feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,140 @@
///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Shengen Yan, yanshengen@gmail.com
// Jiang Liyuan,jlyuan001.good@163.com
// Rock Li, Rock.Li@amd.com
// Zailong Wu, bullet@yeah.net
// Yao Wang, bitwangyaoyao@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../test_precomp.hpp"
#include "opencv2/ts/ocl_test.hpp"
#ifdef HAVE_OPENCL
namespace opencv_test {
namespace ocl {
///////////////////// HOG /////////////////////////////
PARAM_TEST_CASE(HOG, Size, MatType)
{
Size winSize;
int type;
Mat img;
UMat uimg;
virtual void SetUp()
{
winSize = GET_PARAM(0);
type = GET_PARAM(1);
img = readImage("cascadeandhog/images/image_00000000_0.png", IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
img.copyTo(uimg);
}
};
OCL_TEST_P(HOG, GetDescriptors)
{
HOGDescriptor hog;
hog.gammaCorrection = true;
hog.setSVMDetector(hog.getDefaultPeopleDetector());
std::vector<float> cpu_descriptors;
std::vector<float> gpu_descriptors;
OCL_OFF(hog.compute(img, cpu_descriptors, hog.winSize));
OCL_ON(hog.compute(uimg, gpu_descriptors, hog.winSize));
Mat cpu_desc(cpu_descriptors), gpu_desc(gpu_descriptors);
EXPECT_MAT_SIMILAR(cpu_desc, gpu_desc, 1e-1);
}
OCL_TEST_P(HOG, SVMDetector)
{
HOGDescriptor hog_first, hog_second;
// empty -> empty
hog_first.copyTo(hog_second);
// first -> both
hog_first.setSVMDetector(hog_first.getDefaultPeopleDetector());
hog_first.copyTo(hog_second);
// both -> both
hog_first.copyTo(hog_second);
// second -> empty
hog_first.setSVMDetector(cv::noArray());
hog_first.copyTo(hog_second);
}
OCL_TEST_P(HOG, Detect)
{
HOGDescriptor hog;
hog.winSize = winSize;
hog.gammaCorrection = true;
if (winSize.width == 48 && winSize.height == 96)
hog.setSVMDetector(hog.getDaimlerPeopleDetector());
else
hog.setSVMDetector(hog.getDefaultPeopleDetector());
std::vector<Rect> cpu_found;
std::vector<Rect> gpu_found;
OCL_OFF(hog.detectMultiScale(img, cpu_found, 0, Size(8, 8), Size(0, 0), 1.05, 6));
OCL_ON(hog.detectMultiScale(uimg, gpu_found, 0, Size(8, 8), Size(0, 0), 1.05, 6));
EXPECT_LT(checkRectSimilarity(img.size(), cpu_found, gpu_found), 0.05);
}
INSTANTIATE_TEST_CASE_P(OCL_ObjDetect, HOG, testing::Combine(
testing::Values(Size(64, 128), Size(48, 96)),
testing::Values( MatType(CV_8UC1) ) ) );
}} // namespace
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,219 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
// label format:
// image_name
// num_face
// face_1
// face_..
// face_num
std::map<std::string, Mat> blobFromTXT(const std::string& path, int numCoords)
{
std::ifstream ifs(path.c_str());
CV_Assert(ifs.is_open());
std::map<std::string, Mat> gt;
Mat faces;
int faceNum = -1;
int faceCount = 0;
for (std::string line, key; getline(ifs, line); )
{
std::istringstream iss(line);
if (line.find(".png") != std::string::npos)
{
// Get filename
iss >> key;
}
else if (line.find(" ") == std::string::npos)
{
// Get the number of faces
iss >> faceNum;
}
else
{
// Get faces
Mat face(1, numCoords, CV_32FC1);
for (int j = 0; j < numCoords; j++)
{
iss >> face.at<float>(0, j);
}
faces.push_back(face);
faceCount++;
}
if (faceCount == faceNum)
{
// Store faces
gt[key] = faces;
faces.release();
faceNum = -1;
faceCount = 0;
}
}
return gt;
}
TEST(Objdetect_face_detection, regression)
{
// Pre-set params
float scoreThreshold = 0.7f;
float matchThreshold = 0.9f;
float l2disThreshold = 5.0f;
int numLM = 5;
int numCoords = 4 + 2 * numLM;
// Load ground truth labels
std::map<std::string, Mat> gt = blobFromTXT(findDataFile("dnn_face/detection/cascades_labels.txt"), numCoords);
// for (auto item: gt)
// {
// std::cout << item.first << " " << item.second.size() << std::endl;
// }
// Initialize detector
std::string model = findDataFile("dnn/onnx/models/yunet-202109.onnx", false);
Ptr<FaceDetectorYN> faceDetector = FaceDetectorYN::create(model, "", Size(300, 300));
faceDetector->setScoreThreshold(0.7f);
// Detect and match
for (auto item: gt)
{
std::string imagePath = findDataFile("cascadeandhog/images/" + item.first);
Mat image = imread(imagePath);
// Set input size
faceDetector->setInputSize(image.size());
// Run detection
Mat faces;
faceDetector->detect(image, faces);
// std::cout << item.first << " " << item.second.rows << " " << faces.rows << std::endl;
// Match bboxes and landmarks
std::vector<bool> matchedItem(item.second.rows, false);
for (int i = 0; i < faces.rows; i++)
{
if (faces.at<float>(i, numCoords) < scoreThreshold)
continue;
bool boxMatched = false;
std::vector<bool> lmMatched(numLM, false);
cv::Rect2f resBox(faces.at<float>(i, 0), faces.at<float>(i, 1), faces.at<float>(i, 2), faces.at<float>(i, 3));
for (int j = 0; j < item.second.rows && !boxMatched; j++)
{
if (matchedItem[j])
continue;
// Retrieve bbox and compare IoU
cv::Rect2f gtBox(item.second.at<float>(j, 0), item.second.at<float>(j, 1), item.second.at<float>(j, 2), item.second.at<float>(j, 3));
double interArea = (resBox & gtBox).area();
double iou = interArea / (resBox.area() + gtBox.area() - interArea);
if (iou >= matchThreshold)
{
boxMatched = true;
matchedItem[j] = true;
}
// Match landmarks if bbox is matched
if (!boxMatched)
continue;
for (int lmIdx = 0; lmIdx < numLM; lmIdx++)
{
float gtX = item.second.at<float>(j, 4 + 2 * lmIdx);
float gtY = item.second.at<float>(j, 4 + 2 * lmIdx + 1);
float resX = faces.at<float>(i, 4 + 2 * lmIdx);
float resY = faces.at<float>(i, 4 + 2 * lmIdx + 1);
float l2dis = cv::sqrt((gtX - resX) * (gtX - resX) + (gtY - resY) * (gtY - resY));
if (l2dis <= l2disThreshold)
{
lmMatched[lmIdx] = true;
}
}
}
EXPECT_TRUE(boxMatched) << "In image " << item.first << ", cannot match resBox " << resBox << " with any ground truth.";
if (boxMatched)
{
EXPECT_TRUE(std::all_of(lmMatched.begin(), lmMatched.end(), [](bool v) { return v; })) << "In image " << item.first << ", resBox " << resBox << " matched but its landmarks failed to match.";
}
}
}
}
TEST(Objdetect_face_recognition, regression)
{
// Pre-set params
float score_thresh = 0.9f;
float nms_thresh = 0.3f;
double cosine_similar_thresh = 0.363;
double l2norm_similar_thresh = 1.128;
// Load ground truth labels
std::ifstream ifs(findDataFile("dnn_face/recognition/cascades_label.txt").c_str());
CV_Assert(ifs.is_open());
std::set<std::string> fSet;
std::map<std::string, Mat> featureMap;
std::map<std::pair<std::string, std::string>, int> gtMap;
for (std::string line, key; getline(ifs, line);)
{
std::string fname1, fname2;
int label;
std::istringstream iss(line);
iss>>fname1>>fname2>>label;
// std::cout<<fname1<<" "<<fname2<<" "<<label<<std::endl;
fSet.insert(fname1);
fSet.insert(fname2);
gtMap[std::make_pair(fname1, fname2)] = label;
}
// Initialize detector
std::string detect_model = findDataFile("dnn/onnx/models/yunet-202109.onnx", false);
Ptr<FaceDetectorYN> faceDetector = FaceDetectorYN::create(detect_model, "", Size(150, 150), score_thresh, nms_thresh);
std::string recog_model = findDataFile("dnn/onnx/models/face_recognizer_fast.onnx", false);
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(recog_model, "");
// Detect and match
for (auto fname: fSet)
{
std::string imagePath = findDataFile("dnn_face/recognition/" + fname);
Mat image = imread(imagePath);
Mat faces;
faceDetector->detect(image, faces);
Mat aligned_face;
faceRecognizer->alignCrop(image, faces.row(0), aligned_face);
Mat feature;
faceRecognizer->feature(aligned_face, feature);
featureMap[fname] = feature.clone();
}
for (auto item: gtMap)
{
Mat feature1 = featureMap[item.first.first];
Mat feature2 = featureMap[item.first.second];
int label = item.second;
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
EXPECT_TRUE(label == 0 ? cos_score <= cosine_similar_thresh : cos_score > cosine_similar_thresh) << "Cosine match result of images " << item.first.first << " and " << item.first.second << " is different from ground truth (score: "<< cos_score <<";Thresh: "<< cosine_similar_thresh <<").";
EXPECT_TRUE(label == 0 ? L2_score > l2norm_similar_thresh : L2_score <= l2norm_similar_thresh) << "L2norm match result of images " << item.first.first << " and " << item.first.second << " is different from ground truth (score: "<< L2_score <<";Thresh: "<< l2norm_similar_thresh <<").";
}
}
}} // namespace

View File

@ -0,0 +1,25 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#if defined(HAVE_HPX)
#include <hpx/hpx_main.hpp>
#endif
static
void initTests()
{
#ifdef HAVE_OPENCV_DNN
const char* extraTestDataPath =
#ifdef WINRT
NULL;
#else
getenv("OPENCV_DNN_TEST_DATA_PATH");
#endif
if (extraTestDataPath)
cvtest::addDataSearchPath(extraTestDataPath);
#endif // HAVE_OPENCV_DNN
}
CV_TEST_MAIN("cv", initTests())

View File

@ -0,0 +1,10 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__
#include "opencv2/ts.hpp"
#include "opencv2/objdetect.hpp"
#endif

View File

@ -0,0 +1,670 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
std::string qrcode_images_name[] = {
"version_1_down.jpg", "version_1_left.jpg", "version_1_right.jpg", "version_1_up.jpg", "version_1_top.jpg",
"version_2_down.jpg", "version_2_left.jpg", "version_2_right.jpg", "version_2_up.jpg", "version_2_top.jpg",
"version_3_down.jpg", "version_3_left.jpg", "version_3_right.jpg", "version_3_up.jpg", "version_3_top.jpg",
"version_4_down.jpg", "version_4_left.jpg", "version_4_right.jpg", "version_4_up.jpg", "version_4_top.jpg",
"version_5_down.jpg", "version_5_left.jpg", "version_5_right.jpg", "version_5_up.jpg", "version_5_top.jpg",
"russian.jpg", "kanji.jpg", "link_github_ocv.jpg", "link_ocv.jpg", "link_wiki_cv.jpg"
};
std::string qrcode_images_close[] = {
"close_1.png", "close_2.png", "close_3.png", "close_4.png", "close_5.png"
};
std::string qrcode_images_monitor[] = {
"monitor_1.png", "monitor_2.png", "monitor_3.png", "monitor_4.png", "monitor_5.png"
};
std::string qrcode_images_curved[] = {
"curved_1.jpg", "curved_2.jpg", "curved_3.jpg", "curved_4.jpg", "curved_5.jpg", "curved_6.jpg", "curved_7.jpg", "curved_8.jpg"
};
std::string qrcode_images_multiple[] = {
"2_qrcodes.png", "3_close_qrcodes.png", "3_qrcodes.png", "4_qrcodes.png",
"5_qrcodes.png", "6_qrcodes.png", "7_qrcodes.png", "8_close_qrcodes.png"
};
//#define UPDATE_QRCODE_TEST_DATA
#ifdef UPDATE_QRCODE_TEST_DATA
TEST(Objdetect_QRCode, generate_test_data)
{
const std::string root = "qrcode/";
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::WRITE);
file_config << "test_images" << "[";
size_t images_count = sizeof(qrcode_images_name) / sizeof(qrcode_images_name[0]);
for (size_t i = 0; i < images_count; i++)
{
file_config << "{:" << "image_name" << qrcode_images_name[i];
std::string image_path = findDataFile(root + qrcode_images_name[i]);
std::vector<Point> corners;
Mat src = imread(image_path, IMREAD_GRAYSCALE), straight_barcode;
std::string decoded_info;
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
EXPECT_TRUE(detectQRCode(src, corners));
#ifdef HAVE_QUIRC
EXPECT_TRUE(decodeQRCode(src, corners, decoded_info, straight_barcode));
#endif
file_config << "x" << "[:";
for (size_t j = 0; j < corners.size(); j++) { file_config << corners[j].x; }
file_config << "]";
file_config << "y" << "[:";
for (size_t j = 0; j < corners.size(); j++) { file_config << corners[j].y; }
file_config << "]";
file_config << "info" << decoded_info;
file_config << "}";
}
file_config << "]";
file_config.release();
}
TEST(Objdetect_QRCode_Close, generate_test_data)
{
const std::string root = "qrcode/close/";
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::WRITE);
file_config << "close_images" << "[";
size_t close_count = sizeof(qrcode_images_close) / sizeof(qrcode_images_close[0]);
for (size_t i = 0; i < close_count; i++)
{
file_config << "{:" << "image_name" << qrcode_images_close[i];
std::string image_path = findDataFile(root + qrcode_images_close[i]);
std::vector<Point> corners;
Mat src = imread(image_path, IMREAD_GRAYSCALE), barcode, straight_barcode;
std::string decoded_info;
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
const double min_side = std::min(src.size().width, src.size().height);
double coeff_expansion = 1024.0 / min_side;
const int width = cvRound(src.size().width * coeff_expansion);
const int height = cvRound(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_LINEAR);
EXPECT_TRUE(detectQRCode(barcode, corners));
#ifdef HAVE_QUIRC
EXPECT_TRUE(decodeQRCode(barcode, corners, decoded_info, straight_barcode));
#endif
file_config << "x" << "[:";
for (size_t j = 0; j < corners.size(); j++) { file_config << corners[j].x; }
file_config << "]";
file_config << "y" << "[:";
for (size_t j = 0; j < corners.size(); j++) { file_config << corners[j].y; }
file_config << "]";
file_config << "info" << decoded_info;
file_config << "}";
}
file_config << "]";
file_config.release();
}
TEST(Objdetect_QRCode_Monitor, generate_test_data)
{
const std::string root = "qrcode/monitor/";
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::WRITE);
file_config << "monitor_images" << "[";
size_t monitor_count = sizeof(qrcode_images_monitor) / sizeof(qrcode_images_monitor[0]);
for (size_t i = 0; i < monitor_count; i++)
{
file_config << "{:" << "image_name" << qrcode_images_monitor[i];
std::string image_path = findDataFile(root + qrcode_images_monitor[i]);
std::vector<Point> corners;
Mat src = imread(image_path, IMREAD_GRAYSCALE), barcode, straight_barcode;
std::string decoded_info;
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
const double min_side = std::min(src.size().width, src.size().height);
double coeff_expansion = 1024.0 / min_side;
const int width = cvRound(src.size().width * coeff_expansion);
const int height = cvRound(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_LINEAR);
EXPECT_TRUE(detectQRCode(barcode, corners));
#ifdef HAVE_QUIRC
EXPECT_TRUE(decodeQRCode(barcode, corners, decoded_info, straight_barcode));
#endif
file_config << "x" << "[:";
for (size_t j = 0; j < corners.size(); j++) { file_config << corners[j].x; }
file_config << "]";
file_config << "y" << "[:";
for (size_t j = 0; j < corners.size(); j++) { file_config << corners[j].y; }
file_config << "]";
file_config << "info" << decoded_info;
file_config << "}";
}
file_config << "]";
file_config.release();
}
TEST(Objdetect_QRCode_Curved, generate_test_data)
{
const std::string root = "qrcode/curved/";
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::WRITE);
file_config << "test_images" << "[";
size_t images_count = sizeof(qrcode_images_curved) / sizeof(qrcode_images_curved[0]);
for (size_t i = 0; i < images_count; i++)
{
file_config << "{:" << "image_name" << qrcode_images_curved[i];
std::string image_path = findDataFile(root + qrcode_images_curved[i]);
std::vector<Point> corners;
Mat src = imread(image_path, IMREAD_GRAYSCALE), straight_barcode;
std::string decoded_info;
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
EXPECT_TRUE(detectQRCode(src, corners));
#ifdef HAVE_QUIRC
EXPECT_TRUE(decodeCurvedQRCode(src, corners, decoded_info, straight_barcode));
#endif
file_config << "x" << "[:";
for (size_t j = 0; j < corners.size(); j++) { file_config << corners[j].x; }
file_config << "]";
file_config << "y" << "[:";
for (size_t j = 0; j < corners.size(); j++) { file_config << corners[j].y; }
file_config << "]";
file_config << "info" << decoded_info;
file_config << "}";
}
file_config << "]";
file_config.release();
}
TEST(Objdetect_QRCode_Multi, generate_test_data)
{
const std::string root = "qrcode/multiple/";
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::WRITE);
file_config << "multiple_images" << "[:";
size_t multiple_count = sizeof(qrcode_images_multiple) / sizeof(qrcode_images_multiple[0]);
for (size_t i = 0; i < multiple_count; i++)
{
file_config << "{:" << "image_name" << qrcode_images_multiple[i];
std::string image_path = findDataFile(root + qrcode_images_multiple[i]);
Mat src = imread(image_path);
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
std::vector<Point> corners;
QRCodeDetector qrcode;
EXPECT_TRUE(qrcode.detectMulti(src, corners));
#ifdef HAVE_QUIRC
std::vector<cv::String> decoded_info;
std::vector<Mat> straight_barcode;
EXPECT_TRUE(qrcode.decodeMulti(src, corners, decoded_info, straight_barcode));
#endif
file_config << "x" << "[:";
for(size_t j = 0; j < corners.size(); j += 4)
{
file_config << "[:";
for (size_t k = 0; k < 4; k++)
{
file_config << corners[j + k].x;
}
file_config << "]";
}
file_config << "]";
file_config << "y" << "[:";
for(size_t j = 0; j < corners.size(); j += 4)
{
file_config << "[:";
for (size_t k = 0; k < 4; k++)
{
file_config << corners[j + k].y;
}
file_config << "]";
}
file_config << "]";
file_config << "info";
file_config << "[:";
for(size_t j = 0; j < decoded_info.size(); j++)
{
file_config << decoded_info[j];
}
file_config << "]";
file_config << "}";
}
file_config << "]";
file_config.release();
}
#else
typedef testing::TestWithParam< std::string > Objdetect_QRCode;
TEST_P(Objdetect_QRCode, regression)
{
const std::string name_current_image = GetParam();
const std::string root = "qrcode/";
const int pixels_error = 3;
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path, IMREAD_GRAYSCALE), straight_barcode;
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
std::vector<Point> corners;
std::string decoded_info;
QRCodeDetector qrcode;
#ifdef HAVE_QUIRC
decoded_info = qrcode.detectAndDecode(src, corners, straight_barcode);
ASSERT_FALSE(corners.empty());
ASSERT_FALSE(decoded_info.empty());
int expected_barcode_type = CV_8UC1;
EXPECT_EQ(expected_barcode_type, straight_barcode.type());
#else
ASSERT_TRUE(qrcode.detect(src, corners));
#endif
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::READ);
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config;
{
FileNode images_list = file_config["test_images"];
size_t images_count = static_cast<size_t>(images_list.size());
ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config;
for (size_t index = 0; index < images_count; index++)
{
FileNode config = images_list[(int)index];
std::string name_test_image = config["image_name"];
if (name_test_image == name_current_image)
{
for (int i = 0; i < 4; i++)
{
int x = config["x"][i];
int y = config["y"][i];
EXPECT_NEAR(x, corners[i].x, pixels_error);
EXPECT_NEAR(y, corners[i].y, pixels_error);
}
#ifdef HAVE_QUIRC
std::string original_info = config["info"];
EXPECT_EQ(decoded_info, original_info);
#endif
return; // done
}
}
std::cerr
<< "Not found results for '" << name_current_image
<< "' image in config file:" << dataset_config << std::endl
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data."
<< std::endl;
}
}
typedef testing::TestWithParam< std::string > Objdetect_QRCode_Close;
TEST_P(Objdetect_QRCode_Close, regression)
{
const std::string name_current_image = GetParam();
const std::string root = "qrcode/close/";
const int pixels_error = 3;
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path, IMREAD_GRAYSCALE), barcode, straight_barcode;
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
const double min_side = std::min(src.size().width, src.size().height);
double coeff_expansion = 1024.0 / min_side;
const int width = cvRound(src.size().width * coeff_expansion);
const int height = cvRound(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_LINEAR);
std::vector<Point> corners;
std::string decoded_info;
QRCodeDetector qrcode;
#ifdef HAVE_QUIRC
decoded_info = qrcode.detectAndDecode(barcode, corners, straight_barcode);
ASSERT_FALSE(corners.empty());
ASSERT_FALSE(decoded_info.empty());
int expected_barcode_type = CV_8UC1;
EXPECT_EQ(expected_barcode_type, straight_barcode.type());
#else
ASSERT_TRUE(qrcode.detect(barcode, corners));
#endif
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::READ);
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config;
{
FileNode images_list = file_config["close_images"];
size_t images_count = static_cast<size_t>(images_list.size());
ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config;
for (size_t index = 0; index < images_count; index++)
{
FileNode config = images_list[(int)index];
std::string name_test_image = config["image_name"];
if (name_test_image == name_current_image)
{
for (int i = 0; i < 4; i++)
{
int x = config["x"][i];
int y = config["y"][i];
EXPECT_NEAR(x, corners[i].x, pixels_error);
EXPECT_NEAR(y, corners[i].y, pixels_error);
}
#ifdef HAVE_QUIRC
std::string original_info = config["info"];
EXPECT_EQ(decoded_info, original_info);
#endif
return; // done
}
}
std::cerr
<< "Not found results for '" << name_current_image
<< "' image in config file:" << dataset_config << std::endl
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data."
<< std::endl;
}
}
typedef testing::TestWithParam< std::string > Objdetect_QRCode_Monitor;
TEST_P(Objdetect_QRCode_Monitor, regression)
{
const std::string name_current_image = GetParam();
const std::string root = "qrcode/monitor/";
const int pixels_error = 3;
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path, IMREAD_GRAYSCALE), barcode, straight_barcode;
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
const double min_side = std::min(src.size().width, src.size().height);
double coeff_expansion = 1024.0 / min_side;
const int width = cvRound(src.size().width * coeff_expansion);
const int height = cvRound(src.size().height * coeff_expansion);
Size new_size(width, height);
resize(src, barcode, new_size, 0, 0, INTER_LINEAR);
std::vector<Point> corners;
std::string decoded_info;
QRCodeDetector qrcode;
#ifdef HAVE_QUIRC
decoded_info = qrcode.detectAndDecode(barcode, corners, straight_barcode);
ASSERT_FALSE(corners.empty());
ASSERT_FALSE(decoded_info.empty());
int expected_barcode_type = CV_8UC1;
EXPECT_EQ(expected_barcode_type, straight_barcode.type());
#else
ASSERT_TRUE(qrcode.detect(barcode, corners));
#endif
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::READ);
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config;
{
FileNode images_list = file_config["monitor_images"];
size_t images_count = static_cast<size_t>(images_list.size());
ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config;
for (size_t index = 0; index < images_count; index++)
{
FileNode config = images_list[(int)index];
std::string name_test_image = config["image_name"];
if (name_test_image == name_current_image)
{
for (int i = 0; i < 4; i++)
{
int x = config["x"][i];
int y = config["y"][i];
EXPECT_NEAR(x, corners[i].x, pixels_error);
EXPECT_NEAR(y, corners[i].y, pixels_error);
}
#ifdef HAVE_QUIRC
std::string original_info = config["info"];
EXPECT_EQ(decoded_info, original_info);
#endif
return; // done
}
}
std::cerr
<< "Not found results for '" << name_current_image
<< "' image in config file:" << dataset_config << std::endl
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data."
<< std::endl;
}
}
typedef testing::TestWithParam< std::string > Objdetect_QRCode_Curved;
TEST_P(Objdetect_QRCode_Curved, regression)
{
const std::string name_current_image = GetParam();
const std::string root = "qrcode/curved/";
const int pixels_error = 3;
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path, IMREAD_GRAYSCALE), straight_barcode;
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
std::vector<Point> corners;
std::string decoded_info;
QRCodeDetector qrcode;
#ifdef HAVE_QUIRC
decoded_info = qrcode.detectAndDecodeCurved(src, corners, straight_barcode);
ASSERT_FALSE(corners.empty());
ASSERT_FALSE(decoded_info.empty());
int expected_barcode_type = CV_8UC1;
EXPECT_EQ(expected_barcode_type, straight_barcode.type());
#else
ASSERT_TRUE(qrcode.detect(src, corners));
#endif
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::READ);
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config;
{
FileNode images_list = file_config["test_images"];
size_t images_count = static_cast<size_t>(images_list.size());
ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config;
for (size_t index = 0; index < images_count; index++)
{
FileNode config = images_list[(int)index];
std::string name_test_image = config["image_name"];
if (name_test_image == name_current_image)
{
for (int i = 0; i < 4; i++)
{
int x = config["x"][i];
int y = config["y"][i];
EXPECT_NEAR(x, corners[i].x, pixels_error);
EXPECT_NEAR(y, corners[i].y, pixels_error);
}
#ifdef HAVE_QUIRC
std::string original_info = config["info"];
EXPECT_EQ(decoded_info, original_info);
#endif
return; // done
}
}
std::cerr
<< "Not found results for '" << name_current_image
<< "' image in config file:" << dataset_config << std::endl
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data."
<< std::endl;
}
}
typedef testing::TestWithParam < std::string > Objdetect_QRCode_Multi;
TEST_P(Objdetect_QRCode_Multi, regression)
{
const std::string name_current_image = GetParam();
const std::string root = "qrcode/multiple/";
const int pixels_error = 3;
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path);
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
QRCodeDetector qrcode;
std::vector<Point> corners;
#ifdef HAVE_QUIRC
std::vector<cv::String> decoded_info;
std::vector<Mat> straight_barcode;
EXPECT_TRUE(qrcode.detectAndDecodeMulti(src, decoded_info, corners, straight_barcode));
ASSERT_FALSE(corners.empty());
ASSERT_FALSE(decoded_info.empty());
int expected_barcode_type = CV_8UC1;
for(size_t i = 0; i < straight_barcode.size(); i++)
EXPECT_EQ(expected_barcode_type, straight_barcode[i].type());
#else
ASSERT_TRUE(qrcode.detectMulti(src, corners));
#endif
const std::string dataset_config = findDataFile(root + "dataset_config.json");
FileStorage file_config(dataset_config, FileStorage::READ);
ASSERT_TRUE(file_config.isOpened()) << "Can't read validation data: " << dataset_config;
{
FileNode images_list = file_config["multiple_images"];
size_t images_count = static_cast<size_t>(images_list.size());
ASSERT_GT(images_count, 0u) << "Can't find validation data entries in 'test_images': " << dataset_config;
for (size_t index = 0; index < images_count; index++)
{
FileNode config = images_list[(int)index];
std::string name_test_image = config["image_name"];
if (name_test_image == name_current_image)
{
for(int j = 0; j < int(corners.size()); j += 4)
{
bool ok = false;
for (int k = 0; k < int(corners.size() / 4); k++)
{
int count_eq_points = 0;
for (int i = 0; i < 4; i++)
{
int x = config["x"][k][i];
int y = config["y"][k][i];
if(((abs(corners[j + i].x - x)) <= pixels_error) && ((abs(corners[j + i].y - y)) <= pixels_error))
count_eq_points++;
}
if (count_eq_points == 4)
{
ok = true;
break;
}
}
EXPECT_TRUE(ok);
}
#ifdef HAVE_QUIRC
size_t count_eq_info = 0;
for(int i = 0; i < int(decoded_info.size()); i++)
{
for(int j = 0; j < int(decoded_info.size()); j++)
{
std::string original_info = config["info"][j];
if(original_info == decoded_info[i])
{
count_eq_info++;
break;
}
}
}
EXPECT_EQ(decoded_info.size(), count_eq_info);
#endif
return; // done
}
}
std::cerr
<< "Not found results for '" << name_current_image
<< "' image in config file:" << dataset_config << std::endl
<< "Re-run tests with enabled UPDATE_QRCODE_TEST_DATA macro to update test data."
<< std::endl;
}
}
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode, testing::ValuesIn(qrcode_images_name));
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Close, testing::ValuesIn(qrcode_images_close));
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Monitor, testing::ValuesIn(qrcode_images_monitor));
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Curved, testing::ValuesIn(qrcode_images_curved));
INSTANTIATE_TEST_CASE_P(/**/, Objdetect_QRCode_Multi, testing::ValuesIn(qrcode_images_multiple));
TEST(Objdetect_QRCode_decodeMulti, decode_regression_16491)
{
#ifdef HAVE_QUIRC
Mat zero_image = Mat::zeros(256, 256, CV_8UC1);
Point corners_[] = {Point(16, 16), Point(128, 16), Point(128, 128), Point(16, 128),
Point(16, 16), Point(128, 16), Point(128, 128), Point(16, 128)};
std::vector<Point> vec_corners;
int array_size = 8;
vec_corners.assign(corners_, corners_ + array_size);
std::vector<cv::String> decoded_info;
std::vector<Mat> straight_barcode;
QRCodeDetector vec_qrcode;
EXPECT_NO_THROW(vec_qrcode.decodeMulti(zero_image, vec_corners, decoded_info, straight_barcode));
Mat mat_corners(2, 4, CV_32SC2, (void*)&vec_corners[0]);
QRCodeDetector mat_qrcode;
EXPECT_NO_THROW(mat_qrcode.decodeMulti(zero_image, mat_corners, decoded_info, straight_barcode));
#endif
}
TEST(Objdetect_QRCode_detectMulti, detect_regression_16961)
{
const std::string name_current_image = "9_qrcodes.jpg";
const std::string root = "qrcode/multiple/";
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path);
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
QRCodeDetector qrcode;
std::vector<Point> corners;
EXPECT_TRUE(qrcode.detectMulti(src, corners));
ASSERT_FALSE(corners.empty());
size_t expect_corners_size = 36;
EXPECT_EQ(corners.size(), expect_corners_size);
}
TEST(Objdetect_QRCode_decodeMulti, check_output_parameters_type_19363)
{
const std::string name_current_image = "9_qrcodes.jpg";
const std::string root = "qrcode/multiple/";
std::string image_path = findDataFile(root + name_current_image);
Mat src = imread(image_path);
ASSERT_FALSE(src.empty()) << "Can't read image: " << image_path;
#ifdef HAVE_QUIRC
QRCodeDetector qrcode;
std::vector<Point> corners;
std::vector<cv::String> decoded_info;
#if 0 // FIXIT: OutputArray::create() type check
std::vector<Mat2b> straight_barcode_nchannels;
EXPECT_ANY_THROW(qrcode.detectAndDecodeMulti(src, decoded_info, corners, straight_barcode_nchannels));
#endif
int expected_barcode_type = CV_8UC1;
std::vector<Mat1b> straight_barcode;
EXPECT_TRUE(qrcode.detectAndDecodeMulti(src, decoded_info, corners, straight_barcode));
ASSERT_FALSE(corners.empty());
for(size_t i = 0; i < straight_barcode.size(); i++)
EXPECT_EQ(expected_barcode_type, straight_barcode[i].type());
#endif
}
TEST(Objdetect_QRCode_basic, not_found_qrcode)
{
std::vector<Point> corners;
Mat straight_barcode;
std::string decoded_info;
Mat zero_image = Mat::zeros(256, 256, CV_8UC1);
QRCodeDetector qrcode;
EXPECT_FALSE(qrcode.detect(zero_image, corners));
#ifdef HAVE_QUIRC
corners = std::vector<Point>(4);
EXPECT_ANY_THROW(qrcode.decode(zero_image, corners, straight_barcode));
#endif
}
#endif // UPDATE_QRCODE_TEST_DATA
}} // namespace