert.deepEqual(mat3.data, expected);
mat.delete();
mat2.delete();
mat3.delete();
}
});
QUnit.test('test mat access', function(assert) {
// test memory view
{
let data = new Uint8Array([0, 0, 0, 255, 0, 1, 2, 3]);
let dataPtr = cv._malloc(8);
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 8);
dataHeap.set(new Uint8Array(data.buffer));
let mat = new cv.Mat(8, 1, cv.CV_8UC1, dataPtr, 0);
let unsignedCharView = new Uint8Array(data.buffer);
let charView = new Int8Array(data.buffer);
let shortView = new Int16Array(data.buffer);
let unsignedShortView = new Uint16Array(data.buffer);
let intView = new Int32Array(data.buffer);
let float32View = new Float32Array(data.buffer);
let float64View = new Float64Array(data.buffer);
assert.deepEqual(unsignedCharView, mat.data);
assert.deepEqual(charView, mat.data8S);
assert.deepEqual(shortView, mat.data16S);
assert.deepEqual(unsignedShortView, mat.data16U);
assert.deepEqual(intView, mat.data32S);
assert.deepEqual(float32View, mat.data32F);
assert.deepEqual(float64View, mat.data64F);
}
// test ucharAt(i)
{
let data = new Uint8Array([0, 0, 0, 255, 0, 1, 2, 3]);
let dataPtr = cv._malloc(8);
let dataHeap = new Uint8Array(cv.HEAPU8.buffer, dataPtr, 8);
dataHeap.set(new Uint8Array(data.buffer));
let mat = new cv.Mat(8, 1, cv.CV_8UC1, dataPtr, 0);
assert.equal(mat.ucharAt(0), 0);
assert.equal(mat.ucharAt(1), 0);
assert.equal(mat.ucharAt(2), 0);
assert.equal(mat.ucharAt(3), 255);
assert.equal(mat.ucharAt(4), 0);
assert.equal(mat.ucharAt(5), 1);
assert.equal(mat.ucharAt(6), 2);
assert.equal(mat.ucharAt(7), 3);
}
// test ushortAt(i)
{
let data = new Uint16Array([0, 1000, 65000, 255, 0, 1, 2, 3]);
let dataPtr = cv._malloc(16);
let dataHeap = new Uint16Array(cv.HEAPU8.buffer, dataPtr, 8);
dataHeap.set(new Uint16Array(data.buffer));
let mat = new cv.Mat(8, 1, cv.CV_16SC1, dataPtr, 0);
assert.equal(mat.ushortAt(0), 0);
assert.equal(mat.ushortAt(1), 1000);
assert.equal(mat.ushortAt(2), 65000);
assert.equal(mat.ushortAt(3), 255);
assert.equal(mat.ushortAt(4), 0);
assert.equal(mat.ushortAt(5), 1);
assert.equal(mat.ushortAt(6), 2);
assert.equal(mat.ushortAt(7), 3);
}
// test intAt(i)
{
let data = new Int32Array([0, -1000, 65000, 255, -2000000, -1, 2, 3]);
let dataPtr = cv._malloc(32);
let dataHeap = new Int32Array(cv.HEAPU32.buffer, dataPtr, 8);
dataHeap.set(new Int32Array(data.buffer));
let mat = new cv.Mat(8, 1, cv.CV_32SC1, dataPtr, 0);
assert.equal(mat.intAt(0), 0);
assert.equal(mat.intAt(1), -1000);
assert.equal(mat.intAt(2), 65000);
assert.equal(mat.intAt(3), 255);
assert.equal(mat.intAt(4), -2000000);
assert.equal(mat.intAt(5), -1);
assert.equal(mat.intAt(6), 2);
assert.equal(mat.intAt(7), 3);
}
// test floatAt(i)
{
const EPSILON = 0.001;
let data = new Float32Array([0, -10.5, 650.001, 255, -20.1, -1.2, 2, 3.5]);
let dataPtr = cv._malloc(32);
let dataHeap = new Float32Array(cv.HEAPU32.buffer, dataPtr, 8);
dataHeap.set(new Float32Array(data.buffer));
let mat = new cv.Mat(8, 1, cv.CV_32FC1, dataPtr, 0);
assert.equal(Math.abs(mat.floatAt(0)-0) < EPSILON, true);
assert.equal(Math.abs(mat.floatAt(1)+10.5) < EPSILON, true);
assert.equal(Math.abs(mat.floatAt(2)-650.001) < EPSILON, true);
assert.equal(Math.abs(mat.floatAt(3)-255) < EPSILON, true);
assert.equal(Math.abs(mat.floatAt(4)+20.1) < EPSILON, true);
assert.equal(Math.abs(mat.floatAt(5)+1.2) < EPSILON, true);
assert.equal(Math.abs(mat.floatAt(6)-2) < EPSILON, true);
assert.equal(Math.abs(mat.floatAt(7)-3.5) < EPSILON, true);
}
// test intAt(i,j)
{
let mat = cv.Mat.eye({height: 3, width: 3}, cv.CV_32SC1);
assert.equal(mat.intAt(0, 0), 1);
assert.equal(mat.intAt(0, 1), 0);
assert.equal(mat.intAt(0, 2), 0);
assert.equal(mat.intAt(1, 0), 0);
assert.equal(mat.intAt(1, 1), 1);
assert.equal(mat.intAt(1, 2), 0);
assert.equal(mat.intAt(2, 0), 0);
assert.equal(mat.intAt(2, 1), 0);
assert.equal(mat.intAt(2, 2), 1);
mat.delete();
}
});
QUnit.test('test_mat_operations', function(assert) {
// test minMaxLoc
{
let src = cv.Mat.ones(4, 4, cv.CV_8UC1);
src.data[2] = 0;
src.data[5] = 2;
let result = cv.minMaxLoc(src);
assert.equal(result.minVal, 0);
assert.equal(result.maxVal, 2);
assert.deepEqual(result.minLoc, {x: 2, y: 0});
assert.deepEqual(result.maxLoc, {x: 1, y: 1});
src.delete();
}
});
QUnit.test('test_mat_roi', function(assert) {
// test minMaxLoc
{
let mat = cv.matFromArray(2, 2, cv.CV_8UC1, [0, 1, 2, 3]);
let roi = mat.roi(new cv.Rect(1, 1, 1, 1));
assert.equal(roi.rows, 1);
assert.equal(roi.cols, 1);
assert.deepEqual(roi.data, new Uint8Array([mat.ucharAt(1, 1)]));
mat.delete();
roi.delete();
}
});
QUnit.test('test_mat_range', function(assert) {
{
let src = cv.matFromArray(2, 2, cv.CV_8UC1, [0, 1, 2, 3]);
let mat = src.colRange(0, 1);
assert.equal(mat.isContinuous(), false);
assert.equal(mat.rows, 2);
assert.equal(mat.cols, 1);
assert.equal(mat.ucharAt(0), 0);
assert.equal(mat.ucharAt(1), 2);
mat.delete();
mat = src.colRange({start: 0, end: 1});
assert.equal(mat.isContinuous(), false);
assert.equal(mat.rows, 2);
assert.equal(mat.cols, 1);
assert.equal(mat.ucharAt(0), 0);
assert.equal(mat.ucharAt(1), 2);
mat.delete();
mat = src.rowRange(1, 2);
assert.equal(mat.rows, 1);
assert.equal(mat.cols, 2);
assert.deepEqual(mat.data, new Uint8Array([2, 3]));
mat.delete();
mat = src.rowRange({start: 1, end: 2});
assert.equal(mat.rows, 1);
assert.equal(mat.cols, 2);
assert.deepEqual(mat.data, new Uint8Array([2, 3]));
mat.delete();
src.delete();
}
});
QUnit.test('test_mat_diag', function(assert) {
// test diag
{
let mat = cv.matFromArray(3, 3, cv.CV_8UC1, [0, 1, 2, 3, 4, 5, 6, 7, 8]);
let d = mat.diag();
let d1 = mat.diag(1);
let d2 = mat.diag(-1);
assert.equal(mat.isContinuous(), true);
assert.equal(d.isContinuous(), false);
assert.equal(d1.isContinuous(), false);
assert.equal(d2.isContinuous(), false);
assert.equal(d.ucharAt(0), 0);
assert.equal(d.ucharAt(1), 4);
assert.equal(d.ucharAt(2), 8);
assert.equal(d1.ucharAt(0), 1);
assert.equal(d1.ucharAt(1), 5);
assert.equal(d2.ucharAt(0), 3);
assert.equal(d2.ucharAt(1), 7);
mat.delete();
d.delete();
d1.delete();
d2.delete();
}
});

View File

@ -0,0 +1,202 @@
// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//
// //////////////////////////////////////////////////////////////////////////////////////
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
//
// LICENSE AGREEMENT
// Copyright (c) 2015 The Regents of the University of California (Regents)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the University nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
cv.FS_createLazyFile('/', 'haarcascade_frontalface_default.xml', // eslint-disable-line new-cap
'haarcascade_frontalface_default.xml', true, false);
}
QUnit.module('Object Detection', {});
QUnit.test('Cascade classification', function(assert) {
// Group rectangle
{
let rectList = new cv.RectVector();
let weights = new cv.IntVector();
let groupThreshold = 1;
const eps = 0.2;
let rect1 = new cv.Rect(1, 2, 3, 4);
let rect2 = new cv.Rect(1, 4, 2, 3);
rectList.push_back(rect1);
rectList.push_back(rect2);
cv.groupRectangles(rectList, weights, groupThreshold, eps);
rectList.delete();
weights.delete();
}
// CascadeClassifier
{
let classifier = new cv.CascadeClassifier();
const modelPath = '/haarcascade_frontalface_default.xml';
assert.equal(classifier.empty(), true);
classifier.load(modelPath);
assert.equal(classifier.empty(), false);
let image = cv.Mat.eye({height: 10, width: 10}, cv.CV_8UC3);
let objects = new cv.RectVector();
let numDetections = new cv.IntVector();
const scaleFactor = 1.1;
const minNeighbors = 3;
const flags = 0;
const minSize = {height: 0, width: 0};
const maxSize = {height: 10, width: 10};
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags, minSize, maxSize);
// test default parameters
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags, minSize);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors, flags);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
minNeighbors);
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor);
classifier.delete();
objects.delete();
numDetections.delete();
}
// HOGDescriptor
{
let hog = new cv.HOGDescriptor();
let mat = new cv.Mat({height: 10, width: 10}, cv.CV_8UC1);
let descriptors = new cv.FloatVector();
let locations = new cv.PointVector();
assert.equal(hog.winSize.height, 128);
assert.equal(hog.winSize.width, 64);
assert.equal(hog.nbins, 9);
assert.equal(hog.derivAperture, 1);
assert.equal(hog.winSigma, -1);
assert.equal(hog.histogramNormType, 0);
assert.equal(hog.nlevels, 64);
hog.nlevels = 32;
assert.equal(hog.nlevels, 32);
hog.delete();
mat.delete();
descriptors.delete();
locations.delete();
}
});
QUnit.test('QR code detect and decode', function (assert) {
{
const detector = new cv.QRCodeDetector();
let mat = cv.Mat.ones(800, 600, cv.CV_8U);
assert.ok(mat);
// test detect
let points = new cv.Mat();
let qrCodeFound = detector.detect(mat, points);
assert.equal(points.rows, 0)
assert.equal(points.cols, 0)
assert.equal(qrCodeFound, false);
// test detectMult
qrCodeFound = detector.detectMulti(mat, points);
assert.equal(points.rows, 0)
assert.equal(points.cols, 0)
assert.equal(qrCodeFound, false);
// test decode (with random numbers)
let decodeTestPoints = cv.matFromArray(1, 4, cv.CV_32FC2, [10, 20, 30, 40, 60, 80, 90, 100]);
let qrCodeContent = detector.decode(mat, decodeTestPoints);
assert.equal(typeof qrCodeContent, 'string');
assert.equal(qrCodeContent, '');
//test detectAndDecode
qrCodeContent = detector.detectAndDecode(mat);
assert.equal(typeof qrCodeContent, 'string');
assert.equal(qrCodeContent, '');
// test decodeCurved
qrCodeContent = detector.decodeCurved(mat, decodeTestPoints);
assert.equal(typeof qrCodeContent, 'string');
assert.equal(qrCodeContent, '');
decodeTestPoints.delete();
points.delete();
mat.delete();
}
});

View File

@ -0,0 +1,116 @@
// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// Author : Rijubrata Bhaumik, Intel Corporation. rijubrata.bhaumik[at]intel[dot]com
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
QUnit.module('Photo', {});
QUnit.test('test_photo', function(assert) {
// CalibrateDebevec
{
let calibration = new cv.CalibrateDebevec();
assert.ok(true, calibration);
//let response = calibration.process(images, exposures);
}
// CalibrateRobertson
{
let calibration = new cv.CalibrateRobertson();
assert.ok(true, calibration);
//let response = calibration.process(images, exposures);
}
// MergeDebevec
{
let merge = new cv.MergeDebevec();
assert.ok(true, merge);
//let hdr = merge.process(images, exposures, response);
}
// MergeMertens
{
let merge = new cv.MergeMertens();
assert.ok(true, merge);
//let hdr = merge.process(images, exposures, response);
}
// MergeRobertson
{
let merge = new cv.MergeRobertson();
assert.ok(true, merge);
//let hdr = merge.process(images, exposures, response);
}
// TonemapDrago
{
let tonemap = new cv.TonemapDrago();
assert.ok(true, tonemap);
// let ldr = new cv.Mat();
// let retval = tonemap.process(hdr, ldr);
}
// TonemapMantiuk
{
let tonemap = new cv.TonemapMantiuk();
assert.ok(true, tonemap);
// let ldr = new cv.Mat();
// let retval = tonemap.process(hdr, ldr);
}
// TonemapReinhard
{
let tonemap = new cv.TonemapReinhard();
assert.ok(true, tonemap);
// let ldr = new cv.Mat();
// let retval = tonemap.process(hdr, ldr);
}
// Inpaint
{
let src = new cv.Mat(100, 100, cv.CV_8UC3, new cv.Scalar(127, 127, 127, 255));
let mask = new cv.Mat(100, 100, cv.CV_8UC1, new cv.Scalar(0, 0, 0, 0));
let dst = new cv.Mat();
cv.line(mask, new cv.Point(10, 50), new cv.Point(90, 50), new cv.Scalar(255, 255, 255, 255),5);
cv.inpaint(src, mask, dst, 3, cv.INPAINT_TELEA);
assert.equal(dst.rows, 100);
assert.equal(dst.cols, 100);
assert.equal(dst.channels(), 3);
}
});

View File

@ -0,0 +1,253 @@
// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// //////////////////////////////////////////////////////////////////////////////////////
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
//
// LICENSE AGREEMENT
// Copyright (c) 2015 The Regents of the University of California (Regents)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the University nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
QUnit.module('Utils', {});
QUnit.test('Test vectors', function(assert) {
{
let pointVector = new cv.PointVector();
for (let i=0; i<100; ++i) {
pointVector.push_back({x: i, y: 2*i});
}
assert.equal(pointVector.size(), 100);
let index = 10;
let item = pointVector.get(index);
assert.equal(item.x, index);
assert.equal(item.y, 2*index);
index = 0;
item = pointVector.get(index);
assert.equal(item.x, index);
assert.equal(item.y, 2*index);
index = 99;
item = pointVector.get(index);
assert.equal(item.x, index);
assert.equal(item.y, 2*index);
pointVector.delete();
}
{
let pointVector = new cv.PointVector();
for (let i=0; i<100; ++i) {
pointVector.push_back(new cv.Point(i, 2*i));
}
pointVector.push_back(new cv.Point());
assert.equal(pointVector.size(), 101);
let index = 10;
let item = pointVector.get(index);
assert.equal(item.x, index);
assert.equal(item.y, 2*index);
index = 0;
item = pointVector.get(index);
assert.equal(item.x, index);
assert.equal(item.y, 2*index);
index = 99;
item = pointVector.get(index);
assert.equal(item.x, index);
assert.equal(item.y, 2*index);
index = 100;
item = pointVector.get(index);
assert.equal(item.x, 0);
assert.equal(item.y, 0);
pointVector.delete();
}
});
QUnit.test('Test Rect', function(assert) {
let rectVector = new cv.RectVector();
let rect = {x: 1, y: 2, width: 3, height: 4};
rectVector.push_back(rect);
rectVector.push_back(new cv.Rect());
rectVector.push_back(new cv.Rect(rect));
rectVector.push_back(new cv.Rect({x: 5, y: 6}, {width: 7, height: 8}));
rectVector.push_back(new cv.Rect(9, 10, 11, 12));
assert.equal(rectVector.size(), 5);
let item = rectVector.get(0);
assert.equal(item.x, 1);
assert.equal(item.y, 2);
assert.equal(item.width, 3);
assert.equal(item.height, 4);
item = rectVector.get(1);
assert.equal(item.x, 0);
assert.equal(item.y, 0);
assert.equal(item.width, 0);
assert.equal(item.height, 0);
item = rectVector.get(2);
assert.equal(item.x, 1);
assert.equal(item.y, 2);
assert.equal(item.width, 3);
assert.equal(item.height, 4);
item = rectVector.get(3);
assert.equal(item.x, 5);
assert.equal(item.y, 6);
assert.equal(item.width, 7);
assert.equal(item.height, 8);
item = rectVector.get(4);
assert.equal(item.x, 9);
assert.equal(item.y, 10);
assert.equal(item.width, 11);
assert.equal(item.height, 12);
rectVector.delete();
});
QUnit.test('Test Size', function(assert) {
{
let mat = new cv.Mat();
mat.create({width: 5, height: 10}, cv.CV_8UC4);
let size = mat.size();
assert.ok(mat.type() === cv.CV_8UC4);
assert.ok(size.height === 10);
assert.ok(size.width === 5);
assert.ok(mat.channels() === 4);
mat.delete();
}
{
let mat = new cv.Mat();
mat.create(new cv.Size(5, 10), cv.CV_8UC4);
let size = mat.size();
assert.ok(mat.type() === cv.CV_8UC4);
assert.ok(size.height === 10);
assert.ok(size.width === 5);
assert.ok(mat.channels() === 4);
mat.delete();
}
});
QUnit.test('test_rotated_rect', function(assert) {
{
let rect = {center: {x: 100, y: 100}, size: {height: 100, width: 50}, angle: 30};
assert.equal(rect.center.x, 100);
assert.equal(rect.center.y, 100);
assert.equal(rect.angle, 30);
assert.equal(rect.size.height, 100);
assert.equal(rect.size.width, 50);
}
{
let rect = new cv.RotatedRect();
assert.equal(rect.center.x, 0);
assert.equal(rect.center.y, 0);
assert.equal(rect.angle, 0);
assert.equal(rect.size.height, 0);
assert.equal(rect.size.width, 0);
let points = cv.RotatedRect.points(rect);
assert.equal(points[0].x, 0);
assert.equal(points[0].y, 0);
assert.equal(points[1].x, 0);
assert.equal(points[1].y, 0);
assert.equal(points[2].x, 0);
assert.equal(points[2].y, 0);
assert.equal(points[3].x, 0);
assert.equal(points[3].y, 0);
}
{
let rect = new cv.RotatedRect({x: 100, y: 100}, {height: 100, width: 50}, 30);
assert.equal(rect.center.x, 100);
assert.equal(rect.center.y, 100);
assert.equal(rect.angle, 30);
assert.equal(rect.size.height, 100);
assert.equal(rect.size.width, 50);
let points = cv.RotatedRect.points(rect);
assert.equal(points[0].x, cv.RotatedRect.boundingRect2f(rect).x);
assert.equal(points[1].y, cv.RotatedRect.boundingRect2f(rect).y);
}
});

View File

@ -0,0 +1,107 @@
// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
// //////////////////////////////////////////////////////////////////////////////////////
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
//
// LICENSE AGREEMENT
// Copyright (c) 2015 The Regents of the University of California (Regents)
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. Neither the name of the University nor the
// names of its contributors may be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
if (typeof module !== 'undefined' && module.exports) {
// The environment is Node.js
var cv = require('./opencv.js'); // eslint-disable-line no-var
}
QUnit.module('Video', {});
QUnit.test('Background Segmentation', function(assert) {
// BackgroundSubtractorMOG2
{
const history = 600;
const varThreshold = 15;
const detectShadows = true;
let mog2 = new cv.BackgroundSubtractorMOG2(history, varThreshold, detectShadows);
assert.equal(mog2 instanceof cv.BackgroundSubtractorMOG2, true);
mog2.delete();
mog2 = new cv.BackgroundSubtractorMOG2();
assert.equal(mog2 instanceof cv.BackgroundSubtractorMOG2, true);
mog2.delete();
mog2 = new cv.BackgroundSubtractorMOG2(history);
assert.equal(mog2 instanceof cv.BackgroundSubtractorMOG2, true);
mog2.delete();
mog2 = new cv.BackgroundSubtractorMOG2(history, varThreshold);
assert.equal(mog2 instanceof cv.BackgroundSubtractorMOG2, true);
mog2.delete();
}
});

View File

@ -0,0 +1,118 @@
<!DOCTYPE html>
<html lang="en">
<head>
<title>OpenCV JS Tests</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
<link rel="stylesheet" href="http://code.jquery.com/qunit/qunit-1.20.0.css" type="text/css" media="screen">
<style>
body {
font-family: Monospace;
background-color: #ffffff;
margin: 0px;
}
a {
color: #0040ff;
}
</style>
<script src="http://code.jquery.com/qunit/qunit-2.0.1.js"></script>
<script type="text/javascript">
QUnit.config.autostart = false;
QUnit.log(function(details) {
if (details.result) {
return;
}
var loc = details.module + ": " + details.name + ": ",
output = "FAILED: " + loc + ( details.message ? details.message : "" )
prefix = details.message ? ", " : "";
if (details.actual) {
output += prefix + "expected: " + details.expected + ", actual: " + details.actual;
prefix = ', ';
}
if (details.source) {
output += prefix + details.source;
}
console.warn(output);
});
QUnit.done(function(details) {
console.log("Total: " + details.total + " Failed: " + details.failed + " Passed: " + details.passed);
console.log("Time(ms): " + details.runtime);
});
// Helper for opencv.js (see below)
var Module = {
preRun: [function() {
Module.FS_createPreloadedFile('/', 'haarcascade_frontalface_default.xml', 'haarcascade_frontalface_default.xml', true, false);
}],
postRun: [] ,
onRuntimeInitialized: function() {
console.log("Emscripten runtime is ready, launching QUnit tests...");
if (window.cv instanceof Promise) {
window.cv.then((target) => {
window.cv = target;
//console.log(cv.getBuildInformation());
QUnit.start();
})
} else {
// for backward compatible
// console.log(cv.getBuildInformation());
QUnit.start();
}
},
print: (function() {
var element = document.getElementById('output');
if (element) element.value = ''; // clear browser cache
return function(text) {
console.log(text);
if (element) {
element.value += text + "\n";
element.scrollTop = element.scrollHeight; // focus on bottom
}
};
})(),
printErr: function(text) {
console.error(text);
},
setStatus: function(text) {
console.log(text);
},
totalDependencies: 0
};
Module.setStatus('Downloading...');
window.onerror = function(event) {
Module.setStatus('Exception thrown, see JavaScript console');
Module.setStatus = function(text) {
if (text) Module.printErr('[post-exception status] ' + text);
};
};
function opencvjs_LoadError() {
Module.printErr('Failed to load/initialize opencv.js');
QUnit.module('LoaderFatalError', {});
QUnit.config.module = 'LoaderFatalError';
QUnit.only("Failed to load OpenCV.js", function(assert) {
assert.ok(false, "Can't load/initialize opencv.js");
});
QUnit.start();
}
</script>
</head>
<body>
<div id="qunit"></div>
<div id="qunit-fixture"></div>
<script type="application/javascript" async src="opencv.js" onerror="opencvjs_LoadError()"></script>
<script type="application/javascript" src="test_mat.js"></script>
<script type="application/javascript" src="test_utils.js"></script>
<script type="application/javascript" src="test_imgproc.js"></script>
<script type="application/javascript" src="test_objdetect.js"></script>
<script type="application/javascript" src="test_video.js"></script>
<script type="application/javascript" src="test_photo.js"></script>
<script type="application/javascript" src="test_features2d.js"></script>
<script type="application/javascript" src="test_calib3d.js"></script>
</body>
</html>

View File

@ -0,0 +1,61 @@
// //////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
let testrunner = require('node-qunit');
testrunner.options.maxBlockDuration = 20000; // cause opencv_js.js need time to load
testrunner.run(
{
code: 'opencv.js',
tests: ['test_mat.js', 'test_utils.js', 'test_imgproc.js',
'test_objdetect.js', 'test_video.js', 'test_features2d.js',
'test_photo.js',
'test_calib3d.js'
],
},
function(err, report) {
console.log(report.failed + ' failed, ' + report.passed + ' passed');
if (report.failed) {
process.on('exit', function() {
process.exit(1);
});
}
}
);