feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
104
3rdparty/opencv-4.5.4/modules/objdetect/misc/java/test/CascadeClassifierTest.java
vendored
Normal file
104
3rdparty/opencv-4.5.4/modules/objdetect/misc/java/test/CascadeClassifierTest.java
vendored
Normal file
@ -0,0 +1,104 @@
|
||||
package org.opencv.test.objdetect;
|
||||
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfRect;
|
||||
import org.opencv.core.Size;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
import org.opencv.objdetect.CascadeClassifier;
|
||||
import org.opencv.objdetect.Objdetect;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
|
||||
public class CascadeClassifierTest extends OpenCVTestCase {
|
||||
|
||||
private CascadeClassifier cc;
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
|
||||
cc = null;
|
||||
}
|
||||
|
||||
public void testCascadeClassifier() {
|
||||
cc = new CascadeClassifier();
|
||||
assertNotNull(cc);
|
||||
}
|
||||
|
||||
public void testCascadeClassifierString() {
|
||||
cc = new CascadeClassifier(OpenCVTestRunner.LBPCASCADE_FRONTALFACE_PATH);
|
||||
assertNotNull(cc);
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRect() {
|
||||
CascadeClassifier cc = new CascadeClassifier(OpenCVTestRunner.LBPCASCADE_FRONTALFACE_PATH);
|
||||
MatOfRect faces = new MatOfRect();
|
||||
|
||||
Mat greyLena = new Mat();
|
||||
Imgproc.cvtColor(rgbLena, greyLena, Imgproc.COLOR_RGB2GRAY);
|
||||
Imgproc.equalizeHist(greyLena, greyLena);
|
||||
|
||||
cc.detectMultiScale(greyLena, faces, 1.1, 3, Objdetect.CASCADE_SCALE_IMAGE, new Size(30, 30), new Size());
|
||||
assertEquals(1, faces.total());
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleIntInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleIntIntSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleIntIntSizeSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfIntegerListOfDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfIntegerListOfDoubleDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfIntegerListOfDoubleDoubleInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfIntegerListOfDoubleDoubleIntInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfIntegerListOfDoubleDoubleIntIntSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfIntegerListOfDoubleDoubleIntIntSizeSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfIntegerListOfDoubleDoubleIntIntSizeSizeBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testEmpty() {
|
||||
cc = new CascadeClassifier();
|
||||
assertTrue(cc.empty());
|
||||
}
|
||||
|
||||
public void testLoad() {
|
||||
cc = new CascadeClassifier();
|
||||
cc.load(OpenCVTestRunner.LBPCASCADE_FRONTALFACE_PATH);
|
||||
assertFalse(cc.empty());
|
||||
}
|
||||
|
||||
}
|
259
3rdparty/opencv-4.5.4/modules/objdetect/misc/java/test/HOGDescriptorTest.java
vendored
Normal file
259
3rdparty/opencv-4.5.4/modules/objdetect/misc/java/test/HOGDescriptorTest.java
vendored
Normal file
@ -0,0 +1,259 @@
|
||||
package org.opencv.test.objdetect;
|
||||
|
||||
import org.opencv.objdetect.HOGDescriptor;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class HOGDescriptorTest extends OpenCVTestCase {
|
||||
|
||||
public void testCheckDetectorSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeGradientMatMatMat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeGradientMatMatMatSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeGradientMatMatMatSizeSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfFloat() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfFloatSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfFloatSizeSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testComputeMatListOfFloatSizeSizeListOfPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointDoubleSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointDoubleSizeSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointDoubleSizeSizeListOfPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointListOfDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointListOfDoubleDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointListOfDoubleDoubleSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointListOfDoubleDoubleSizeSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMatListOfPointListOfDoubleDoubleSizeSizeListOfPoint() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRect() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleSizeSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleSizeSizeDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleSizeSizeDoubleDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectDoubleSizeSizeDoubleDoubleBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfDoubleDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfDoubleDoubleSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfDoubleDoubleSizeSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfDoubleDoubleSizeSizeDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfDoubleDoubleSizeSizeDoubleDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testDetectMultiScaleMatListOfRectListOfDoubleDoubleSizeSizeDoubleDoubleBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_blockSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_blockStride() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_cellSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_derivAperture() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_gammaCorrection() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_histogramNormType() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_L2HysThreshold() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_nbins() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_nlevels() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_svmDetector() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_winSigma() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGet_winSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGetDaimlerPeopleDetector() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGetDefaultPeopleDetector() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGetDescriptorSize() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testGetWinSigma() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testHOGDescriptor() {
|
||||
HOGDescriptor hog = new HOGDescriptor();
|
||||
|
||||
assertNotNull(hog);
|
||||
assertEquals(HOGDescriptor.DEFAULT_NLEVELS, hog.get_nlevels());
|
||||
}
|
||||
|
||||
public void testHOGDescriptorSizeSizeSizeSizeInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testHOGDescriptorSizeSizeSizeSizeIntInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testHOGDescriptorSizeSizeSizeSizeIntIntDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testHOGDescriptorSizeSizeSizeSizeIntIntDoubleInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testHOGDescriptorSizeSizeSizeSizeIntIntDoubleIntDouble() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testHOGDescriptorSizeSizeSizeSizeIntIntDoubleIntDoubleBoolean() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testHOGDescriptorSizeSizeSizeSizeIntIntDoubleIntDoubleBooleanInt() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testHOGDescriptorString() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testLoadString() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testLoadStringString() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testSaveString() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testSaveStringString() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
public void testSetSVMDetector() {
|
||||
fail("Not yet implemented");
|
||||
}
|
||||
|
||||
}
|
42
3rdparty/opencv-4.5.4/modules/objdetect/misc/java/test/ObjdetectTest.java
vendored
Normal file
42
3rdparty/opencv-4.5.4/modules/objdetect/misc/java/test/ObjdetectTest.java
vendored
Normal file
@ -0,0 +1,42 @@
|
||||
package org.opencv.test.objdetect;
|
||||
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
|
||||
public class ObjdetectTest extends OpenCVTestCase {
|
||||
|
||||
public void testGroupRectanglesListOfRectListOfIntegerInt() {
|
||||
fail("Not yet implemented");
|
||||
/*
|
||||
final int NUM = 10;
|
||||
MatOfRect rects = new MatOfRect();
|
||||
rects.alloc(NUM);
|
||||
|
||||
for (int i = 0; i < NUM; i++)
|
||||
rects.put(i, 0, 10, 10, 20, 20);
|
||||
|
||||
int groupThreshold = 1;
|
||||
Objdetect.groupRectangles(rects, null, groupThreshold);//TODO: second parameter should not be null
|
||||
assertEquals(1, rects.total());
|
||||
*/
|
||||
}
|
||||
|
||||
public void testGroupRectanglesListOfRectListOfIntegerIntDouble() {
|
||||
fail("Not yet implemented");
|
||||
/*
|
||||
final int NUM = 10;
|
||||
MatOfRect rects = new MatOfRect();
|
||||
rects.alloc(NUM);
|
||||
|
||||
for (int i = 0; i < NUM; i++)
|
||||
rects.put(i, 0, 10, 10, 20, 20);
|
||||
|
||||
for (int i = 0; i < NUM; i++)
|
||||
rects.put(i, 0, 10, 10, 25, 25);
|
||||
|
||||
int groupThreshold = 1;
|
||||
double eps = 0.2;
|
||||
Objdetect.groupRectangles(rects, null, groupThreshold, eps);//TODO: second parameter should not be null
|
||||
assertEquals(2, rects.size());
|
||||
*/
|
||||
}
|
||||
}
|
48
3rdparty/opencv-4.5.4/modules/objdetect/misc/java/test/QRCodeDetectorTest.java
vendored
Normal file
48
3rdparty/opencv-4.5.4/modules/objdetect/misc/java/test/QRCodeDetectorTest.java
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
package org.opencv.test.objdetect;
|
||||
|
||||
import java.util.List;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.objdetect.QRCodeDetector;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import java.util.Arrays;
|
||||
import java.util.ArrayList;
|
||||
import java.util.HashSet;
|
||||
import java.util.List;
|
||||
|
||||
public class QRCodeDetectorTest extends OpenCVTestCase {
|
||||
|
||||
private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH";
|
||||
private String testDataPath;
|
||||
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
|
||||
testDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);
|
||||
if (testDataPath == null)
|
||||
throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");
|
||||
}
|
||||
|
||||
public void testDetectAndDecode() {
|
||||
Mat img = Imgcodecs.imread(testDataPath + "/cv/qrcode/link_ocv.jpg");
|
||||
assertFalse(img.empty());
|
||||
QRCodeDetector detector = new QRCodeDetector();
|
||||
assertNotNull(detector);
|
||||
String output = detector.detectAndDecode(img);
|
||||
assertEquals(output, "https://opencv.org/");
|
||||
}
|
||||
|
||||
public void testDetectAndDecodeMulti() {
|
||||
Mat img = Imgcodecs.imread(testDataPath + "/cv/qrcode/multiple/6_qrcodes.png");
|
||||
assertFalse(img.empty());
|
||||
QRCodeDetector detector = new QRCodeDetector();
|
||||
assertNotNull(detector);
|
||||
List < String > output = new ArrayList< String >();
|
||||
boolean result = detector.detectAndDecodeMulti(img, output);
|
||||
assertTrue(result);
|
||||
assertEquals(output.size(), 6);
|
||||
List < String > expectedResults = Arrays.asList("SKIP", "EXTRA", "TWO STEPS FORWARD", "STEP BACK", "QUESTION", "STEP FORWARD");
|
||||
assertEquals(new HashSet<String>(output), new HashSet<String>(expectedResults));
|
||||
}
|
||||
}
|
8
3rdparty/opencv-4.5.4/modules/objdetect/misc/python/pyopencv_objdetect.hpp
vendored
Normal file
8
3rdparty/opencv-4.5.4/modules/objdetect/misc/python/pyopencv_objdetect.hpp
vendored
Normal file
@ -0,0 +1,8 @@
|
||||
#ifdef HAVE_OPENCV_OBJDETECT
|
||||
|
||||
#include "opencv2/objdetect.hpp"
|
||||
|
||||
typedef HOGDescriptor::HistogramNormType HOGDescriptor_HistogramNormType;
|
||||
typedef HOGDescriptor::DescriptorStorageFormat HOGDescriptor_DescriptorStorageFormat;
|
||||
|
||||
#endif
|
92
3rdparty/opencv-4.5.4/modules/objdetect/misc/python/test/test_facedetect.py
vendored
Normal file
92
3rdparty/opencv-4.5.4/modules/objdetect/misc/python/test/test_facedetect.py
vendored
Normal file
@ -0,0 +1,92 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
face detection using haar cascades
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
def detect(img, cascade):
|
||||
rects = cascade.detectMultiScale(img, scaleFactor=1.275, minNeighbors=4, minSize=(30, 30),
|
||||
flags=cv.CASCADE_SCALE_IMAGE)
|
||||
if len(rects) == 0:
|
||||
return []
|
||||
rects[:,2:] += rects[:,:2]
|
||||
return rects
|
||||
|
||||
from tests_common import NewOpenCVTests, intersectionRate
|
||||
|
||||
class facedetect_test(NewOpenCVTests):
|
||||
|
||||
def test_facedetect(self):
|
||||
cascade_fn = self.repoPath + '/data/haarcascades/haarcascade_frontalface_alt.xml'
|
||||
nested_fn = self.repoPath + '/data/haarcascades/haarcascade_eye.xml'
|
||||
|
||||
cascade = cv.CascadeClassifier(cascade_fn)
|
||||
nested = cv.CascadeClassifier(nested_fn)
|
||||
|
||||
samples = ['samples/data/lena.jpg', 'cv/cascadeandhog/images/mona-lisa.png']
|
||||
|
||||
faces = []
|
||||
eyes = []
|
||||
|
||||
testFaces = [
|
||||
#lena
|
||||
[[218, 200, 389, 371],
|
||||
[ 244, 240, 294, 290],
|
||||
[ 309, 246, 352, 289]],
|
||||
|
||||
#lisa
|
||||
[[167, 119, 307, 259],
|
||||
[188, 153, 229, 194],
|
||||
[236, 153, 277, 194]]
|
||||
]
|
||||
|
||||
for sample in samples:
|
||||
|
||||
img = self.get_sample( sample)
|
||||
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
||||
gray = cv.GaussianBlur(gray, (5, 5), 0)
|
||||
|
||||
rects = detect(gray, cascade)
|
||||
faces.append(rects)
|
||||
|
||||
if not nested.empty():
|
||||
for x1, y1, x2, y2 in rects:
|
||||
roi = gray[y1:y2, x1:x2]
|
||||
subrects = detect(roi.copy(), nested)
|
||||
|
||||
for rect in subrects:
|
||||
rect[0] += x1
|
||||
rect[2] += x1
|
||||
rect[1] += y1
|
||||
rect[3] += y1
|
||||
|
||||
eyes.append(subrects)
|
||||
|
||||
faces_matches = 0
|
||||
eyes_matches = 0
|
||||
|
||||
eps = 0.8
|
||||
|
||||
for i in range(len(faces)):
|
||||
for j in range(len(testFaces)):
|
||||
if intersectionRate(faces[i][0], testFaces[j][0]) > eps:
|
||||
faces_matches += 1
|
||||
#check eyes
|
||||
if len(eyes[i]) == 2:
|
||||
if intersectionRate(eyes[i][0], testFaces[j][1]) > eps and intersectionRate(eyes[i][1] , testFaces[j][2]) > eps:
|
||||
eyes_matches += 1
|
||||
elif intersectionRate(eyes[i][1], testFaces[j][1]) > eps and intersectionRate(eyes[i][0], testFaces[j][2]) > eps:
|
||||
eyes_matches += 1
|
||||
|
||||
self.assertEqual(faces_matches, 2)
|
||||
self.assertEqual(eyes_matches, 2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
65
3rdparty/opencv-4.5.4/modules/objdetect/misc/python/test/test_peopledetect.py
vendored
Normal file
65
3rdparty/opencv-4.5.4/modules/objdetect/misc/python/test/test_peopledetect.py
vendored
Normal file
@ -0,0 +1,65 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
example to detect upright people in images using HOG features
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
|
||||
def inside(r, q):
|
||||
rx, ry, rw, rh = r
|
||||
qx, qy, qw, qh = q
|
||||
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh
|
||||
|
||||
from tests_common import NewOpenCVTests, intersectionRate
|
||||
|
||||
class peopledetect_test(NewOpenCVTests):
|
||||
def test_peopledetect(self):
|
||||
|
||||
hog = cv.HOGDescriptor()
|
||||
hog.setSVMDetector( cv.HOGDescriptor_getDefaultPeopleDetector() )
|
||||
|
||||
dirPath = 'samples/data/'
|
||||
samples = ['basketball1.png', 'basketball2.png']
|
||||
|
||||
testPeople = [
|
||||
[[23, 76, 164, 477], [440, 22, 637, 478]],
|
||||
[[23, 76, 164, 477], [440, 22, 637, 478]]
|
||||
]
|
||||
|
||||
eps = 0.5
|
||||
|
||||
for sample in samples:
|
||||
|
||||
img = self.get_sample(dirPath + sample, 0)
|
||||
|
||||
found, _w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05)
|
||||
found_filtered = []
|
||||
for ri, r in enumerate(found):
|
||||
for qi, q in enumerate(found):
|
||||
if ri != qi and inside(r, q):
|
||||
break
|
||||
else:
|
||||
found_filtered.append(r)
|
||||
|
||||
matches = 0
|
||||
|
||||
for i in range(len(found_filtered)):
|
||||
for j in range(len(testPeople)):
|
||||
|
||||
found_rect = (found_filtered[i][0], found_filtered[i][1],
|
||||
found_filtered[i][0] + found_filtered[i][2],
|
||||
found_filtered[i][1] + found_filtered[i][3])
|
||||
|
||||
if intersectionRate(found_rect, testPeople[j][0]) > eps or intersectionRate(found_rect, testPeople[j][1]) > eps:
|
||||
matches += 1
|
||||
|
||||
self.assertGreater(matches, 0)
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
52
3rdparty/opencv-4.5.4/modules/objdetect/misc/python/test/test_qrcode_detect.py
vendored
Normal file
52
3rdparty/opencv-4.5.4/modules/objdetect/misc/python/test/test_qrcode_detect.py
vendored
Normal file
@ -0,0 +1,52 @@
|
||||
#!/usr/bin/env python
|
||||
'''
|
||||
===============================================================================
|
||||
QR code detect and decode pipeline.
|
||||
===============================================================================
|
||||
'''
|
||||
import os
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class qrcode_detector_test(NewOpenCVTests):
|
||||
|
||||
def test_detect(self):
|
||||
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/link_ocv.jpg'))
|
||||
self.assertFalse(img is None)
|
||||
detector = cv.QRCodeDetector()
|
||||
retval, points = detector.detect(img)
|
||||
self.assertTrue(retval)
|
||||
self.assertEqual(points.shape, (1, 4, 2))
|
||||
|
||||
def test_detect_and_decode(self):
|
||||
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/link_ocv.jpg'))
|
||||
self.assertFalse(img is None)
|
||||
detector = cv.QRCodeDetector()
|
||||
retval, points, straight_qrcode = detector.detectAndDecode(img)
|
||||
self.assertEqual(retval, "https://opencv.org/")
|
||||
self.assertEqual(points.shape, (1, 4, 2))
|
||||
|
||||
def test_detect_multi(self):
|
||||
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/multiple/6_qrcodes.png'))
|
||||
self.assertFalse(img is None)
|
||||
detector = cv.QRCodeDetector()
|
||||
retval, points = detector.detectMulti(img)
|
||||
self.assertTrue(retval)
|
||||
self.assertEqual(points.shape, (6, 4, 2))
|
||||
|
||||
def test_detect_and_decode_multi(self):
|
||||
img = cv.imread(os.path.join(self.extraTestDataPath, 'cv/qrcode/multiple/6_qrcodes.png'))
|
||||
self.assertFalse(img is None)
|
||||
detector = cv.QRCodeDetector()
|
||||
retval, decoded_data, points, straight_qrcode = detector.detectAndDecodeMulti(img)
|
||||
self.assertTrue(retval)
|
||||
self.assertEqual(len(decoded_data), 6)
|
||||
self.assertEqual(decoded_data[0], "TWO STEPS FORWARD")
|
||||
self.assertEqual(decoded_data[1], "EXTRA")
|
||||
self.assertEqual(decoded_data[2], "SKIP")
|
||||
self.assertEqual(decoded_data[3], "STEP FORWARD")
|
||||
self.assertEqual(decoded_data[4], "STEP BACK")
|
||||
self.assertEqual(decoded_data[5], "QUESTION")
|
||||
self.assertEqual(points.shape, (6, 4, 2))
|
Reference in New Issue
Block a user