feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
133
3rdparty/opencv-4.5.4/modules/photo/test/ocl/test_denoising.cpp
vendored
Normal file
133
3rdparty/opencv-4.5.4/modules/photo/test/ocl/test_denoising.cpp
vendored
Normal file
@ -0,0 +1,133 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "../test_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_test.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace opencv_test {
|
||||
namespace ocl {
|
||||
|
||||
PARAM_TEST_CASE(FastNlMeansDenoisingTestBase, Channels, int, bool, bool)
|
||||
{
|
||||
int cn, normType, templateWindowSize, searchWindowSize;
|
||||
std::vector<float> h;
|
||||
bool use_roi, use_image;
|
||||
|
||||
TEST_DECLARE_INPUT_PARAMETER(src);
|
||||
TEST_DECLARE_OUTPUT_PARAMETER(dst);
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
cn = GET_PARAM(0);
|
||||
normType = GET_PARAM(1);
|
||||
use_roi = GET_PARAM(2);
|
||||
use_image = GET_PARAM(3);
|
||||
|
||||
templateWindowSize = 7;
|
||||
searchWindowSize = 21;
|
||||
|
||||
h.resize(cn);
|
||||
for (int i=0; i<cn; i++)
|
||||
h[i] = 3.0f + 0.5f*i;
|
||||
}
|
||||
|
||||
void generateTestData()
|
||||
{
|
||||
const int type = CV_8UC(cn);
|
||||
Mat image;
|
||||
|
||||
if (use_image) {
|
||||
image = readImage("denoising/lena_noised_gaussian_sigma=10.png",
|
||||
cn == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR);
|
||||
ASSERT_FALSE(image.empty());
|
||||
}
|
||||
|
||||
Size roiSize = use_image ? image.size() : randomSize(1, MAX_VALUE);
|
||||
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
|
||||
randomSubMat(src, src_roi, roiSize, srcBorder, type, 0, 255);
|
||||
if (use_image) {
|
||||
ASSERT_TRUE(cn > 0 && cn <= 4);
|
||||
if (cn == 2) {
|
||||
int from_to[] = { 0,0, 1,1 };
|
||||
src_roi.create(roiSize, type);
|
||||
mixChannels(&image, 1, &src_roi, 1, from_to, 2);
|
||||
}
|
||||
else if (cn == 4) {
|
||||
int from_to[] = { 0,0, 1,1, 2,2, 1,3};
|
||||
src_roi.create(roiSize, type);
|
||||
mixChannels(&image, 1, &src_roi, 1, from_to, 4);
|
||||
}
|
||||
else image.copyTo(src_roi);
|
||||
}
|
||||
|
||||
Border dstBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
|
||||
randomSubMat(dst, dst_roi, roiSize, dstBorder, type, 0, 255);
|
||||
|
||||
UMAT_UPLOAD_INPUT_PARAMETER(src);
|
||||
UMAT_UPLOAD_OUTPUT_PARAMETER(dst);
|
||||
}
|
||||
};
|
||||
|
||||
typedef FastNlMeansDenoisingTestBase FastNlMeansDenoising;
|
||||
|
||||
OCL_TEST_P(FastNlMeansDenoising, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
OCL_OFF(cv::fastNlMeansDenoising(src_roi, dst_roi, std::vector<float>(1, h[0]), templateWindowSize, searchWindowSize, normType));
|
||||
OCL_ON(cv::fastNlMeansDenoising(usrc_roi, udst_roi, std::vector<float>(1, h[0]), templateWindowSize, searchWindowSize, normType));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1);
|
||||
}
|
||||
}
|
||||
|
||||
typedef FastNlMeansDenoisingTestBase FastNlMeansDenoising_hsep;
|
||||
|
||||
OCL_TEST_P(FastNlMeansDenoising_hsep, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
OCL_OFF(cv::fastNlMeansDenoising(src_roi, dst_roi, h, templateWindowSize, searchWindowSize, normType));
|
||||
OCL_ON(cv::fastNlMeansDenoising(usrc_roi, udst_roi, h, templateWindowSize, searchWindowSize, normType));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1);
|
||||
}
|
||||
}
|
||||
|
||||
typedef FastNlMeansDenoisingTestBase FastNlMeansDenoisingColored;
|
||||
|
||||
OCL_TEST_P(FastNlMeansDenoisingColored, Mat)
|
||||
{
|
||||
for (int j = 0; j < test_loop_times; j++)
|
||||
{
|
||||
generateTestData();
|
||||
|
||||
OCL_OFF(cv::fastNlMeansDenoisingColored(src_roi, dst_roi, h[0], h[0], templateWindowSize, searchWindowSize));
|
||||
OCL_ON(cv::fastNlMeansDenoisingColored(usrc_roi, udst_roi, h[0], h[0], templateWindowSize, searchWindowSize));
|
||||
|
||||
OCL_EXPECT_MATS_NEAR(dst, 1);
|
||||
}
|
||||
}
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoising,
|
||||
Combine(Values(1, 2, 3, 4), Values((int)NORM_L2, (int)NORM_L1),
|
||||
Bool(), Values(true)));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoising_hsep,
|
||||
Combine(Values(1, 2, 3, 4), Values((int)NORM_L2, (int)NORM_L1),
|
||||
Bool(), Values(true)));
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Photo, FastNlMeansDenoisingColored,
|
||||
Combine(Values(3, 4), Values((int)NORM_L2), Bool(), Values(false)));
|
||||
|
||||
} } // namespace opencv_test::ocl
|
||||
|
||||
#endif // HAVE_OPENCL
|
247
3rdparty/opencv-4.5.4/modules/photo/test/test_cloning.cpp
vendored
Normal file
247
3rdparty/opencv-4.5.4/modules/photo/test/test_cloning.cpp
vendored
Normal file
@ -0,0 +1,247 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
#define OUTPUT_SAVING 0
|
||||
#if OUTPUT_SAVING
|
||||
#define SAVE(x) std::vector<int> params;\
|
||||
params.push_back(16);\
|
||||
params.push_back(0);\
|
||||
imwrite(folder + "output.png", x ,params);
|
||||
#else
|
||||
#define SAVE(x)
|
||||
#endif
|
||||
|
||||
static const double numerical_precision = 0.05; // 95% of pixels should have exact values
|
||||
|
||||
TEST(Photo_SeamlessClone_normal, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Normal_Cloning/";
|
||||
string original_path1 = folder + "source1.png";
|
||||
string original_path2 = folder + "destination1.png";
|
||||
string original_path3 = folder + "mask.png";
|
||||
string reference_path = folder + "reference.png";
|
||||
|
||||
Mat source = imread(original_path1, IMREAD_COLOR);
|
||||
Mat destination = imread(original_path2, IMREAD_COLOR);
|
||||
Mat mask = imread(original_path3, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1;
|
||||
ASSERT_FALSE(destination.empty()) << "Could not load destination image " << original_path2;
|
||||
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path3;
|
||||
|
||||
Mat result;
|
||||
Point p;
|
||||
p.x = destination.size().width/2;
|
||||
p.y = destination.size().height/2;
|
||||
seamlessClone(source, destination, mask, p, result, 1);
|
||||
|
||||
Mat reference = imread(reference_path);
|
||||
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path;
|
||||
|
||||
SAVE(result);
|
||||
|
||||
double errorINF = cvtest::norm(reference, result, NORM_INF);
|
||||
EXPECT_LE(errorINF, 1);
|
||||
double errorL1 = cvtest::norm(reference, result, NORM_L1);
|
||||
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size();
|
||||
|
||||
mask = Scalar(0, 0, 0);
|
||||
seamlessClone(source, destination, mask, p, result, 1);
|
||||
|
||||
reference = destination;
|
||||
errorINF = cvtest::norm(reference, result, NORM_INF);
|
||||
EXPECT_LE(errorINF, 1);
|
||||
errorL1 = cvtest::norm(reference, result, NORM_L1);
|
||||
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size();
|
||||
}
|
||||
|
||||
TEST(Photo_SeamlessClone_mixed, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Mixed_Cloning/";
|
||||
string original_path1 = folder + "source1.png";
|
||||
string original_path2 = folder + "destination1.png";
|
||||
string original_path3 = folder + "mask.png";
|
||||
string reference_path = folder + "reference.png";
|
||||
|
||||
Mat source = imread(original_path1, IMREAD_COLOR);
|
||||
Mat destination = imread(original_path2, IMREAD_COLOR);
|
||||
Mat mask = imread(original_path3, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1;
|
||||
ASSERT_FALSE(destination.empty()) << "Could not load destination image " << original_path2;
|
||||
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path3;
|
||||
|
||||
Mat result;
|
||||
Point p;
|
||||
p.x = destination.size().width/2;
|
||||
p.y = destination.size().height/2;
|
||||
seamlessClone(source, destination, mask, p, result, 2);
|
||||
|
||||
SAVE(result);
|
||||
|
||||
Mat reference = imread(reference_path);
|
||||
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path;
|
||||
|
||||
double errorINF = cvtest::norm(reference, result, NORM_INF);
|
||||
EXPECT_LE(errorINF, 1);
|
||||
double errorL1 = cvtest::norm(reference, result, NORM_L1);
|
||||
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size();
|
||||
}
|
||||
|
||||
TEST(Photo_SeamlessClone_featureExchange, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Monochrome_Transfer/";
|
||||
string original_path1 = folder + "source1.png";
|
||||
string original_path2 = folder + "destination1.png";
|
||||
string original_path3 = folder + "mask.png";
|
||||
string reference_path = folder + "reference.png";
|
||||
|
||||
Mat source = imread(original_path1, IMREAD_COLOR);
|
||||
Mat destination = imread(original_path2, IMREAD_COLOR);
|
||||
Mat mask = imread(original_path3, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1;
|
||||
ASSERT_FALSE(destination.empty()) << "Could not load destination image " << original_path2;
|
||||
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path3;
|
||||
|
||||
Mat result;
|
||||
Point p;
|
||||
p.x = destination.size().width/2;
|
||||
p.y = destination.size().height/2;
|
||||
seamlessClone(source, destination, mask, p, result, 3);
|
||||
|
||||
SAVE(result);
|
||||
|
||||
Mat reference = imread(reference_path);
|
||||
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path;
|
||||
|
||||
double errorINF = cvtest::norm(reference, result, NORM_INF);
|
||||
EXPECT_LE(errorINF, 1);
|
||||
double errorL1 = cvtest::norm(reference, result, NORM_L1);
|
||||
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size();
|
||||
}
|
||||
|
||||
TEST(Photo_SeamlessClone_colorChange, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/color_change/";
|
||||
string original_path1 = folder + "source1.png";
|
||||
string original_path2 = folder + "mask.png";
|
||||
string reference_path = folder + "reference.png";
|
||||
|
||||
Mat source = imread(original_path1, IMREAD_COLOR);
|
||||
Mat mask = imread(original_path2, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1;
|
||||
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path2;
|
||||
|
||||
Mat result;
|
||||
colorChange(source, mask, result, 1.5, .5, .5);
|
||||
|
||||
SAVE(result);
|
||||
|
||||
Mat reference = imread(reference_path);
|
||||
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path;
|
||||
|
||||
double errorINF = cvtest::norm(reference, result, NORM_INF);
|
||||
EXPECT_LE(errorINF, 1);
|
||||
double errorL1 = cvtest::norm(reference, result, NORM_L1);
|
||||
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size();
|
||||
}
|
||||
|
||||
TEST(Photo_SeamlessClone_illuminationChange, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Illumination_Change/";
|
||||
string original_path1 = folder + "source1.png";
|
||||
string original_path2 = folder + "mask.png";
|
||||
string reference_path = folder + "reference.png";
|
||||
|
||||
Mat source = imread(original_path1, IMREAD_COLOR);
|
||||
Mat mask = imread(original_path2, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1;
|
||||
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path2;
|
||||
|
||||
Mat result;
|
||||
illuminationChange(source, mask, result, 0.2f, 0.4f);
|
||||
|
||||
SAVE(result);
|
||||
|
||||
Mat reference = imread(reference_path);
|
||||
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path;
|
||||
|
||||
double errorINF = cvtest::norm(reference, result, NORM_INF);
|
||||
EXPECT_LE(errorINF, 1);
|
||||
double errorL1 = cvtest::norm(reference, result, NORM_L1);
|
||||
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size();
|
||||
}
|
||||
|
||||
TEST(Photo_SeamlessClone_textureFlattening, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "cloning/Texture_Flattening/";
|
||||
string original_path1 = folder + "source1.png";
|
||||
string original_path2 = folder + "mask.png";
|
||||
string reference_path = folder + "reference.png";
|
||||
|
||||
Mat source = imread(original_path1, IMREAD_COLOR);
|
||||
Mat mask = imread(original_path2, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load source image " << original_path1;
|
||||
ASSERT_FALSE(mask.empty()) << "Could not load mask image " << original_path2;
|
||||
|
||||
Mat result;
|
||||
textureFlattening(source, mask, result, 30, 45, 3);
|
||||
|
||||
SAVE(result);
|
||||
|
||||
Mat reference = imread(reference_path);
|
||||
ASSERT_FALSE(reference.empty()) << "Could not load reference image " << reference_path;
|
||||
|
||||
double errorINF = cvtest::norm(reference, result, NORM_INF);
|
||||
EXPECT_LE(errorINF, 1);
|
||||
double errorL1 = cvtest::norm(reference, result, NORM_L1);
|
||||
EXPECT_LE(errorL1, reference.total() * numerical_precision) << "size=" << reference.size();
|
||||
}
|
||||
|
||||
}} // namespace
|
68
3rdparty/opencv-4.5.4/modules/photo/test/test_decolor.cpp
vendored
Normal file
68
3rdparty/opencv-4.5.4/modules/photo/test/test_decolor.cpp
vendored
Normal file
@ -0,0 +1,68 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
TEST(Photo_Decolor, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "decolor/";
|
||||
string original_path = folder + "color_image_1.png";
|
||||
|
||||
Mat original = imread(original_path, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path;
|
||||
ASSERT_EQ(3, original.channels()) << "Load color input image " << original_path;
|
||||
|
||||
Mat grayscale, color_boost;
|
||||
decolor(original, grayscale, color_boost);
|
||||
|
||||
Mat reference_grayscale = imread(folder + "grayscale_reference.png", 0 /* == grayscale image*/);
|
||||
double gray_psnr = cvtest::PSNR(reference_grayscale, grayscale);
|
||||
EXPECT_GT(gray_psnr, 60.0);
|
||||
|
||||
Mat reference_boost = imread(folder + "boost_reference.png");
|
||||
double boost_psnr = cvtest::PSNR(reference_boost, color_boost);
|
||||
EXPECT_GT(boost_psnr, 60.0);
|
||||
}
|
||||
|
||||
}} // namespace
|
129
3rdparty/opencv-4.5.4/modules/photo/test/test_denoise_tvl1.cpp
vendored
Normal file
129
3rdparty/opencv-4.5.4/modules/photo/test/test_denoise_tvl1.cpp
vendored
Normal file
@ -0,0 +1,129 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the OpenCV Foundation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
void make_noisy(const cv::Mat& img, cv::Mat& noisy, double sigma, double pepper_salt_ratio,cv::RNG& rng)
|
||||
{
|
||||
noisy.create(img.size(), img.type());
|
||||
cv::Mat noise(img.size(), img.type()), mask(img.size(), CV_8U);
|
||||
rng.fill(noise,cv::RNG::NORMAL,128.0,sigma);
|
||||
cv::addWeighted(img, 1, noise, 1, -128, noisy);
|
||||
cv::randn(noise, cv::Scalar::all(0), cv::Scalar::all(2));
|
||||
noise *= 255;
|
||||
cv::randu(mask, 0, cvRound(1./pepper_salt_ratio));
|
||||
cv::Mat half = mask.colRange(0, img.cols/2);
|
||||
half = cv::Scalar::all(1);
|
||||
noise.setTo(128, mask);
|
||||
cv::addWeighted(noisy, 1, noise, 1, -128, noisy);
|
||||
}
|
||||
|
||||
#if 0
|
||||
void make_spotty(cv::Mat& img,cv::RNG& rng, int r=3,int n=1000)
|
||||
{
|
||||
for(int i=0;i<n;i++)
|
||||
{
|
||||
int x=rng(img.cols-r),y=rng(img.rows-r);
|
||||
if(rng(2)==0)
|
||||
img(cv::Range(y,y+r),cv::Range(x,x+r))=(uchar)0;
|
||||
else
|
||||
img(cv::Range(y,y+r),cv::Range(x,x+r))=(uchar)255;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
bool validate_pixel(const cv::Mat& image,int x,int y,uchar val)
|
||||
{
|
||||
bool ok = std::abs(image.at<uchar>(x,y) - val) < 10;
|
||||
printf("test: image(%d,%d)=%d vs %d - %s\n",x,y,(int)image.at<uchar>(x,y),val,ok?"ok":"bad");
|
||||
return ok;
|
||||
}
|
||||
|
||||
TEST(Optim_denoise_tvl1, regression_basic)
|
||||
{
|
||||
cv::RNG rng(42);
|
||||
cv::Mat img = cv::imread(cvtest::TS::ptr()->get_data_path() + "shared/lena.png", 0), noisy, res;
|
||||
|
||||
ASSERT_FALSE(img.empty()) << "Error: can't open 'lena.png'";
|
||||
|
||||
const int obs_num=5;
|
||||
std::vector<cv::Mat> images(obs_num, cv::Mat());
|
||||
for(int i=0;i<(int)images.size();i++)
|
||||
{
|
||||
make_noisy(img,images[i], 20, 0.02,rng);
|
||||
//make_spotty(images[i],rng);
|
||||
}
|
||||
|
||||
//cv::imshow("test", images[0]);
|
||||
cv::denoise_TVL1(images, res);
|
||||
//cv::imshow("denoised", res);
|
||||
//cv::waitKey();
|
||||
|
||||
#if 0
|
||||
ASSERT_TRUE(validate_pixel(res,248,334,179));
|
||||
ASSERT_TRUE(validate_pixel(res,489,333,172));
|
||||
ASSERT_TRUE(validate_pixel(res,425,507,104));
|
||||
ASSERT_TRUE(validate_pixel(res,489,486,105));
|
||||
ASSERT_TRUE(validate_pixel(res,223,208,64));
|
||||
ASSERT_TRUE(validate_pixel(res,418,3,78));
|
||||
ASSERT_TRUE(validate_pixel(res,63,76,97));
|
||||
ASSERT_TRUE(validate_pixel(res,29,134,126));
|
||||
ASSERT_TRUE(validate_pixel(res,219,291,174));
|
||||
ASSERT_TRUE(validate_pixel(res,384,124,76));
|
||||
#endif
|
||||
|
||||
#if 1
|
||||
ASSERT_TRUE(validate_pixel(res,248,334,194));
|
||||
ASSERT_TRUE(validate_pixel(res,489,333,171));
|
||||
ASSERT_TRUE(validate_pixel(res,425,507,103));
|
||||
ASSERT_TRUE(validate_pixel(res,489,486,109));
|
||||
ASSERT_TRUE(validate_pixel(res,223,208,72));
|
||||
ASSERT_TRUE(validate_pixel(res,418,3,58));
|
||||
ASSERT_TRUE(validate_pixel(res,63,76,93));
|
||||
ASSERT_TRUE(validate_pixel(res,29,134,127));
|
||||
ASSERT_TRUE(validate_pixel(res,219,291,180));
|
||||
ASSERT_TRUE(validate_pixel(res,384,124,80));
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
}} // namespace
|
168
3rdparty/opencv-4.5.4/modules/photo/test/test_denoising.cpp
vendored
Normal file
168
3rdparty/opencv-4.5.4/modules/photo/test/test_denoising.cpp
vendored
Normal file
@ -0,0 +1,168 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
//#define DUMP_RESULTS
|
||||
|
||||
#ifdef DUMP_RESULTS
|
||||
# define DUMP(image, path) imwrite(path, image)
|
||||
#else
|
||||
# define DUMP(image, path)
|
||||
#endif
|
||||
|
||||
|
||||
TEST(Photo_DenoisingGrayscale, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
|
||||
string original_path = folder + "lena_noised_gaussian_sigma=10.png";
|
||||
string expected_path = folder + "lena_noised_denoised_grayscale_tw=7_sw=21_h=10.png";
|
||||
|
||||
Mat original = imread(original_path, IMREAD_GRAYSCALE);
|
||||
Mat expected = imread(expected_path, IMREAD_GRAYSCALE);
|
||||
|
||||
ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path;
|
||||
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
|
||||
|
||||
Mat result;
|
||||
fastNlMeansDenoising(original, result, 10);
|
||||
|
||||
DUMP(result, expected_path + ".res.png");
|
||||
|
||||
ASSERT_EQ(0, cvtest::norm(result, expected, NORM_L2));
|
||||
}
|
||||
|
||||
TEST(Photo_DenoisingColored, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
|
||||
string original_path = folder + "lena_noised_gaussian_sigma=10.png";
|
||||
string expected_path = folder + "lena_noised_denoised_lab12_tw=7_sw=21_h=10_h2=10.png";
|
||||
|
||||
Mat original = imread(original_path, IMREAD_COLOR);
|
||||
Mat expected = imread(expected_path, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(original.empty()) << "Could not load input image " << original_path;
|
||||
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
|
||||
|
||||
Mat result;
|
||||
fastNlMeansDenoisingColored(original, result, 10, 10);
|
||||
|
||||
DUMP(result, expected_path + ".res.png");
|
||||
|
||||
ASSERT_EQ(0, cvtest::norm(result, expected, NORM_L2));
|
||||
}
|
||||
|
||||
TEST(Photo_DenoisingGrayscaleMulti, regression)
|
||||
{
|
||||
const int imgs_count = 3;
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
|
||||
|
||||
string expected_path = folder + "lena_noised_denoised_multi_tw=7_sw=21_h=15.png";
|
||||
Mat expected = imread(expected_path, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
|
||||
|
||||
vector<Mat> original(imgs_count);
|
||||
for (int i = 0; i < imgs_count; i++)
|
||||
{
|
||||
string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i);
|
||||
original[i] = imread(original_path, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path;
|
||||
}
|
||||
|
||||
Mat result;
|
||||
fastNlMeansDenoisingMulti(original, result, imgs_count / 2, imgs_count, 15);
|
||||
|
||||
DUMP(result, expected_path + ".res.png");
|
||||
|
||||
ASSERT_EQ(0, cvtest::norm(result, expected, NORM_L2));
|
||||
}
|
||||
|
||||
TEST(Photo_DenoisingColoredMulti, regression)
|
||||
{
|
||||
const int imgs_count = 3;
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "denoising/";
|
||||
|
||||
string expected_path = folder + "lena_noised_denoised_multi_lab12_tw=7_sw=21_h=10_h2=15.png";
|
||||
Mat expected = imread(expected_path, IMREAD_COLOR);
|
||||
ASSERT_FALSE(expected.empty()) << "Could not load reference image " << expected_path;
|
||||
|
||||
vector<Mat> original(imgs_count);
|
||||
for (int i = 0; i < imgs_count; i++)
|
||||
{
|
||||
string original_path = format("%slena_noised_gaussian_sigma=20_multi_%d.png", folder.c_str(), i);
|
||||
original[i] = imread(original_path, IMREAD_COLOR);
|
||||
ASSERT_FALSE(original[i].empty()) << "Could not load input image " << original_path;
|
||||
}
|
||||
|
||||
Mat result;
|
||||
fastNlMeansDenoisingColoredMulti(original, result, imgs_count / 2, imgs_count, 10, 15);
|
||||
|
||||
DUMP(result, expected_path + ".res.png");
|
||||
|
||||
ASSERT_EQ(0, cvtest::norm(result, expected, NORM_L2));
|
||||
}
|
||||
|
||||
TEST(Photo_White, issue_2646)
|
||||
{
|
||||
cv::Mat img(50, 50, CV_8UC1, cv::Scalar::all(255));
|
||||
cv::Mat filtered;
|
||||
cv::fastNlMeansDenoising(img, filtered);
|
||||
|
||||
int nonWhitePixelsCount = (int)img.total() - cv::countNonZero(filtered == img);
|
||||
|
||||
ASSERT_EQ(0, nonWhitePixelsCount);
|
||||
}
|
||||
|
||||
TEST(Photo_Denoising, speed)
|
||||
{
|
||||
string imgname = string(cvtest::TS::ptr()->get_data_path()) + "shared/5MP.png";
|
||||
Mat src = imread(imgname, 0), dst;
|
||||
|
||||
double t = (double)getTickCount();
|
||||
fastNlMeansDenoising(src, dst, 5, 7, 21);
|
||||
t = (double)getTickCount() - t;
|
||||
printf("execution time: %gms\n", t*1000./getTickFrequency());
|
||||
}
|
||||
|
||||
}} // namespace
|
120
3rdparty/opencv-4.5.4/modules/photo/test/test_denoising.cuda.cpp
vendored
Normal file
120
3rdparty/opencv-4.5.4/modules/photo/test/test_denoising.cuda.cpp
vendored
Normal file
@ -0,0 +1,120 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#include "opencv2/photo/cuda.hpp"
|
||||
#include "opencv2/ts/cuda_test.hpp"
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include "cvconfig.h"
|
||||
|
||||
#if defined (HAVE_CUDA) && defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAIMGPROC)
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Brute Force Non local means
|
||||
|
||||
TEST(CUDA_BruteForceNonLocalMeans, Regression)
|
||||
{
|
||||
using cv::cuda::GpuMat;
|
||||
|
||||
cv::Mat bgr = readImage("../gpu/denoising/lena_noised_gaussian_sigma=20_multi_0.png", cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(bgr.empty());
|
||||
cv::resize(bgr, bgr, cv::Size(256, 256));
|
||||
|
||||
cv::Mat gray;
|
||||
cv::cvtColor(bgr, gray, cv::COLOR_BGR2GRAY);
|
||||
|
||||
GpuMat dbgr, dgray;
|
||||
cv::cuda::nonLocalMeans(GpuMat(bgr), dbgr, 20);
|
||||
cv::cuda::nonLocalMeans(GpuMat(gray), dgray, 20);
|
||||
|
||||
#if 0
|
||||
dumpImage("../gpu/denoising/nlm_denoised_lena_bgr.png", cv::Mat(dbgr));
|
||||
dumpImage("../gpu/denoising/nlm_denoised_lena_gray.png", cv::Mat(dgray));
|
||||
#endif
|
||||
|
||||
cv::Mat bgr_gold = readImage("../gpu/denoising/nlm_denoised_lena_bgr.png", cv::IMREAD_COLOR);
|
||||
cv::Mat gray_gold = readImage("../gpu/denoising/nlm_denoised_lena_gray.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(bgr_gold.empty() || gray_gold.empty());
|
||||
cv::resize(bgr_gold, bgr_gold, cv::Size(256, 256));
|
||||
cv::resize(gray_gold, gray_gold, cv::Size(256, 256));
|
||||
|
||||
EXPECT_MAT_NEAR(bgr_gold, dbgr, 1);
|
||||
EXPECT_MAT_NEAR(gray_gold, dgray, 1);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// Fast Force Non local means
|
||||
|
||||
TEST(CUDA_FastNonLocalMeans, Regression)
|
||||
{
|
||||
using cv::cuda::GpuMat;
|
||||
|
||||
cv::Mat bgr = readImage("../gpu/denoising/lena_noised_gaussian_sigma=20_multi_0.png", cv::IMREAD_COLOR);
|
||||
ASSERT_FALSE(bgr.empty());
|
||||
|
||||
cv::Mat gray;
|
||||
cv::cvtColor(bgr, gray, cv::COLOR_BGR2GRAY);
|
||||
|
||||
GpuMat dbgr, dgray;
|
||||
|
||||
cv::cuda::fastNlMeansDenoising(GpuMat(gray), dgray, 20);
|
||||
cv::cuda::fastNlMeansDenoisingColored(GpuMat(bgr), dbgr, 20, 10);
|
||||
|
||||
#if 0
|
||||
dumpImage("../gpu/denoising/fnlm_denoised_lena_bgr.png", cv::Mat(dbgr));
|
||||
dumpImage("../gpu/denoising/fnlm_denoised_lena_gray.png", cv::Mat(dgray));
|
||||
#endif
|
||||
|
||||
cv::Mat bgr_gold = readImage("../gpu/denoising/fnlm_denoised_lena_bgr.png", cv::IMREAD_COLOR);
|
||||
cv::Mat gray_gold = readImage("../gpu/denoising/fnlm_denoised_lena_gray.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(bgr_gold.empty() || gray_gold.empty());
|
||||
|
||||
EXPECT_MAT_NEAR(bgr_gold, dbgr, 1);
|
||||
EXPECT_MAT_NEAR(gray_gold, dgray, 1);
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
#endif // HAVE_CUDA
|
269
3rdparty/opencv-4.5.4/modules/photo/test/test_hdr.cpp
vendored
Normal file
269
3rdparty/opencv-4.5.4/modules/photo/test/test_hdr.cpp
vendored
Normal file
@ -0,0 +1,269 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
void loadImage(string path, Mat &img)
|
||||
{
|
||||
img = imread(path, -1);
|
||||
ASSERT_FALSE(img.empty()) << "Could not load input image " << path;
|
||||
}
|
||||
|
||||
void checkEqual(Mat img0, Mat img1, double threshold, const string& name)
|
||||
{
|
||||
double max = 1.0;
|
||||
minMaxLoc(abs(img0 - img1), NULL, &max);
|
||||
ASSERT_FALSE(max > threshold) << "max=" << max << " threshold=" << threshold << " method=" << name;
|
||||
}
|
||||
|
||||
static vector<float> DEFAULT_VECTOR;
|
||||
void loadExposureSeq(String path, vector<Mat>& images, vector<float>& times = DEFAULT_VECTOR)
|
||||
{
|
||||
std::ifstream list_file((path + "list.txt").c_str());
|
||||
ASSERT_TRUE(list_file.is_open());
|
||||
string name;
|
||||
float val;
|
||||
while(list_file >> name >> val) {
|
||||
Mat img = imread(path + name);
|
||||
ASSERT_FALSE(img.empty()) << "Could not load input image " << path + name;
|
||||
images.push_back(img);
|
||||
times.push_back(1 / val);
|
||||
}
|
||||
list_file.close();
|
||||
}
|
||||
|
||||
void loadResponseCSV(String path, Mat& response)
|
||||
{
|
||||
response = Mat(256, 1, CV_32FC3);
|
||||
std::ifstream resp_file(path.c_str());
|
||||
for(int i = 0; i < 256; i++) {
|
||||
for(int c = 0; c < 3; c++) {
|
||||
resp_file >> response.at<Vec3f>(i)[c];
|
||||
resp_file.ignore(1);
|
||||
}
|
||||
}
|
||||
resp_file.close();
|
||||
}
|
||||
|
||||
TEST(Photo_Tonemap, regression)
|
||||
{
|
||||
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/tonemap/";
|
||||
|
||||
Mat img, expected, result;
|
||||
loadImage(test_path + "image.hdr", img);
|
||||
float gamma = 2.2f;
|
||||
|
||||
Ptr<Tonemap> linear = createTonemap(gamma);
|
||||
linear->process(img, result);
|
||||
loadImage(test_path + "linear.png", expected);
|
||||
result.convertTo(result, CV_8UC3, 255);
|
||||
checkEqual(result, expected, 3, "Simple");
|
||||
|
||||
Ptr<TonemapDrago> drago = createTonemapDrago(gamma);
|
||||
drago->process(img, result);
|
||||
loadImage(test_path + "drago.png", expected);
|
||||
result.convertTo(result, CV_8UC3, 255);
|
||||
checkEqual(result, expected, 3, "Drago");
|
||||
|
||||
Ptr<TonemapReinhard> reinhard = createTonemapReinhard(gamma);
|
||||
reinhard->process(img, result);
|
||||
loadImage(test_path + "reinhard.png", expected);
|
||||
result.convertTo(result, CV_8UC3, 255);
|
||||
checkEqual(result, expected, 3, "Reinhard");
|
||||
|
||||
Ptr<TonemapMantiuk> mantiuk = createTonemapMantiuk(gamma);
|
||||
mantiuk->process(img, result);
|
||||
loadImage(test_path + "mantiuk.png", expected);
|
||||
result.convertTo(result, CV_8UC3, 255);
|
||||
checkEqual(result, expected, 3, "Mantiuk");
|
||||
}
|
||||
|
||||
TEST(Photo_AlignMTB, regression)
|
||||
{
|
||||
const int TESTS_COUNT = 100;
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "shared/";
|
||||
|
||||
string file_name = folder + "lena.png";
|
||||
Mat img;
|
||||
loadImage(file_name, img);
|
||||
cvtColor(img, img, COLOR_RGB2GRAY);
|
||||
|
||||
int max_bits = 5;
|
||||
int max_shift = 32;
|
||||
srand(static_cast<unsigned>(time(0)));
|
||||
int errors = 0;
|
||||
|
||||
Ptr<AlignMTB> align = createAlignMTB(max_bits);
|
||||
RNG rng = theRNG();
|
||||
|
||||
for(int i = 0; i < TESTS_COUNT; i++) {
|
||||
Point shift(rng.uniform(0, max_shift), rng.uniform(0, max_shift));
|
||||
Mat res;
|
||||
align->shiftMat(img, res, shift);
|
||||
Point calc = align->calculateShift(img, res);
|
||||
errors += (calc != -shift);
|
||||
}
|
||||
ASSERT_TRUE(errors < 5) << errors << " errors";
|
||||
}
|
||||
|
||||
TEST(Photo_MergeMertens, regression)
|
||||
{
|
||||
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
|
||||
vector<Mat> images;
|
||||
loadExposureSeq((test_path + "exposures/").c_str() , images);
|
||||
|
||||
Ptr<MergeMertens> merge = createMergeMertens();
|
||||
|
||||
Mat result, expected;
|
||||
loadImage(test_path + "merge/mertens.png", expected);
|
||||
merge->process(images, result);
|
||||
result.convertTo(result, CV_8UC3, 255);
|
||||
checkEqual(expected, result, 3, "Mertens");
|
||||
|
||||
Mat uniform(100, 100, CV_8UC3);
|
||||
uniform = Scalar(0, 255, 0);
|
||||
|
||||
images.clear();
|
||||
images.push_back(uniform);
|
||||
|
||||
merge->process(images, result);
|
||||
result.convertTo(result, CV_8UC3, 255);
|
||||
checkEqual(uniform, result, 1e-2f, "Mertens");
|
||||
}
|
||||
|
||||
TEST(Photo_MergeDebevec, regression)
|
||||
{
|
||||
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
|
||||
vector<Mat> images;
|
||||
vector<float> times;
|
||||
Mat response;
|
||||
loadExposureSeq(test_path + "exposures/", images, times);
|
||||
loadResponseCSV(test_path + "exposures/response.csv", response);
|
||||
|
||||
Ptr<MergeDebevec> merge = createMergeDebevec();
|
||||
|
||||
Mat result, expected;
|
||||
loadImage(test_path + "merge/debevec.hdr", expected);
|
||||
merge->process(images, result, times, response);
|
||||
|
||||
Ptr<Tonemap> map = createTonemap();
|
||||
map->process(result, result);
|
||||
map->process(expected, expected);
|
||||
|
||||
checkEqual(expected, result, 1e-2f, "Debevec");
|
||||
}
|
||||
|
||||
TEST(Photo_MergeRobertson, regression)
|
||||
{
|
||||
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
|
||||
vector<Mat> images;
|
||||
vector<float> times;
|
||||
loadExposureSeq(test_path + "exposures/", images, times);
|
||||
Ptr<MergeRobertson> merge = createMergeRobertson();
|
||||
Mat result, expected;
|
||||
loadImage(test_path + "merge/robertson.hdr", expected);
|
||||
merge->process(images, result, times);
|
||||
|
||||
const float eps = 6.f;
|
||||
checkEqual(expected, result, eps, "MergeRobertson");
|
||||
}
|
||||
|
||||
TEST(Photo_CalibrateDebevec, regression)
|
||||
{
|
||||
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
|
||||
vector<Mat> images;
|
||||
vector<float> times;
|
||||
Mat response, expected;
|
||||
loadExposureSeq(test_path + "exposures/", images, times);
|
||||
loadResponseCSV(test_path + "calibrate/debevec.csv", expected);
|
||||
Ptr<CalibrateDebevec> calibrate = createCalibrateDebevec();
|
||||
|
||||
calibrate->process(images, response, times);
|
||||
Mat diff = abs(response - expected);
|
||||
diff = diff.mul(1.0f / response);
|
||||
double max;
|
||||
minMaxLoc(diff, NULL, &max);
|
||||
#if defined(__arm__) || defined(__aarch64__)
|
||||
ASSERT_LT(max, 0.131);
|
||||
#else
|
||||
ASSERT_LT(max, 0.1);
|
||||
#endif
|
||||
}
|
||||
|
||||
TEST(Photo_CalibrateRobertson, regression)
|
||||
{
|
||||
string test_path = string(cvtest::TS::ptr()->get_data_path()) + "hdr/";
|
||||
|
||||
vector<Mat> images;
|
||||
vector<float> times;
|
||||
Mat response, expected;
|
||||
loadExposureSeq(test_path + "exposures/", images, times);
|
||||
loadResponseCSV(test_path + "calibrate/robertson.csv", expected);
|
||||
|
||||
Ptr<CalibrateRobertson> calibrate = createCalibrateRobertson();
|
||||
calibrate->process(images, response, times);
|
||||
checkEqual(expected, response, 1e-1f, "CalibrateRobertson");
|
||||
}
|
||||
|
||||
TEST(Photo_CalibrateRobertson, bug_18180)
|
||||
{
|
||||
vector<Mat> images;
|
||||
vector<cv::String> fn;
|
||||
string test_path = cvtest::TS::ptr()->get_data_path() + "hdr/exposures/bug_18180/";
|
||||
for(int i = 1; i <= 4; ++i)
|
||||
images.push_back(imread(test_path + std::to_string(i) + ".jpg"));
|
||||
vector<float> times {15.0f, 2.5f, 0.25f, 0.33f};
|
||||
Mat response, expected;
|
||||
Ptr<CalibrateRobertson> calibrate = createCalibrateRobertson(2, 0.01f);
|
||||
calibrate->process(images, response, times);
|
||||
Mat response_no_nans = response.clone();
|
||||
patchNaNs(response_no_nans);
|
||||
// since there should be no NaNs, original response vs. response with NaNs patched should be identical
|
||||
EXPECT_EQ(0.0, cv::norm(response, response_no_nans, NORM_L2));
|
||||
}
|
||||
|
||||
}} // namespace
|
160
3rdparty/opencv-4.5.4/modules/photo/test/test_inpaint.cpp
vendored
Normal file
160
3rdparty/opencv-4.5.4/modules/photo/test/test_inpaint.cpp
vendored
Normal file
@ -0,0 +1,160 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
class CV_InpaintTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_InpaintTest();
|
||||
~CV_InpaintTest();
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_InpaintTest::CV_InpaintTest()
|
||||
{
|
||||
}
|
||||
CV_InpaintTest::~CV_InpaintTest() {}
|
||||
|
||||
void CV_InpaintTest::run( int )
|
||||
{
|
||||
string folder = string(ts->get_data_path()) + "inpaint/";
|
||||
Mat orig = imread(folder + "orig.png");
|
||||
Mat exp1 = imread(folder + "exp1.png");
|
||||
Mat exp2 = imread(folder + "exp2.png");
|
||||
Mat mask = imread(folder + "mask.png");
|
||||
|
||||
if (orig.empty() || exp1.empty() || exp2.empty() || mask.empty())
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
Mat inv_mask;
|
||||
mask.convertTo(inv_mask, CV_8UC3, -1.0, 255.0);
|
||||
|
||||
Mat mask1ch;
|
||||
cv::cvtColor(mask, mask1ch, COLOR_BGR2GRAY);
|
||||
|
||||
Mat test = orig.clone();
|
||||
test.setTo(Scalar::all(255), mask1ch);
|
||||
|
||||
Mat res1, res2;
|
||||
inpaint( test, mask1ch, res1, 5, INPAINT_NS );
|
||||
inpaint( test, mask1ch, res2, 5, INPAINT_TELEA );
|
||||
|
||||
Mat diff1, diff2;
|
||||
absdiff( orig, res1, diff1 );
|
||||
absdiff( orig, res2, diff2 );
|
||||
|
||||
double n1 = cvtest::norm(diff1.reshape(1), NORM_INF, inv_mask.reshape(1));
|
||||
double n2 = cvtest::norm(diff2.reshape(1), NORM_INF, inv_mask.reshape(1));
|
||||
|
||||
if (n1 != 0 || n2 != 0)
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||||
return;
|
||||
}
|
||||
|
||||
absdiff( exp1, res1, diff1 );
|
||||
absdiff( exp2, res2, diff2 );
|
||||
|
||||
n1 = cvtest::norm(diff1.reshape(1), NORM_INF, mask.reshape(1));
|
||||
n2 = cvtest::norm(diff2.reshape(1), NORM_INF, mask.reshape(1));
|
||||
|
||||
const int jpeg_thres = 3;
|
||||
if (n1 > jpeg_thres || n2 > jpeg_thres)
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
TEST(Photo_Inpaint, regression) { CV_InpaintTest test; test.safe_run(); }
|
||||
|
||||
typedef testing::TestWithParam<tuple<int> > formats;
|
||||
|
||||
TEST_P(formats, 1c)
|
||||
{
|
||||
const int type = get<0>(GetParam());
|
||||
Mat src(100, 100, type);
|
||||
src.setTo(Scalar::all(128));
|
||||
Mat ref = src.clone();
|
||||
Mat dst, mask = Mat::zeros(src.size(), CV_8U);
|
||||
|
||||
circle(src, Point(50, 50), 5, Scalar(200), 6);
|
||||
circle(mask, Point(50, 50), 5, Scalar(200), 6);
|
||||
inpaint(src, mask, dst, 10, INPAINT_NS);
|
||||
|
||||
Mat dst2;
|
||||
inpaint(src, mask, dst2, 10, INPAINT_TELEA);
|
||||
|
||||
ASSERT_LE(cv::norm(dst, ref, NORM_INF), 3.);
|
||||
ASSERT_LE(cv::norm(dst2, ref, NORM_INF), 3.);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(Photo_Inpaint, formats, testing::Values(CV_32F, CV_16U, CV_8U));
|
||||
|
||||
TEST(Photo_InpaintBorders, regression)
|
||||
{
|
||||
Mat img(64, 64, CV_8U);
|
||||
img = 128;
|
||||
img(Rect(0, 0, 16, 64)) = 0;
|
||||
|
||||
Mat mask(64, 64, CV_8U);
|
||||
mask = 0;
|
||||
mask(Rect(0, 0, 16, 64)) = 255;
|
||||
|
||||
Mat inpainted;
|
||||
inpaint(img, mask, inpainted, 1, INPAINT_TELEA);
|
||||
|
||||
Mat diff;
|
||||
cv::absdiff(inpainted, 128*Mat::ones(inpainted.size(), inpainted.type()), diff);
|
||||
ASSERT_TRUE(countNonZero(diff) == 0);
|
||||
}
|
||||
|
||||
}} // namespace
|
10
3rdparty/opencv-4.5.4/modules/photo/test/test_main.cpp
vendored
Normal file
10
3rdparty/opencv-4.5.4/modules/photo/test/test_main.cpp
vendored
Normal file
@ -0,0 +1,10 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#if defined(HAVE_HPX)
|
||||
#include <hpx/hpx_main.hpp>
|
||||
#endif
|
||||
|
||||
CV_TEST_MAIN("cv")
|
140
3rdparty/opencv-4.5.4/modules/photo/test/test_npr.cpp
vendored
Normal file
140
3rdparty/opencv-4.5.4/modules/photo/test/test_npr.cpp
vendored
Normal file
@ -0,0 +1,140 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
static const double numerical_precision = 100.;
|
||||
|
||||
TEST(Photo_NPR_EdgePreserveSmoothing_RecursiveFilter, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
|
||||
string original_path = folder + "test1.png";
|
||||
|
||||
Mat source = imread(original_path, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
|
||||
|
||||
Mat result;
|
||||
edgePreservingFilter(source,result,1);
|
||||
|
||||
Mat reference = imread(folder + "smoothened_RF_reference.png");
|
||||
|
||||
double psnr = cvtest::PSNR(reference, result);
|
||||
EXPECT_GT(psnr, 60.0);
|
||||
}
|
||||
|
||||
TEST(Photo_NPR_EdgePreserveSmoothing_NormConvFilter, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
|
||||
string original_path = folder + "test1.png";
|
||||
|
||||
Mat source = imread(original_path, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
|
||||
|
||||
Mat result;
|
||||
edgePreservingFilter(source,result,2);
|
||||
|
||||
Mat reference = imread(folder + "smoothened_NCF_reference.png");
|
||||
|
||||
double psnr = cvtest::PSNR(reference, result);
|
||||
EXPECT_GT(psnr, 60.0);
|
||||
}
|
||||
|
||||
TEST(Photo_NPR_DetailEnhance, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
|
||||
string original_path = folder + "test1.png";
|
||||
|
||||
Mat source = imread(original_path, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
|
||||
|
||||
Mat result;
|
||||
detailEnhance(source,result);
|
||||
|
||||
Mat reference = imread(folder + "detail_enhanced_reference.png");
|
||||
double psnr = cvtest::PSNR(reference, result);
|
||||
EXPECT_GT(psnr, 60.0);
|
||||
}
|
||||
|
||||
TEST(Photo_NPR_PencilSketch, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
|
||||
string original_path = folder + "test1.png";
|
||||
|
||||
Mat source = imread(original_path, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
|
||||
|
||||
Mat pencil_result, color_pencil_result;
|
||||
pencilSketch(source,pencil_result, color_pencil_result, 10, 0.1f, 0.03f);
|
||||
|
||||
Mat pencil_reference = imread(folder + "pencil_sketch_reference.png", 0 /* == grayscale*/);
|
||||
double pencil_error = cvtest::norm(pencil_reference, pencil_result, NORM_L1);
|
||||
EXPECT_LE(pencil_error, numerical_precision);
|
||||
|
||||
Mat color_pencil_reference = imread(folder + "color_pencil_sketch_reference.png");
|
||||
double color_pencil_error = cvtest::norm(color_pencil_reference, color_pencil_result, NORM_L1);
|
||||
EXPECT_LE(color_pencil_error, numerical_precision);
|
||||
}
|
||||
|
||||
TEST(Photo_NPR_Stylization, regression)
|
||||
{
|
||||
string folder = string(cvtest::TS::ptr()->get_data_path()) + "npr/";
|
||||
string original_path = folder + "test1.png";
|
||||
|
||||
Mat source = imread(original_path, IMREAD_COLOR);
|
||||
|
||||
ASSERT_FALSE(source.empty()) << "Could not load input image " << original_path;
|
||||
|
||||
Mat result;
|
||||
stylization(source,result);
|
||||
|
||||
Mat stylized_reference = imread(folder + "stylized_reference.png");
|
||||
double stylized_error = cvtest::norm(stylized_reference, result, NORM_L1);
|
||||
EXPECT_LE(stylized_error, numerical_precision);
|
||||
|
||||
}
|
||||
|
||||
}} // namespace
|
10
3rdparty/opencv-4.5.4/modules/photo/test/test_precomp.hpp
vendored
Normal file
10
3rdparty/opencv-4.5.4/modules/photo/test/test_precomp.hpp
vendored
Normal file
@ -0,0 +1,10 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#ifndef __OPENCV_TEST_PRECOMP_HPP__
|
||||
#define __OPENCV_TEST_PRECOMP_HPP__
|
||||
|
||||
#include "opencv2/ts.hpp"
|
||||
#include "opencv2/photo.hpp"
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user