feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
42
3rdparty/opencv-4.5.4/modules/ml/misc/java/test/MLTest.java
vendored
Normal file
42
3rdparty/opencv-4.5.4/modules/ml/misc/java/test/MLTest.java
vendored
Normal file
@ -0,0 +1,42 @@
|
||||
package org.opencv.test.ml;
|
||||
|
||||
import org.opencv.ml.Ml;
|
||||
import org.opencv.ml.SVM;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfFloat;
|
||||
import org.opencv.core.MatOfInt;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
public class MLTest extends OpenCVTestCase {
|
||||
|
||||
public void testSaveLoad() {
|
||||
Mat samples = new MatOfFloat(new float[] {
|
||||
5.1f, 3.5f, 1.4f, 0.2f,
|
||||
4.9f, 3.0f, 1.4f, 0.2f,
|
||||
4.7f, 3.2f, 1.3f, 0.2f,
|
||||
4.6f, 3.1f, 1.5f, 0.2f,
|
||||
5.0f, 3.6f, 1.4f, 0.2f,
|
||||
7.0f, 3.2f, 4.7f, 1.4f,
|
||||
6.4f, 3.2f, 4.5f, 1.5f,
|
||||
6.9f, 3.1f, 4.9f, 1.5f,
|
||||
5.5f, 2.3f, 4.0f, 1.3f,
|
||||
6.5f, 2.8f, 4.6f, 1.5f
|
||||
}).reshape(1, 10);
|
||||
Mat responses = new MatOfInt(new int[] {
|
||||
0, 0, 0, 0, 0, 1, 1, 1, 1, 1
|
||||
}).reshape(1, 10);
|
||||
SVM saved = SVM.create();
|
||||
assertFalse(saved.isTrained());
|
||||
|
||||
saved.train(samples, Ml.ROW_SAMPLE, responses);
|
||||
assertTrue(saved.isTrained());
|
||||
|
||||
String filename = OpenCVTestRunner.getTempFileName("yml");
|
||||
saved.save(filename);
|
||||
SVM loaded = SVM.load(filename);
|
||||
assertTrue(loaded.isTrained());
|
||||
}
|
||||
|
||||
}
|
9
3rdparty/opencv-4.5.4/modules/ml/misc/objc/gen_dict.json
vendored
Normal file
9
3rdparty/opencv-4.5.4/modules/ml/misc/objc/gen_dict.json
vendored
Normal file
@ -0,0 +1,9 @@
|
||||
{
|
||||
"enum_fix" : {
|
||||
"EM" : { "Types": "EMTypes" },
|
||||
"SVM" : { "Types": "SVMTypes" },
|
||||
"KNearest" : { "Types": "KNearestTypes" },
|
||||
"DTrees" : { "Flags": "DTreeFlags" },
|
||||
"StatModel" : { "Flags": "StatModelFlags" }
|
||||
}
|
||||
}
|
22
3rdparty/opencv-4.5.4/modules/ml/misc/python/pyopencv_ml.hpp
vendored
Normal file
22
3rdparty/opencv-4.5.4/modules/ml/misc/python/pyopencv_ml.hpp
vendored
Normal file
@ -0,0 +1,22 @@
|
||||
template<>
|
||||
bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const ArgInfo& info)
|
||||
{
|
||||
CV_UNUSED(info);
|
||||
if(!obj)
|
||||
return true;
|
||||
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.max_iter, &dst.epsilon) > 0;
|
||||
}
|
||||
|
||||
template<>
|
||||
bool pyopencv_to(PyObject* obj, CvSlice& r, const ArgInfo& info)
|
||||
{
|
||||
CV_UNUSED(info);
|
||||
if(!obj || obj == Py_None)
|
||||
return true;
|
||||
if(PyObject_Size(obj) == 0)
|
||||
{
|
||||
r = CV_WHOLE_SEQ;
|
||||
return true;
|
||||
}
|
||||
return PyArg_ParseTuple(obj, "ii", &r.start_index, &r.end_index) > 0;
|
||||
}
|
201
3rdparty/opencv-4.5.4/modules/ml/misc/python/test/test_digits.py
vendored
Normal file
201
3rdparty/opencv-4.5.4/modules/ml/misc/python/test/test_digits.py
vendored
Normal file
@ -0,0 +1,201 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
SVM and KNearest digit recognition.
|
||||
|
||||
Sample loads a dataset of handwritten digits from '../data/digits.png'.
|
||||
Then it trains a SVM and KNearest classifiers on it and evaluates
|
||||
their accuracy.
|
||||
|
||||
Following preprocessing is applied to the dataset:
|
||||
- Moment-based image deskew (see deskew())
|
||||
- Digit images are split into 4 10x10 cells and 16-bin
|
||||
histogram of oriented gradients is computed for each
|
||||
cell
|
||||
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
|
||||
|
||||
|
||||
[1] R. Arandjelovic, A. Zisserman
|
||||
"Three things everyone should know to improve object retrieval"
|
||||
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
|
||||
|
||||
'''
|
||||
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
# built-in modules
|
||||
from multiprocessing.pool import ThreadPool
|
||||
|
||||
import cv2 as cv
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ
|
||||
CLASS_N = 10
|
||||
DIGITS_FN = 'samples/data/digits.png'
|
||||
|
||||
def split2d(img, cell_size, flatten=True):
|
||||
h, w = img.shape[:2]
|
||||
sx, sy = cell_size
|
||||
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
|
||||
cells = np.array(cells)
|
||||
if flatten:
|
||||
cells = cells.reshape(-1, sy, sx)
|
||||
return cells
|
||||
|
||||
def deskew(img):
|
||||
m = cv.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv.warpAffine(img, M, (SZ, SZ), flags=cv.WARP_INVERSE_MAP | cv.INTER_LINEAR)
|
||||
return img
|
||||
|
||||
class StatModel(object):
|
||||
def load(self, fn):
|
||||
self.model.load(fn) # Known bug: https://github.com/opencv/opencv/issues/4969
|
||||
def save(self, fn):
|
||||
self.model.save(fn)
|
||||
|
||||
class KNearest(StatModel):
|
||||
def __init__(self, k = 3):
|
||||
self.k = k
|
||||
self.model = cv.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, self.k)
|
||||
return results.ravel()
|
||||
|
||||
class SVM(StatModel):
|
||||
def __init__(self, C = 1, gamma = 0.5):
|
||||
self.model = cv.ml.SVM_create()
|
||||
self.model.setGamma(gamma)
|
||||
self.model.setC(C)
|
||||
self.model.setKernel(cv.ml.SVM_RBF)
|
||||
self.model.setType(cv.ml.SVM_C_SVC)
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
return self.model.predict(samples)[1].ravel()
|
||||
|
||||
|
||||
def evaluate_model(model, digits, samples, labels):
|
||||
resp = model.predict(samples)
|
||||
err = (labels != resp).mean()
|
||||
|
||||
confusion = np.zeros((10, 10), np.int32)
|
||||
for i, j in zip(labels, resp):
|
||||
confusion[int(i), int(j)] += 1
|
||||
|
||||
return err, confusion
|
||||
|
||||
def preprocess_simple(digits):
|
||||
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
|
||||
|
||||
def preprocess_hog(digits):
|
||||
samples = []
|
||||
for img in digits:
|
||||
gx = cv.Sobel(img, cv.CV_32F, 1, 0)
|
||||
gy = cv.Sobel(img, cv.CV_32F, 0, 1)
|
||||
mag, ang = cv.cartToPolar(gx, gy)
|
||||
bin_n = 16
|
||||
bin = np.int32(bin_n*ang/(2*np.pi))
|
||||
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||
hist = np.hstack(hists)
|
||||
|
||||
# transform to Hellinger kernel
|
||||
eps = 1e-7
|
||||
hist /= hist.sum() + eps
|
||||
hist = np.sqrt(hist)
|
||||
hist /= norm(hist) + eps
|
||||
|
||||
samples.append(hist)
|
||||
return np.float32(samples)
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class digits_test(NewOpenCVTests):
|
||||
|
||||
def load_digits(self, fn):
|
||||
digits_img = self.get_sample(fn, 0)
|
||||
digits = split2d(digits_img, (SZ, SZ))
|
||||
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
||||
return digits, labels
|
||||
|
||||
def test_digits(self):
|
||||
|
||||
digits, labels = self.load_digits(DIGITS_FN)
|
||||
|
||||
# shuffle digits
|
||||
rand = np.random.RandomState(321)
|
||||
shuffle = rand.permutation(len(digits))
|
||||
digits, labels = digits[shuffle], labels[shuffle]
|
||||
|
||||
digits2 = list(map(deskew, digits))
|
||||
samples = preprocess_hog(digits2)
|
||||
|
||||
train_n = int(0.9*len(samples))
|
||||
_digits_train, digits_test = np.split(digits2, [train_n])
|
||||
samples_train, samples_test = np.split(samples, [train_n])
|
||||
labels_train, labels_test = np.split(labels, [train_n])
|
||||
errors = list()
|
||||
confusionMatrixes = list()
|
||||
|
||||
model = KNearest(k=4)
|
||||
model.train(samples_train, labels_train)
|
||||
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||
errors.append(error)
|
||||
confusionMatrixes.append(confusion)
|
||||
|
||||
model = SVM(C=2.67, gamma=5.383)
|
||||
model.train(samples_train, labels_train)
|
||||
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||
errors.append(error)
|
||||
confusionMatrixes.append(confusion)
|
||||
|
||||
eps = 0.001
|
||||
normEps = len(samples_test) * 0.02
|
||||
|
||||
confusionKNN = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 0, 59, 1, 0, 0, 0, 0, 1, 0],
|
||||
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0],
|
||||
[ 0, 0, 0, 0, 38, 0, 2, 0, 0, 0],
|
||||
[ 0, 0, 0, 2, 0, 48, 0, 0, 1, 0],
|
||||
[ 0, 1, 0, 0, 0, 0, 51, 0, 0, 0],
|
||||
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0],
|
||||
[ 0, 0, 0, 0, 0, 1, 0, 0, 46, 0],
|
||||
[ 1, 1, 0, 1, 1, 0, 0, 0, 2, 42]]
|
||||
|
||||
confusionSVM = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 0, 59, 2, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0],
|
||||
[ 0, 0, 0, 0, 40, 0, 0, 0, 0, 0],
|
||||
[ 0, 0, 0, 1, 0, 50, 0, 0, 0, 0],
|
||||
[ 0, 0, 0, 0, 1, 0, 51, 0, 0, 0],
|
||||
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0],
|
||||
[ 0, 0, 0, 0, 0, 0, 0, 0, 47, 0],
|
||||
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 45]]
|
||||
|
||||
self.assertLess(cv.norm(confusionMatrixes[0] - confusionKNN, cv.NORM_L1), normEps)
|
||||
self.assertLess(cv.norm(confusionMatrixes[1] - confusionSVM, cv.NORM_L1), normEps)
|
||||
|
||||
self.assertLess(errors[0] - 0.034, eps)
|
||||
self.assertLess(errors[1] - 0.018, eps)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
40
3rdparty/opencv-4.5.4/modules/ml/misc/python/test/test_goodfeatures.py
vendored
Normal file
40
3rdparty/opencv-4.5.4/modules/ml/misc/python/test/test_goodfeatures.py
vendored
Normal file
@ -0,0 +1,40 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class TestGoodFeaturesToTrack_test(NewOpenCVTests):
|
||||
def test_goodFeaturesToTrack(self):
|
||||
arr = self.get_sample('samples/data/lena.jpg', 0)
|
||||
original = arr.copy()
|
||||
threshes = [ x / 100. for x in range(1,10) ]
|
||||
numPoints = 20000
|
||||
|
||||
results = dict([(t, cv.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
|
||||
# Check that GoodFeaturesToTrack has not modified input image
|
||||
self.assertTrue(arr.tostring() == original.tostring())
|
||||
# Check for repeatability
|
||||
for i in range(1):
|
||||
results2 = dict([(t, cv.goodFeaturesToTrack(arr, numPoints, t, 2, useHarrisDetector=True)) for t in threshes])
|
||||
for t in threshes:
|
||||
self.assertTrue(len(results2[t]) == len(results[t]))
|
||||
for i in range(len(results[t])):
|
||||
self.assertTrue(cv.norm(results[t][i][0] - results2[t][i][0]) == 0)
|
||||
|
||||
for t0,t1 in zip(threshes, threshes[1:]):
|
||||
r0 = results[t0]
|
||||
r1 = results[t1]
|
||||
# Increasing thresh should make result list shorter
|
||||
self.assertTrue(len(r0) > len(r1))
|
||||
# Increasing thresh should monly truncate result list
|
||||
for i in range(len(r1)):
|
||||
self.assertTrue(cv.norm(r1[i][0] - r0[i][0])==0)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
13
3rdparty/opencv-4.5.4/modules/ml/misc/python/test/test_knearest.py
vendored
Normal file
13
3rdparty/opencv-4.5.4/modules/ml/misc/python/test/test_knearest.py
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
#!/usr/bin/env python
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class knearest_test(NewOpenCVTests):
|
||||
def test_load(self):
|
||||
k_nearest = cv.ml.KNearest_load(self.find_file("ml/opencv_ml_knn.xml"))
|
||||
self.assertFalse(k_nearest.empty())
|
||||
self.assertTrue(k_nearest.isTrained())
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
171
3rdparty/opencv-4.5.4/modules/ml/misc/python/test/test_letter_recog.py
vendored
Normal file
171
3rdparty/opencv-4.5.4/modules/ml/misc/python/test/test_letter_recog.py
vendored
Normal file
@ -0,0 +1,171 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
The sample demonstrates how to train Random Trees classifier
|
||||
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
|
||||
|
||||
We use the sample database letter-recognition.data
|
||||
from UCI Repository, here is the link:
|
||||
|
||||
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
|
||||
UCI Repository of machine learning databases
|
||||
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
|
||||
Irvine, CA: University of California, Department of Information and Computer Science.
|
||||
|
||||
The dataset consists of 20000 feature vectors along with the
|
||||
responses - capital latin letters A..Z.
|
||||
The first 10000 samples are used for training
|
||||
and the remaining 10000 - to test the classifier.
|
||||
======================================================
|
||||
Models: RTrees, KNearest, Boost, SVM, MLP
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
def load_base(fn):
|
||||
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
|
||||
samples, responses = a[:,1:], a[:,0]
|
||||
return samples, responses
|
||||
|
||||
class LetterStatModel(object):
|
||||
class_n = 26
|
||||
train_ratio = 0.5
|
||||
|
||||
def load(self, fn):
|
||||
self.model.load(fn)
|
||||
def save(self, fn):
|
||||
self.model.save(fn)
|
||||
|
||||
def unroll_samples(self, samples):
|
||||
sample_n, var_n = samples.shape
|
||||
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
|
||||
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
|
||||
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
|
||||
return new_samples
|
||||
|
||||
def unroll_responses(self, responses):
|
||||
sample_n = len(responses)
|
||||
new_responses = np.zeros(sample_n*self.class_n, np.int32)
|
||||
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
|
||||
new_responses[resp_idx] = 1
|
||||
return new_responses
|
||||
|
||||
class RTrees(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv.ml.RTrees_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
#sample_n, var_n = samples.shape
|
||||
self.model.setMaxDepth(20)
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
_ret, resp = self.model.predict(samples)
|
||||
return resp.ravel()
|
||||
|
||||
|
||||
class KNearest(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
_retval, results, _neigh_resp, _dists = self.model.findNearest(samples, k = 10)
|
||||
return results.ravel()
|
||||
|
||||
|
||||
class Boost(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv.ml.Boost_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
_sample_n, var_n = samples.shape
|
||||
new_samples = self.unroll_samples(samples)
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv.ml.VAR_NUMERICAL] * var_n + [cv.ml.VAR_CATEGORICAL, cv.ml.VAR_CATEGORICAL], np.uint8)
|
||||
|
||||
self.model.setWeakCount(15)
|
||||
self.model.setMaxDepth(10)
|
||||
self.model.train(cv.ml.TrainData_create(new_samples, cv.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||
|
||||
def predict(self, samples):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
_ret, resp = self.model.predict(new_samples)
|
||||
|
||||
return resp.ravel().reshape(-1, self.class_n).argmax(1)
|
||||
|
||||
|
||||
class SVM(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv.ml.SVM_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.setType(cv.ml.SVM_C_SVC)
|
||||
self.model.setC(1)
|
||||
self.model.setKernel(cv.ml.SVM_RBF)
|
||||
self.model.setGamma(.1)
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
_ret, resp = self.model.predict(samples)
|
||||
return resp.ravel()
|
||||
|
||||
|
||||
class MLP(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv.ml.ANN_MLP_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
_sample_n, var_n = samples.shape
|
||||
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
|
||||
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
||||
|
||||
self.model.setLayerSizes(layer_sizes)
|
||||
self.model.setTrainMethod(cv.ml.ANN_MLP_BACKPROP)
|
||||
self.model.setBackpropMomentumScale(0)
|
||||
self.model.setBackpropWeightScale(0.001)
|
||||
self.model.setTermCriteria((cv.TERM_CRITERIA_COUNT, 20, 0.01))
|
||||
self.model.setActivationFunction(cv.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
|
||||
|
||||
self.model.train(samples, cv.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||
|
||||
def predict(self, samples):
|
||||
_ret, resp = self.model.predict(samples)
|
||||
return resp.argmax(-1)
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class letter_recog_test(NewOpenCVTests):
|
||||
|
||||
def test_letter_recog(self):
|
||||
|
||||
eps = 0.01
|
||||
|
||||
models = [RTrees, KNearest, Boost, SVM, MLP]
|
||||
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
||||
testErrors = {RTrees: (98.930000, 92.390000), KNearest: (94.960000, 92.010000),
|
||||
Boost: (85.970000, 74.920000), SVM: (99.780000, 95.680000), MLP: (90.060000, 87.410000)}
|
||||
|
||||
for model in models:
|
||||
Model = models[model]
|
||||
classifier = Model()
|
||||
|
||||
samples, responses = load_base(self.repoPath + '/samples/data/letter-recognition.data')
|
||||
train_n = int(len(samples)*classifier.train_ratio)
|
||||
|
||||
classifier.train(samples[:train_n], responses[:train_n])
|
||||
train_rate = np.mean(classifier.predict(samples[:train_n]) == responses[:train_n].astype(int))
|
||||
test_rate = np.mean(classifier.predict(samples[train_n:]) == responses[train_n:].astype(int))
|
||||
|
||||
self.assertLess(train_rate - testErrors[Model][0], eps)
|
||||
self.assertLess(test_rate - testErrors[Model][1], eps)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
Reference in New Issue
Block a user