feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
74
3rdparty/opencv-4.5.4/modules/python/test/test_kmeans.py
vendored
Normal file
74
3rdparty/opencv-4.5.4/modules/python/test/test_kmeans.py
vendored
Normal file
@ -0,0 +1,74 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
K-means clusterization test
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
from numpy import random
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
if PY3:
|
||||
xrange = range
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
def make_gaussians(cluster_n, img_size):
|
||||
points = []
|
||||
ref_distrs = []
|
||||
sizes = []
|
||||
for _ in xrange(cluster_n):
|
||||
mean = (0.1 + 0.8*random.rand(2)) * img_size
|
||||
a = (random.rand(2, 2)-0.5)*img_size*0.1
|
||||
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
|
||||
n = 100 + random.randint(900)
|
||||
pts = random.multivariate_normal(mean, cov, n)
|
||||
points.append( pts )
|
||||
ref_distrs.append( (mean, cov) )
|
||||
sizes.append(n)
|
||||
points = np.float32( np.vstack(points) )
|
||||
return points, ref_distrs, sizes
|
||||
|
||||
def getMainLabelConfidence(labels, nLabels):
|
||||
|
||||
n = len(labels)
|
||||
labelsDict = dict.fromkeys(range(nLabels), 0)
|
||||
labelsConfDict = dict.fromkeys(range(nLabels))
|
||||
|
||||
for i in range(n):
|
||||
labelsDict[labels[i][0]] += 1
|
||||
|
||||
for i in range(nLabels):
|
||||
labelsConfDict[i] = float(labelsDict[i]) / n
|
||||
|
||||
return max(labelsConfDict.values())
|
||||
|
||||
class kmeans_test(NewOpenCVTests):
|
||||
|
||||
def test_kmeans(self):
|
||||
|
||||
np.random.seed(10)
|
||||
|
||||
cluster_n = 5
|
||||
img_size = 512
|
||||
|
||||
points, _, clusterSizes = make_gaussians(cluster_n, img_size)
|
||||
|
||||
term_crit = (cv.TERM_CRITERIA_EPS, 30, 0.1)
|
||||
_ret, labels, centers = cv.kmeans(points, cluster_n, None, term_crit, 10, 0)
|
||||
|
||||
self.assertEqual(len(centers), cluster_n)
|
||||
|
||||
offset = 0
|
||||
for i in range(cluster_n):
|
||||
confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n)
|
||||
offset += clusterSizes[i]
|
||||
self.assertGreater(confidence, 0.9)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
Reference in New Issue
Block a user