feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
59
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video.hpp
vendored
Normal file
59
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video.hpp
vendored
Normal file
@ -0,0 +1,59 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_VIDEO_HPP
|
||||
#define OPENCV_VIDEO_HPP
|
||||
|
||||
/**
|
||||
@defgroup video Video Analysis
|
||||
@{
|
||||
@defgroup video_motion Motion Analysis
|
||||
@defgroup video_track Object Tracking
|
||||
@defgroup video_c C API
|
||||
@}
|
||||
*/
|
||||
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/video/background_segm.hpp"
|
||||
|
||||
#endif //OPENCV_VIDEO_HPP
|
317
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/background_segm.hpp
vendored
Normal file
317
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/background_segm.hpp
vendored
Normal file
@ -0,0 +1,317 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_BACKGROUND_SEGM_HPP
|
||||
#define OPENCV_BACKGROUND_SEGM_HPP
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup video_motion
|
||||
//! @{
|
||||
|
||||
/** @brief Base class for background/foreground segmentation. :
|
||||
|
||||
The class is only used to define the common interface for the whole family of background/foreground
|
||||
segmentation algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractor : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Computes a foreground mask.
|
||||
|
||||
@param image Next video frame.
|
||||
@param fgmask The output foreground mask as an 8-bit binary image.
|
||||
@param learningRate The value between 0 and 1 that indicates how fast the background model is
|
||||
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
|
||||
rate. 0 means that the background model is not updated at all, 1 means that the background model
|
||||
is completely reinitialized from the last frame.
|
||||
*/
|
||||
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) = 0;
|
||||
|
||||
/** @brief Computes a background image.
|
||||
|
||||
@param backgroundImage The output background image.
|
||||
|
||||
@note Sometimes the background image can be very blurry, as it contain the average background
|
||||
statistics.
|
||||
*/
|
||||
CV_WRAP virtual void getBackgroundImage(OutputArray backgroundImage) const = 0;
|
||||
};
|
||||
|
||||
|
||||
/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
|
||||
|
||||
The class implements the Gaussian mixture model background subtraction described in @cite Zivkovic2004
|
||||
and @cite Zivkovic2006 .
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractorMOG2 : public BackgroundSubtractor
|
||||
{
|
||||
public:
|
||||
/** @brief Returns the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual int getHistory() const = 0;
|
||||
/** @brief Sets the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual void setHistory(int history) = 0;
|
||||
|
||||
/** @brief Returns the number of gaussian components in the background model
|
||||
*/
|
||||
CV_WRAP virtual int getNMixtures() const = 0;
|
||||
/** @brief Sets the number of gaussian components in the background model.
|
||||
|
||||
The model needs to be reinitalized to reserve memory.
|
||||
*/
|
||||
CV_WRAP virtual void setNMixtures(int nmixtures) = 0;//needs reinitialization!
|
||||
|
||||
/** @brief Returns the "background ratio" parameter of the algorithm
|
||||
|
||||
If a foreground pixel keeps semi-constant value for about backgroundRatio\*history frames, it's
|
||||
considered background and added to the model as a center of a new component. It corresponds to TB
|
||||
parameter in the paper.
|
||||
*/
|
||||
CV_WRAP virtual double getBackgroundRatio() const = 0;
|
||||
/** @brief Sets the "background ratio" parameter of the algorithm
|
||||
*/
|
||||
CV_WRAP virtual void setBackgroundRatio(double ratio) = 0;
|
||||
|
||||
/** @brief Returns the variance threshold for the pixel-model match
|
||||
|
||||
The main threshold on the squared Mahalanobis distance to decide if the sample is well described by
|
||||
the background model or not. Related to Cthr from the paper.
|
||||
*/
|
||||
CV_WRAP virtual double getVarThreshold() const = 0;
|
||||
/** @brief Sets the variance threshold for the pixel-model match
|
||||
*/
|
||||
CV_WRAP virtual void setVarThreshold(double varThreshold) = 0;
|
||||
|
||||
/** @brief Returns the variance threshold for the pixel-model match used for new mixture component generation
|
||||
|
||||
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the
|
||||
existing components (corresponds to Tg in the paper). If a pixel is not close to any component, it
|
||||
is considered foreground or added as a new component. 3 sigma =\> Tg=3\*3=9 is default. A smaller Tg
|
||||
value generates more components. A higher Tg value may result in a small number of components but
|
||||
they can grow too large.
|
||||
*/
|
||||
CV_WRAP virtual double getVarThresholdGen() const = 0;
|
||||
/** @brief Sets the variance threshold for the pixel-model match used for new mixture component generation
|
||||
*/
|
||||
CV_WRAP virtual void setVarThresholdGen(double varThresholdGen) = 0;
|
||||
|
||||
/** @brief Returns the initial variance of each gaussian component
|
||||
*/
|
||||
CV_WRAP virtual double getVarInit() const = 0;
|
||||
/** @brief Sets the initial variance of each gaussian component
|
||||
*/
|
||||
CV_WRAP virtual void setVarInit(double varInit) = 0;
|
||||
|
||||
CV_WRAP virtual double getVarMin() const = 0;
|
||||
CV_WRAP virtual void setVarMin(double varMin) = 0;
|
||||
|
||||
CV_WRAP virtual double getVarMax() const = 0;
|
||||
CV_WRAP virtual void setVarMax(double varMax) = 0;
|
||||
|
||||
/** @brief Returns the complexity reduction threshold
|
||||
|
||||
This parameter defines the number of samples needed to accept to prove the component exists. CT=0.05
|
||||
is a default value for all the samples. By setting CT=0 you get an algorithm very similar to the
|
||||
standard Stauffer&Grimson algorithm.
|
||||
*/
|
||||
CV_WRAP virtual double getComplexityReductionThreshold() const = 0;
|
||||
/** @brief Sets the complexity reduction threshold
|
||||
*/
|
||||
CV_WRAP virtual void setComplexityReductionThreshold(double ct) = 0;
|
||||
|
||||
/** @brief Returns the shadow detection flag
|
||||
|
||||
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorMOG2 for
|
||||
details.
|
||||
*/
|
||||
CV_WRAP virtual bool getDetectShadows() const = 0;
|
||||
/** @brief Enables or disables shadow detection
|
||||
*/
|
||||
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
|
||||
|
||||
/** @brief Returns the shadow value
|
||||
|
||||
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
|
||||
in the mask always means background, 255 means foreground.
|
||||
*/
|
||||
CV_WRAP virtual int getShadowValue() const = 0;
|
||||
/** @brief Sets the shadow value
|
||||
*/
|
||||
CV_WRAP virtual void setShadowValue(int value) = 0;
|
||||
|
||||
/** @brief Returns the shadow threshold
|
||||
|
||||
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
|
||||
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
|
||||
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
|
||||
*Detecting Moving Shadows...*, IEEE PAMI,2003.
|
||||
*/
|
||||
CV_WRAP virtual double getShadowThreshold() const = 0;
|
||||
/** @brief Sets the shadow threshold
|
||||
*/
|
||||
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
|
||||
|
||||
/** @brief Computes a foreground mask.
|
||||
|
||||
@param image Next video frame. Floating point frame will be used without scaling and should be in range \f$[0,255]\f$.
|
||||
@param fgmask The output foreground mask as an 8-bit binary image.
|
||||
@param learningRate The value between 0 and 1 that indicates how fast the background model is
|
||||
learnt. Negative parameter value makes the algorithm to use some automatically chosen learning
|
||||
rate. 0 means that the background model is not updated at all, 1 means that the background model
|
||||
is completely reinitialized from the last frame.
|
||||
*/
|
||||
CV_WRAP virtual void apply(InputArray image, OutputArray fgmask, double learningRate=-1) CV_OVERRIDE = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates MOG2 Background Subtractor
|
||||
|
||||
@param history Length of the history.
|
||||
@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model
|
||||
to decide whether a pixel is well described by the background model. This parameter does not
|
||||
affect the background update.
|
||||
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
|
||||
speed a bit, so if you do not need this feature, set the parameter to false.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<BackgroundSubtractorMOG2>
|
||||
createBackgroundSubtractorMOG2(int history=500, double varThreshold=16,
|
||||
bool detectShadows=true);
|
||||
|
||||
/** @brief K-nearest neighbours - based Background/Foreground Segmentation Algorithm.
|
||||
|
||||
The class implements the K-nearest neighbours background subtraction described in @cite Zivkovic2006 .
|
||||
Very efficient if number of foreground pixels is low.
|
||||
*/
|
||||
class CV_EXPORTS_W BackgroundSubtractorKNN : public BackgroundSubtractor
|
||||
{
|
||||
public:
|
||||
/** @brief Returns the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual int getHistory() const = 0;
|
||||
/** @brief Sets the number of last frames that affect the background model
|
||||
*/
|
||||
CV_WRAP virtual void setHistory(int history) = 0;
|
||||
|
||||
/** @brief Returns the number of data samples in the background model
|
||||
*/
|
||||
CV_WRAP virtual int getNSamples() const = 0;
|
||||
/** @brief Sets the number of data samples in the background model.
|
||||
|
||||
The model needs to be reinitalized to reserve memory.
|
||||
*/
|
||||
CV_WRAP virtual void setNSamples(int _nN) = 0;//needs reinitialization!
|
||||
|
||||
/** @brief Returns the threshold on the squared distance between the pixel and the sample
|
||||
|
||||
The threshold on the squared distance between the pixel and the sample to decide whether a pixel is
|
||||
close to a data sample.
|
||||
*/
|
||||
CV_WRAP virtual double getDist2Threshold() const = 0;
|
||||
/** @brief Sets the threshold on the squared distance
|
||||
*/
|
||||
CV_WRAP virtual void setDist2Threshold(double _dist2Threshold) = 0;
|
||||
|
||||
/** @brief Returns the number of neighbours, the k in the kNN.
|
||||
|
||||
K is the number of samples that need to be within dist2Threshold in order to decide that that
|
||||
pixel is matching the kNN background model.
|
||||
*/
|
||||
CV_WRAP virtual int getkNNSamples() const = 0;
|
||||
/** @brief Sets the k in the kNN. How many nearest neighbours need to match.
|
||||
*/
|
||||
CV_WRAP virtual void setkNNSamples(int _nkNN) = 0;
|
||||
|
||||
/** @brief Returns the shadow detection flag
|
||||
|
||||
If true, the algorithm detects shadows and marks them. See createBackgroundSubtractorKNN for
|
||||
details.
|
||||
*/
|
||||
CV_WRAP virtual bool getDetectShadows() const = 0;
|
||||
/** @brief Enables or disables shadow detection
|
||||
*/
|
||||
CV_WRAP virtual void setDetectShadows(bool detectShadows) = 0;
|
||||
|
||||
/** @brief Returns the shadow value
|
||||
|
||||
Shadow value is the value used to mark shadows in the foreground mask. Default value is 127. Value 0
|
||||
in the mask always means background, 255 means foreground.
|
||||
*/
|
||||
CV_WRAP virtual int getShadowValue() const = 0;
|
||||
/** @brief Sets the shadow value
|
||||
*/
|
||||
CV_WRAP virtual void setShadowValue(int value) = 0;
|
||||
|
||||
/** @brief Returns the shadow threshold
|
||||
|
||||
A shadow is detected if pixel is a darker version of the background. The shadow threshold (Tau in
|
||||
the paper) is a threshold defining how much darker the shadow can be. Tau= 0.5 means that if a pixel
|
||||
is more than twice darker then it is not shadow. See Prati, Mikic, Trivedi and Cucchiara,
|
||||
*Detecting Moving Shadows...*, IEEE PAMI,2003.
|
||||
*/
|
||||
CV_WRAP virtual double getShadowThreshold() const = 0;
|
||||
/** @brief Sets the shadow threshold
|
||||
*/
|
||||
CV_WRAP virtual void setShadowThreshold(double threshold) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates KNN Background Subtractor
|
||||
|
||||
@param history Length of the history.
|
||||
@param dist2Threshold Threshold on the squared distance between the pixel and the sample to decide
|
||||
whether a pixel is close to that sample. This parameter does not affect the background update.
|
||||
@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the
|
||||
speed a bit, so if you do not need this feature, set the parameter to false.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<BackgroundSubtractorKNN>
|
||||
createBackgroundSubtractorKNN(int history=500, double dist2Threshold=400.0,
|
||||
bool detectShadows=true);
|
||||
|
||||
//! @} video_motion
|
||||
|
||||
} // cv
|
||||
|
||||
#endif
|
406
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/detail/tracking.detail.hpp
vendored
Normal file
406
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/detail/tracking.detail.hpp
vendored
Normal file
@ -0,0 +1,406 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_VIDEO_DETAIL_TRACKING_HPP
|
||||
#define OPENCV_VIDEO_DETAIL_TRACKING_HPP
|
||||
|
||||
/*
|
||||
* Partially based on:
|
||||
* ====================================================================================================================
|
||||
* - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
|
||||
* - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
|
||||
*
|
||||
* This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
|
||||
*
|
||||
*/
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace detail {
|
||||
inline namespace tracking {
|
||||
|
||||
/** @addtogroup tracking_detail
|
||||
@{
|
||||
*/
|
||||
|
||||
/************************************ TrackerFeature Base Classes ************************************/
|
||||
|
||||
/** @brief Abstract base class for TrackerFeature that represents the feature.
|
||||
*/
|
||||
class CV_EXPORTS TrackerFeature
|
||||
{
|
||||
public:
|
||||
virtual ~TrackerFeature();
|
||||
|
||||
/** @brief Compute the features in the images collection
|
||||
@param images The images
|
||||
@param response The output response
|
||||
*/
|
||||
void compute(const std::vector<Mat>& images, Mat& response);
|
||||
|
||||
protected:
|
||||
virtual bool computeImpl(const std::vector<Mat>& images, Mat& response) = 0;
|
||||
};
|
||||
|
||||
/** @brief Class that manages the extraction and selection of features
|
||||
|
||||
@cite AAM Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection).
|
||||
See table I and section III C @cite AMVOT Appearance modelling -\> Visual representation (Table II,
|
||||
section 3.1 - 3.2)
|
||||
|
||||
TrackerFeatureSet is an aggregation of TrackerFeature
|
||||
|
||||
@sa
|
||||
TrackerFeature
|
||||
|
||||
*/
|
||||
class CV_EXPORTS TrackerFeatureSet
|
||||
{
|
||||
public:
|
||||
TrackerFeatureSet();
|
||||
|
||||
~TrackerFeatureSet();
|
||||
|
||||
/** @brief Extract features from the images collection
|
||||
@param images The input images
|
||||
*/
|
||||
void extraction(const std::vector<Mat>& images);
|
||||
|
||||
/** @brief Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
|
||||
@param feature The TrackerFeature class
|
||||
*/
|
||||
bool addTrackerFeature(const Ptr<TrackerFeature>& feature);
|
||||
|
||||
/** @brief Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
|
||||
*/
|
||||
const std::vector<Ptr<TrackerFeature>>& getTrackerFeatures() const;
|
||||
|
||||
/** @brief Get the responses
|
||||
@note Be sure to call extraction before getResponses Example TrackerFeatureSet::getResponses
|
||||
*/
|
||||
const std::vector<Mat>& getResponses() const;
|
||||
|
||||
private:
|
||||
void clearResponses();
|
||||
bool blockAddTrackerFeature;
|
||||
|
||||
std::vector<Ptr<TrackerFeature>> features; // list of features
|
||||
std::vector<Mat> responses; // list of response after compute
|
||||
};
|
||||
|
||||
/************************************ TrackerSampler Base Classes ************************************/
|
||||
|
||||
/** @brief Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific
|
||||
sampler.
|
||||
*/
|
||||
class CV_EXPORTS TrackerSamplerAlgorithm
|
||||
{
|
||||
public:
|
||||
virtual ~TrackerSamplerAlgorithm();
|
||||
|
||||
/** @brief Computes the regions starting from a position in an image.
|
||||
|
||||
Return true if samples are computed, false otherwise
|
||||
|
||||
@param image The current frame
|
||||
@param boundingBox The bounding box from which regions can be calculated
|
||||
|
||||
@param sample The computed samples @cite AAM Fig. 1 variable Sk
|
||||
*/
|
||||
virtual bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) = 0;
|
||||
};
|
||||
|
||||
/**
|
||||
* \brief Class that manages the sampler in order to select regions for the update the model of the tracker
|
||||
* [AAM] Sampling e Labeling. See table I and section III B
|
||||
*/
|
||||
|
||||
/** @brief Class that manages the sampler in order to select regions for the update the model of the tracker
|
||||
|
||||
@cite AAM Sampling e Labeling. See table I and section III B
|
||||
|
||||
TrackerSampler is an aggregation of TrackerSamplerAlgorithm
|
||||
@sa
|
||||
TrackerSamplerAlgorithm
|
||||
*/
|
||||
class CV_EXPORTS TrackerSampler
|
||||
{
|
||||
public:
|
||||
TrackerSampler();
|
||||
|
||||
~TrackerSampler();
|
||||
|
||||
/** @brief Computes the regions starting from a position in an image
|
||||
@param image The current frame
|
||||
@param boundingBox The bounding box from which regions can be calculated
|
||||
*/
|
||||
void sampling(const Mat& image, Rect boundingBox);
|
||||
|
||||
/** @brief Return the collection of the TrackerSamplerAlgorithm
|
||||
*/
|
||||
const std::vector<Ptr<TrackerSamplerAlgorithm>>& getSamplers() const;
|
||||
|
||||
/** @brief Return the samples from all TrackerSamplerAlgorithm, @cite AAM Fig. 1 variable Sk
|
||||
*/
|
||||
const std::vector<Mat>& getSamples() const;
|
||||
|
||||
/** @brief Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
|
||||
@param sampler The TrackerSamplerAlgorithm
|
||||
*/
|
||||
bool addTrackerSamplerAlgorithm(const Ptr<TrackerSamplerAlgorithm>& sampler);
|
||||
|
||||
private:
|
||||
std::vector<Ptr<TrackerSamplerAlgorithm>> samplers;
|
||||
std::vector<Mat> samples;
|
||||
bool blockAddTrackerSampler;
|
||||
|
||||
void clearSamples();
|
||||
};
|
||||
|
||||
/************************************ TrackerModel Base Classes ************************************/
|
||||
|
||||
/** @brief Abstract base class for TrackerTargetState that represents a possible state of the target.
|
||||
|
||||
See @cite AAM \f$\hat{x}^{i}_{k}\f$ all the states candidates.
|
||||
|
||||
Inherits this class with your Target state, In own implementation you can add scale variation,
|
||||
width, height, orientation, etc.
|
||||
*/
|
||||
class CV_EXPORTS TrackerTargetState
|
||||
{
|
||||
public:
|
||||
virtual ~TrackerTargetState() {};
|
||||
/** @brief Get the position
|
||||
* @return The position
|
||||
*/
|
||||
Point2f getTargetPosition() const;
|
||||
|
||||
/** @brief Set the position
|
||||
* @param position The position
|
||||
*/
|
||||
void setTargetPosition(const Point2f& position);
|
||||
/** @brief Get the width of the target
|
||||
* @return The width of the target
|
||||
*/
|
||||
int getTargetWidth() const;
|
||||
|
||||
/** @brief Set the width of the target
|
||||
* @param width The width of the target
|
||||
*/
|
||||
void setTargetWidth(int width);
|
||||
/** @brief Get the height of the target
|
||||
* @return The height of the target
|
||||
*/
|
||||
int getTargetHeight() const;
|
||||
|
||||
/** @brief Set the height of the target
|
||||
* @param height The height of the target
|
||||
*/
|
||||
void setTargetHeight(int height);
|
||||
|
||||
protected:
|
||||
Point2f targetPosition;
|
||||
int targetWidth;
|
||||
int targetHeight;
|
||||
};
|
||||
|
||||
/** @brief Represents the model of the target at frame \f$k\f$ (all states and scores)
|
||||
|
||||
See @cite AAM The set of the pair \f$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle\f$
|
||||
@sa TrackerTargetState
|
||||
*/
|
||||
typedef std::vector<std::pair<Ptr<TrackerTargetState>, float>> ConfidenceMap;
|
||||
|
||||
/** @brief Represents the estimate states for all frames
|
||||
|
||||
@cite AAM \f$x_{k}\f$ is the trajectory of the target up to time \f$k\f$
|
||||
|
||||
@sa TrackerTargetState
|
||||
*/
|
||||
typedef std::vector<Ptr<TrackerTargetState>> Trajectory;
|
||||
|
||||
/** @brief Abstract base class for TrackerStateEstimator that estimates the most likely target state.
|
||||
|
||||
See @cite AAM State estimator
|
||||
|
||||
See @cite AMVOT Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid)
|
||||
*/
|
||||
class CV_EXPORTS TrackerStateEstimator
|
||||
{
|
||||
public:
|
||||
virtual ~TrackerStateEstimator();
|
||||
|
||||
/** @brief Estimate the most likely target state, return the estimated state
|
||||
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
|
||||
*/
|
||||
Ptr<TrackerTargetState> estimate(const std::vector<ConfidenceMap>& confidenceMaps);
|
||||
|
||||
/** @brief Update the ConfidenceMap with the scores
|
||||
@param confidenceMaps The overall appearance model as a list of :cConfidenceMap
|
||||
*/
|
||||
void update(std::vector<ConfidenceMap>& confidenceMaps);
|
||||
|
||||
/** @brief Create TrackerStateEstimator by tracker state estimator type
|
||||
@param trackeStateEstimatorType The TrackerStateEstimator name
|
||||
|
||||
The modes available now:
|
||||
|
||||
- "BOOSTING" -- Boosting-based discriminative appearance models. See @cite AMVOT section 4.4
|
||||
|
||||
The modes available soon:
|
||||
|
||||
- "SVM" -- SVM-based discriminative appearance models. See @cite AMVOT section 4.5
|
||||
*/
|
||||
static Ptr<TrackerStateEstimator> create(const String& trackeStateEstimatorType);
|
||||
|
||||
/** @brief Get the name of the specific TrackerStateEstimator
|
||||
*/
|
||||
String getClassName() const;
|
||||
|
||||
protected:
|
||||
virtual Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) = 0;
|
||||
virtual void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) = 0;
|
||||
String className;
|
||||
};
|
||||
|
||||
/** @brief Abstract class that represents the model of the target.
|
||||
|
||||
It must be instantiated by specialized tracker
|
||||
|
||||
See @cite AAM Ak
|
||||
|
||||
Inherits this with your TrackerModel
|
||||
*/
|
||||
class CV_EXPORTS TrackerModel
|
||||
{
|
||||
public:
|
||||
TrackerModel();
|
||||
|
||||
virtual ~TrackerModel();
|
||||
|
||||
/** @brief Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
|
||||
@param trackerStateEstimator The TrackerStateEstimator
|
||||
@note You can add only one TrackerStateEstimator
|
||||
*/
|
||||
bool setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator);
|
||||
|
||||
/** @brief Estimate the most likely target location
|
||||
|
||||
@cite AAM ME, Model Estimation table I
|
||||
@param responses Features extracted from TrackerFeatureSet
|
||||
*/
|
||||
void modelEstimation(const std::vector<Mat>& responses);
|
||||
|
||||
/** @brief Update the model
|
||||
|
||||
@cite AAM MU, Model Update table I
|
||||
*/
|
||||
void modelUpdate();
|
||||
|
||||
/** @brief Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise
|
||||
*/
|
||||
bool runStateEstimator();
|
||||
|
||||
/** @brief Set the current TrackerTargetState in the Trajectory
|
||||
@param lastTargetState The current TrackerTargetState
|
||||
*/
|
||||
void setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState);
|
||||
|
||||
/** @brief Get the last TrackerTargetState from Trajectory
|
||||
*/
|
||||
Ptr<TrackerTargetState> getLastTargetState() const;
|
||||
|
||||
/** @brief Get the list of the ConfidenceMap
|
||||
*/
|
||||
const std::vector<ConfidenceMap>& getConfidenceMaps() const;
|
||||
|
||||
/** @brief Get the last ConfidenceMap for the current frame
|
||||
*/
|
||||
const ConfidenceMap& getLastConfidenceMap() const;
|
||||
|
||||
/** @brief Get the TrackerStateEstimator
|
||||
*/
|
||||
Ptr<TrackerStateEstimator> getTrackerStateEstimator() const;
|
||||
|
||||
private:
|
||||
void clearCurrentConfidenceMap();
|
||||
|
||||
protected:
|
||||
std::vector<ConfidenceMap> confidenceMaps;
|
||||
Ptr<TrackerStateEstimator> stateEstimator;
|
||||
ConfidenceMap currentConfidenceMap;
|
||||
Trajectory trajectory;
|
||||
int maxCMLength;
|
||||
|
||||
virtual void modelEstimationImpl(const std::vector<Mat>& responses) = 0;
|
||||
virtual void modelUpdateImpl() = 0;
|
||||
};
|
||||
|
||||
/************************************ Specific TrackerStateEstimator Classes ************************************/
|
||||
|
||||
// None
|
||||
|
||||
/************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
|
||||
|
||||
/** @brief TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
|
||||
*/
|
||||
class CV_EXPORTS TrackerSamplerCSC : public TrackerSamplerAlgorithm
|
||||
{
|
||||
public:
|
||||
~TrackerSamplerCSC();
|
||||
|
||||
enum MODE
|
||||
{
|
||||
MODE_INIT_POS = 1, //!< mode for init positive samples
|
||||
MODE_INIT_NEG = 2, //!< mode for init negative samples
|
||||
MODE_TRACK_POS = 3, //!< mode for update positive samples
|
||||
MODE_TRACK_NEG = 4, //!< mode for update negative samples
|
||||
MODE_DETECT = 5 //!< mode for detect samples
|
||||
};
|
||||
|
||||
struct CV_EXPORTS Params
|
||||
{
|
||||
Params();
|
||||
float initInRad; //!< radius for gathering positive instances during init
|
||||
float trackInPosRad; //!< radius for gathering positive instances during tracking
|
||||
float searchWinSize; //!< size of search window
|
||||
int initMaxNegNum; //!< # negative samples to use during init
|
||||
int trackMaxPosNum; //!< # positive samples to use during training
|
||||
int trackMaxNegNum; //!< # negative samples to use during training
|
||||
};
|
||||
|
||||
/** @brief Constructor
|
||||
@param parameters TrackerSamplerCSC parameters TrackerSamplerCSC::Params
|
||||
*/
|
||||
TrackerSamplerCSC(const TrackerSamplerCSC::Params& parameters = TrackerSamplerCSC::Params());
|
||||
|
||||
/** @brief Set the sampling mode of TrackerSamplerCSC
|
||||
@param samplingMode The sampling mode
|
||||
|
||||
The modes are:
|
||||
|
||||
- "MODE_INIT_POS = 1" -- for the positive sampling in initialization step
|
||||
- "MODE_INIT_NEG = 2" -- for the negative sampling in initialization step
|
||||
- "MODE_TRACK_POS = 3" -- for the positive sampling in update step
|
||||
- "MODE_TRACK_NEG = 4" -- for the negative sampling in update step
|
||||
- "MODE_DETECT = 5" -- for the sampling in detection step
|
||||
*/
|
||||
void setMode(int samplingMode);
|
||||
|
||||
bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) CV_OVERRIDE;
|
||||
|
||||
private:
|
||||
Params params;
|
||||
int mode;
|
||||
RNG rng;
|
||||
|
||||
std::vector<Mat> sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000);
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
||||
}}} // namespace cv::detail::tracking
|
||||
|
||||
#endif // OPENCV_VIDEO_DETAIL_TRACKING_HPP
|
16
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/legacy/constants_c.h
vendored
Normal file
16
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/legacy/constants_c.h
vendored
Normal file
@ -0,0 +1,16 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
#ifndef OPENCV_VIDEO_LEGACY_CONSTANTS_H
|
||||
#define OPENCV_VIDEO_LEGACY_CONSTANTS_H
|
||||
|
||||
enum
|
||||
{
|
||||
CV_LKFLOW_PYR_A_READY = 1,
|
||||
CV_LKFLOW_PYR_B_READY = 2,
|
||||
CV_LKFLOW_INITIAL_GUESSES = 4,
|
||||
CV_LKFLOW_GET_MIN_EIGENVALS = 8
|
||||
};
|
||||
|
||||
#endif // OPENCV_VIDEO_LEGACY_CONSTANTS_H
|
857
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/tracking.hpp
vendored
Normal file
857
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/tracking.hpp
vendored
Normal file
@ -0,0 +1,857 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef OPENCV_TRACKING_HPP
|
||||
#define OPENCV_TRACKING_HPP
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup video_track
|
||||
//! @{
|
||||
|
||||
enum { OPTFLOW_USE_INITIAL_FLOW = 4,
|
||||
OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
|
||||
OPTFLOW_FARNEBACK_GAUSSIAN = 256
|
||||
};
|
||||
|
||||
/** @brief Finds an object center, size, and orientation.
|
||||
|
||||
@param probImage Back projection of the object histogram. See calcBackProject.
|
||||
@param window Initial search window.
|
||||
@param criteria Stop criteria for the underlying meanShift.
|
||||
returns
|
||||
(in old interfaces) Number of iterations CAMSHIFT took to converge
|
||||
The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
|
||||
object center using meanShift and then adjusts the window size and finds the optimal rotation. The
|
||||
function returns the rotated rectangle structure that includes the object position, size, and
|
||||
orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
|
||||
|
||||
See the OpenCV sample camshiftdemo.c that tracks colored objects.
|
||||
|
||||
@note
|
||||
- (Python) A sample explaining the camshift tracking algorithm can be found at
|
||||
opencv_source_code/samples/python/camshift.py
|
||||
*/
|
||||
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
|
||||
TermCriteria criteria );
|
||||
/** @example samples/cpp/camshiftdemo.cpp
|
||||
An example using the mean-shift tracking algorithm
|
||||
*/
|
||||
|
||||
/** @brief Finds an object on a back projection image.
|
||||
|
||||
@param probImage Back projection of the object histogram. See calcBackProject for details.
|
||||
@param window Initial search window.
|
||||
@param criteria Stop criteria for the iterative search algorithm.
|
||||
returns
|
||||
: Number of iterations CAMSHIFT took to converge.
|
||||
The function implements the iterative object search algorithm. It takes the input back projection of
|
||||
an object and the initial position. The mass center in window of the back projection image is
|
||||
computed and the search window center shifts to the mass center. The procedure is repeated until the
|
||||
specified number of iterations criteria.maxCount is done or until the window center shifts by less
|
||||
than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
|
||||
window size or orientation do not change during the search. You can simply pass the output of
|
||||
calcBackProject to this function. But better results can be obtained if you pre-filter the back
|
||||
projection and remove the noise. For example, you can do this by retrieving connected components
|
||||
with findContours , throwing away contours with small area ( contourArea ), and rendering the
|
||||
remaining contours with drawContours.
|
||||
|
||||
*/
|
||||
CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
|
||||
|
||||
/** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
|
||||
|
||||
@param img 8-bit input image.
|
||||
@param pyramid output pyramid.
|
||||
@param winSize window size of optical flow algorithm. Must be not less than winSize argument of
|
||||
calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
|
||||
@param maxLevel 0-based maximal pyramid level number.
|
||||
@param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
|
||||
constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
|
||||
@param pyrBorder the border mode for pyramid layers.
|
||||
@param derivBorder the border mode for gradients.
|
||||
@param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
|
||||
to force data copying.
|
||||
@return number of levels in constructed pyramid. Can be less than maxLevel.
|
||||
*/
|
||||
CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
|
||||
Size winSize, int maxLevel, bool withDerivatives = true,
|
||||
int pyrBorder = BORDER_REFLECT_101,
|
||||
int derivBorder = BORDER_CONSTANT,
|
||||
bool tryReuseInputImage = true );
|
||||
|
||||
/** @example samples/cpp/lkdemo.cpp
|
||||
An example using the Lucas-Kanade optical flow algorithm
|
||||
*/
|
||||
|
||||
/** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
|
||||
pyramids.
|
||||
|
||||
@param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
|
||||
@param nextImg second input image or pyramid of the same size and the same type as prevImg.
|
||||
@param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
|
||||
single-precision floating-point numbers.
|
||||
@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
|
||||
containing the calculated new positions of input features in the second image; when
|
||||
OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
|
||||
@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
|
||||
the flow for the corresponding features has been found, otherwise, it is set to 0.
|
||||
@param err output vector of errors; each element of the vector is set to an error for the
|
||||
corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
|
||||
found then the error is not defined (use the status parameter to find such cases).
|
||||
@param winSize size of the search window at each pyramid level.
|
||||
@param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
|
||||
level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
|
||||
algorithm will use as many levels as pyramids have but no more than maxLevel.
|
||||
@param criteria parameter, specifying the termination criteria of the iterative search algorithm
|
||||
(after the specified maximum number of iterations criteria.maxCount or when the search window
|
||||
moves by less than criteria.epsilon.
|
||||
@param flags operation flags:
|
||||
- **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
|
||||
not set, then prevPts is copied to nextPts and is considered the initial estimate.
|
||||
- **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
|
||||
minEigThreshold description); if the flag is not set, then L1 distance between patches
|
||||
around the original and a moved point, divided by number of pixels in a window, is used as a
|
||||
error measure.
|
||||
@param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
|
||||
optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
|
||||
by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
|
||||
feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
|
||||
performance boost.
|
||||
|
||||
The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
|
||||
@cite Bouguet00 . The function is parallelized with the TBB library.
|
||||
|
||||
@note
|
||||
|
||||
- An example using the Lucas-Kanade optical flow algorithm can be found at
|
||||
opencv_source_code/samples/cpp/lkdemo.cpp
|
||||
- (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
|
||||
opencv_source_code/samples/python/lk_track.py
|
||||
- (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
|
||||
opencv_source_code/samples/python/lk_homography.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
OutputArray status, OutputArray err,
|
||||
Size winSize = Size(21,21), int maxLevel = 3,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
||||
int flags = 0, double minEigThreshold = 1e-4 );
|
||||
|
||||
/** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
|
||||
|
||||
@param prev first 8-bit single-channel input image.
|
||||
@param next second input image of the same size and the same type as prev.
|
||||
@param flow computed flow image that has the same size as prev and type CV_32FC2.
|
||||
@param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
|
||||
pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
|
||||
one.
|
||||
@param levels number of pyramid layers including the initial image; levels=1 means that no extra
|
||||
layers are created and only the original images are used.
|
||||
@param winsize averaging window size; larger values increase the algorithm robustness to image
|
||||
noise and give more chances for fast motion detection, but yield more blurred motion field.
|
||||
@param iterations number of iterations the algorithm does at each pyramid level.
|
||||
@param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
|
||||
larger values mean that the image will be approximated with smoother surfaces, yielding more
|
||||
robust algorithm and more blurred motion field, typically poly_n =5 or 7.
|
||||
@param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
|
||||
basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
|
||||
good value would be poly_sigma=1.5.
|
||||
@param flags operation flags that can be a combination of the following:
|
||||
- **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
|
||||
- **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
|
||||
filter instead of a box filter of the same size for optical flow estimation; usually, this
|
||||
option gives z more accurate flow than with a box filter, at the cost of lower speed;
|
||||
normally, winsize for a Gaussian window should be set to a larger value to achieve the same
|
||||
level of robustness.
|
||||
|
||||
The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
|
||||
|
||||
\f[\texttt{prev} (y,x) \sim \texttt{next} ( y + \texttt{flow} (y,x)[1], x + \texttt{flow} (y,x)[0])\f]
|
||||
|
||||
@note
|
||||
|
||||
- An example using the optical flow algorithm described by Gunnar Farneback can be found at
|
||||
opencv_source_code/samples/cpp/fback.cpp
|
||||
- (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
|
||||
found at opencv_source_code/samples/python/opt_flow.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
|
||||
double pyr_scale, int levels, int winsize,
|
||||
int iterations, int poly_n, double poly_sigma,
|
||||
int flags );
|
||||
|
||||
/** @brief Computes an optimal affine transformation between two 2D point sets.
|
||||
|
||||
@param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
|
||||
@param dst Second input 2D point set of the same size and the same type as A, or another image.
|
||||
@param fullAffine If true, the function finds an optimal affine transformation with no additional
|
||||
restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
|
||||
limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
|
||||
|
||||
The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
|
||||
approximates best the affine transformation between:
|
||||
|
||||
* Two point sets
|
||||
* Two raster images. In this case, the function first finds some features in the src image and
|
||||
finds the corresponding features in dst image. After that, the problem is reduced to the first
|
||||
case.
|
||||
In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
|
||||
2x1 vector *b* so that:
|
||||
|
||||
\f[[A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b \| ^2\f]
|
||||
where src[i] and dst[i] are the i-th points in src and dst, respectively
|
||||
\f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
|
||||
\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ -a_{12} & a_{11} & b_2 \end{bmatrix}\f]
|
||||
when fullAffine=false.
|
||||
|
||||
@deprecated Use cv::estimateAffine2D, cv::estimateAffinePartial2D instead. If you are using this function
|
||||
with images, extract points using cv::calcOpticalFlowPyrLK and then use the estimation functions.
|
||||
|
||||
@sa
|
||||
estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
|
||||
*/
|
||||
CV_DEPRECATED CV_EXPORTS Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine );
|
||||
|
||||
enum
|
||||
{
|
||||
MOTION_TRANSLATION = 0,
|
||||
MOTION_EUCLIDEAN = 1,
|
||||
MOTION_AFFINE = 2,
|
||||
MOTION_HOMOGRAPHY = 3
|
||||
};
|
||||
|
||||
/** @brief Computes the Enhanced Correlation Coefficient value between two images @cite EP08 .
|
||||
|
||||
@param templateImage single-channel template image; CV_8U or CV_32F array.
|
||||
@param inputImage single-channel input image to be warped to provide an image similar to
|
||||
templateImage, same type as templateImage.
|
||||
@param inputMask An optional mask to indicate valid values of inputImage.
|
||||
|
||||
@sa
|
||||
findTransformECC
|
||||
*/
|
||||
|
||||
CV_EXPORTS_W double computeECC(InputArray templateImage, InputArray inputImage, InputArray inputMask = noArray());
|
||||
|
||||
/** @example samples/cpp/image_alignment.cpp
|
||||
An example using the image alignment ECC algorithm
|
||||
*/
|
||||
|
||||
/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
|
||||
|
||||
@param templateImage single-channel template image; CV_8U or CV_32F array.
|
||||
@param inputImage single-channel input image which should be warped with the final warpMatrix in
|
||||
order to provide an image similar to templateImage, same type as templateImage.
|
||||
@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
|
||||
@param motionType parameter, specifying the type of motion:
|
||||
- **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
|
||||
the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
|
||||
estimated.
|
||||
- **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
|
||||
parameters are estimated; warpMatrix is \f$2\times 3\f$.
|
||||
- **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
|
||||
warpMatrix is \f$2\times 3\f$.
|
||||
- **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
|
||||
estimated;\`warpMatrix\` is \f$3\times 3\f$.
|
||||
@param criteria parameter, specifying the termination criteria of the ECC algorithm;
|
||||
criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
|
||||
iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
|
||||
Default values are shown in the declaration above.
|
||||
@param inputMask An optional mask to indicate valid values of inputImage.
|
||||
@param gaussFiltSize An optional value indicating size of gaussian blur filter; (DEFAULT: 5)
|
||||
|
||||
The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
|
||||
(@cite EP08), that is
|
||||
|
||||
\f[\texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
|
||||
|
||||
where
|
||||
|
||||
\f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
|
||||
|
||||
(the equation holds with homogeneous coordinates for homography). It returns the final enhanced
|
||||
correlation coefficient, that is the correlation coefficient between the template image and the
|
||||
final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
|
||||
row is ignored.
|
||||
|
||||
Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
|
||||
area-based alignment that builds on intensity similarities. In essence, the function updates the
|
||||
initial transformation that roughly aligns the images. If this information is missing, the identity
|
||||
warp (unity matrix) is used as an initialization. Note that if images undergo strong
|
||||
displacements/rotations, an initial transformation that roughly aligns the images is necessary
|
||||
(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
|
||||
content approximately). Use inverse warping in the second image to take an image close to the first
|
||||
one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
|
||||
sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
|
||||
an exception if algorithm does not converges.
|
||||
|
||||
@sa
|
||||
computeECC, estimateAffine2D, estimateAffinePartial2D, findHomography
|
||||
*/
|
||||
CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
|
||||
InputOutputArray warpMatrix, int motionType,
|
||||
TermCriteria criteria,
|
||||
InputArray inputMask, int gaussFiltSize);
|
||||
|
||||
/** @overload */
|
||||
CV_EXPORTS_W
|
||||
double findTransformECC(InputArray templateImage, InputArray inputImage,
|
||||
InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
|
||||
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
|
||||
InputArray inputMask = noArray());
|
||||
|
||||
/** @example samples/cpp/kalman.cpp
|
||||
An example using the standard Kalman filter
|
||||
*/
|
||||
|
||||
/** @brief Kalman filter class.
|
||||
|
||||
The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
|
||||
@cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
|
||||
an extended Kalman filter functionality.
|
||||
@note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
|
||||
with cvReleaseKalman(&kalmanFilter)
|
||||
*/
|
||||
class CV_EXPORTS_W KalmanFilter
|
||||
{
|
||||
public:
|
||||
CV_WRAP KalmanFilter();
|
||||
/** @overload
|
||||
@param dynamParams Dimensionality of the state.
|
||||
@param measureParams Dimensionality of the measurement.
|
||||
@param controlParams Dimensionality of the control vector.
|
||||
@param type Type of the created matrices that should be CV_32F or CV_64F.
|
||||
*/
|
||||
CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
|
||||
/** @brief Re-initializes Kalman filter. The previous content is destroyed.
|
||||
|
||||
@param dynamParams Dimensionality of the state.
|
||||
@param measureParams Dimensionality of the measurement.
|
||||
@param controlParams Dimensionality of the control vector.
|
||||
@param type Type of the created matrices that should be CV_32F or CV_64F.
|
||||
*/
|
||||
void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
|
||||
/** @brief Computes a predicted state.
|
||||
|
||||
@param control The optional input control
|
||||
*/
|
||||
CV_WRAP const Mat& predict( const Mat& control = Mat() );
|
||||
|
||||
/** @brief Updates the predicted state from the measurement.
|
||||
|
||||
@param measurement The measured system parameters
|
||||
*/
|
||||
CV_WRAP const Mat& correct( const Mat& measurement );
|
||||
|
||||
CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
||||
CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||||
CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A)
|
||||
CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
|
||||
CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H)
|
||||
CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q)
|
||||
CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
|
||||
CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
|
||||
CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
|
||||
CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
|
||||
|
||||
// temporary matrices
|
||||
Mat temp1;
|
||||
Mat temp2;
|
||||
Mat temp3;
|
||||
Mat temp4;
|
||||
Mat temp5;
|
||||
};
|
||||
|
||||
|
||||
/** @brief Read a .flo file
|
||||
|
||||
@param path Path to the file to be loaded
|
||||
|
||||
The function readOpticalFlow loads a flow field from a file and returns it as a single matrix.
|
||||
Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the
|
||||
flow in the horizontal direction (u), second - vertical (v).
|
||||
*/
|
||||
CV_EXPORTS_W Mat readOpticalFlow( const String& path );
|
||||
/** @brief Write a .flo to disk
|
||||
|
||||
@param path Path to the file to be written
|
||||
@param flow Flow field to be stored
|
||||
|
||||
The function stores a flow field in a file, returns true on success, false otherwise.
|
||||
The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds
|
||||
to the flow in the horizontal direction (u), second - vertical (v).
|
||||
*/
|
||||
CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow );
|
||||
|
||||
/**
|
||||
Base class for dense optical flow algorithms
|
||||
*/
|
||||
class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Calculates an optical flow.
|
||||
|
||||
@param I0 first 8-bit single-channel input image.
|
||||
@param I1 second input image of the same size and the same type as prev.
|
||||
@param flow computed flow image that has the same size as prev and type CV_32FC2.
|
||||
*/
|
||||
CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
|
||||
/** @brief Releases all inner buffers.
|
||||
*/
|
||||
CV_WRAP virtual void collectGarbage() = 0;
|
||||
};
|
||||
|
||||
/** @brief Base interface for sparse optical flow algorithms.
|
||||
*/
|
||||
class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
|
||||
{
|
||||
public:
|
||||
/** @brief Calculates a sparse optical flow.
|
||||
|
||||
@param prevImg First input image.
|
||||
@param nextImg Second input image of the same size and the same type as prevImg.
|
||||
@param prevPts Vector of 2D points for which the flow needs to be found.
|
||||
@param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
|
||||
@param status Output status vector. Each element of the vector is set to 1 if the
|
||||
flow for the corresponding features has been found. Otherwise, it is set to 0.
|
||||
@param err Optional output vector that contains error response for each point (inverse confidence).
|
||||
*/
|
||||
CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
OutputArray status,
|
||||
OutputArray err = cv::noArray()) = 0;
|
||||
};
|
||||
|
||||
|
||||
/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
|
||||
*/
|
||||
class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
CV_WRAP virtual int getNumLevels() const = 0;
|
||||
CV_WRAP virtual void setNumLevels(int numLevels) = 0;
|
||||
|
||||
CV_WRAP virtual double getPyrScale() const = 0;
|
||||
CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
|
||||
|
||||
CV_WRAP virtual bool getFastPyramids() const = 0;
|
||||
CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
|
||||
|
||||
CV_WRAP virtual int getWinSize() const = 0;
|
||||
CV_WRAP virtual void setWinSize(int winSize) = 0;
|
||||
|
||||
CV_WRAP virtual int getNumIters() const = 0;
|
||||
CV_WRAP virtual void setNumIters(int numIters) = 0;
|
||||
|
||||
CV_WRAP virtual int getPolyN() const = 0;
|
||||
CV_WRAP virtual void setPolyN(int polyN) = 0;
|
||||
|
||||
CV_WRAP virtual double getPolySigma() const = 0;
|
||||
CV_WRAP virtual void setPolySigma(double polySigma) = 0;
|
||||
|
||||
CV_WRAP virtual int getFlags() const = 0;
|
||||
CV_WRAP virtual void setFlags(int flags) = 0;
|
||||
|
||||
CV_WRAP static Ptr<FarnebackOpticalFlow> create(
|
||||
int numLevels = 5,
|
||||
double pyrScale = 0.5,
|
||||
bool fastPyramids = false,
|
||||
int winSize = 13,
|
||||
int numIters = 10,
|
||||
int polyN = 5,
|
||||
double polySigma = 1.1,
|
||||
int flags = 0);
|
||||
};
|
||||
|
||||
/** @brief Variational optical flow refinement
|
||||
|
||||
This class implements variational refinement of the input flow field, i.e.
|
||||
it uses input flow to initialize the minimization of the following functional:
|
||||
\f$E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \f$,
|
||||
where \f$E_I,E_G,E_S\f$ are color constancy, gradient constancy and smoothness terms
|
||||
respectively. \f$\Psi(s^2)=\sqrt{s^2+\epsilon^2}\f$ is a robust penalizer to limit the
|
||||
influence of outliers. A complete formulation and a description of the minimization
|
||||
procedure can be found in @cite Brox2004
|
||||
*/
|
||||
class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
/** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components
|
||||
(to avoid extra splits/merges) */
|
||||
CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0;
|
||||
|
||||
/** @brief Number of outer (fixed-point) iterations in the minimization procedure.
|
||||
@see setFixedPointIterations */
|
||||
CV_WRAP virtual int getFixedPointIterations() const = 0;
|
||||
/** @copybrief getFixedPointIterations @see getFixedPointIterations */
|
||||
CV_WRAP virtual void setFixedPointIterations(int val) = 0;
|
||||
|
||||
/** @brief Number of inner successive over-relaxation (SOR) iterations
|
||||
in the minimization procedure to solve the respective linear system.
|
||||
@see setSorIterations */
|
||||
CV_WRAP virtual int getSorIterations() const = 0;
|
||||
/** @copybrief getSorIterations @see getSorIterations */
|
||||
CV_WRAP virtual void setSorIterations(int val) = 0;
|
||||
|
||||
/** @brief Relaxation factor in SOR
|
||||
@see setOmega */
|
||||
CV_WRAP virtual float getOmega() const = 0;
|
||||
/** @copybrief getOmega @see getOmega */
|
||||
CV_WRAP virtual void setOmega(float val) = 0;
|
||||
|
||||
/** @brief Weight of the smoothness term
|
||||
@see setAlpha */
|
||||
CV_WRAP virtual float getAlpha() const = 0;
|
||||
/** @copybrief getAlpha @see getAlpha */
|
||||
CV_WRAP virtual void setAlpha(float val) = 0;
|
||||
|
||||
/** @brief Weight of the color constancy term
|
||||
@see setDelta */
|
||||
CV_WRAP virtual float getDelta() const = 0;
|
||||
/** @copybrief getDelta @see getDelta */
|
||||
CV_WRAP virtual void setDelta(float val) = 0;
|
||||
|
||||
/** @brief Weight of the gradient constancy term
|
||||
@see setGamma */
|
||||
CV_WRAP virtual float getGamma() const = 0;
|
||||
/** @copybrief getGamma @see getGamma */
|
||||
CV_WRAP virtual void setGamma(float val) = 0;
|
||||
|
||||
/** @brief Creates an instance of VariationalRefinement
|
||||
*/
|
||||
CV_WRAP static Ptr<VariationalRefinement> create();
|
||||
};
|
||||
|
||||
/** @brief DIS optical flow algorithm.
|
||||
|
||||
This class implements the Dense Inverse Search (DIS) optical flow algorithm. More
|
||||
details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected
|
||||
parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is
|
||||
still relatively fast, use DeepFlow if you need better quality and don't care about speed.
|
||||
|
||||
This implementation includes several additional features compared to the algorithm described in the paper,
|
||||
including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to
|
||||
utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation,
|
||||
if the previous frame's flow field is passed).
|
||||
*/
|
||||
class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
public:
|
||||
enum
|
||||
{
|
||||
PRESET_ULTRAFAST = 0,
|
||||
PRESET_FAST = 1,
|
||||
PRESET_MEDIUM = 2
|
||||
};
|
||||
|
||||
/** @brief Finest level of the Gaussian pyramid on which the flow is computed (zero level
|
||||
corresponds to the original image resolution). The final flow is obtained by bilinear upscaling.
|
||||
@see setFinestScale */
|
||||
CV_WRAP virtual int getFinestScale() const = 0;
|
||||
/** @copybrief getFinestScale @see getFinestScale */
|
||||
CV_WRAP virtual void setFinestScale(int val) = 0;
|
||||
|
||||
/** @brief Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well
|
||||
enough in most cases.
|
||||
@see setPatchSize */
|
||||
CV_WRAP virtual int getPatchSize() const = 0;
|
||||
/** @copybrief getPatchSize @see getPatchSize */
|
||||
CV_WRAP virtual void setPatchSize(int val) = 0;
|
||||
|
||||
/** @brief Stride between neighbor patches. Must be less than patch size. Lower values correspond
|
||||
to higher flow quality.
|
||||
@see setPatchStride */
|
||||
CV_WRAP virtual int getPatchStride() const = 0;
|
||||
/** @copybrief getPatchStride @see getPatchStride */
|
||||
CV_WRAP virtual void setPatchStride(int val) = 0;
|
||||
|
||||
/** @brief Maximum number of gradient descent iterations in the patch inverse search stage. Higher values
|
||||
may improve quality in some cases.
|
||||
@see setGradientDescentIterations */
|
||||
CV_WRAP virtual int getGradientDescentIterations() const = 0;
|
||||
/** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
|
||||
CV_WRAP virtual void setGradientDescentIterations(int val) = 0;
|
||||
|
||||
/** @brief Number of fixed point iterations of variational refinement per scale. Set to zero to
|
||||
disable variational refinement completely. Higher values will typically result in more smooth and
|
||||
high-quality flow.
|
||||
@see setGradientDescentIterations */
|
||||
CV_WRAP virtual int getVariationalRefinementIterations() const = 0;
|
||||
/** @copybrief getGradientDescentIterations @see getGradientDescentIterations */
|
||||
CV_WRAP virtual void setVariationalRefinementIterations(int val) = 0;
|
||||
|
||||
/** @brief Weight of the smoothness term
|
||||
@see setVariationalRefinementAlpha */
|
||||
CV_WRAP virtual float getVariationalRefinementAlpha() const = 0;
|
||||
/** @copybrief getVariationalRefinementAlpha @see getVariationalRefinementAlpha */
|
||||
CV_WRAP virtual void setVariationalRefinementAlpha(float val) = 0;
|
||||
|
||||
/** @brief Weight of the color constancy term
|
||||
@see setVariationalRefinementDelta */
|
||||
CV_WRAP virtual float getVariationalRefinementDelta() const = 0;
|
||||
/** @copybrief getVariationalRefinementDelta @see getVariationalRefinementDelta */
|
||||
CV_WRAP virtual void setVariationalRefinementDelta(float val) = 0;
|
||||
|
||||
/** @brief Weight of the gradient constancy term
|
||||
@see setVariationalRefinementGamma */
|
||||
CV_WRAP virtual float getVariationalRefinementGamma() const = 0;
|
||||
/** @copybrief getVariationalRefinementGamma @see getVariationalRefinementGamma */
|
||||
CV_WRAP virtual void setVariationalRefinementGamma(float val) = 0;
|
||||
|
||||
|
||||
/** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on
|
||||
by default as it typically provides a noticeable quality boost because of increased robustness to
|
||||
illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes
|
||||
in illumination.
|
||||
@see setUseMeanNormalization */
|
||||
CV_WRAP virtual bool getUseMeanNormalization() const = 0;
|
||||
/** @copybrief getUseMeanNormalization @see getUseMeanNormalization */
|
||||
CV_WRAP virtual void setUseMeanNormalization(bool val) = 0;
|
||||
|
||||
/** @brief Whether to use spatial propagation of good optical flow vectors. This option is turned on by
|
||||
default, as it tends to work better on average and can sometimes help recover from major errors
|
||||
introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this
|
||||
option off can make the output flow field a bit smoother, however.
|
||||
@see setUseSpatialPropagation */
|
||||
CV_WRAP virtual bool getUseSpatialPropagation() const = 0;
|
||||
/** @copybrief getUseSpatialPropagation @see getUseSpatialPropagation */
|
||||
CV_WRAP virtual void setUseSpatialPropagation(bool val) = 0;
|
||||
|
||||
/** @brief Creates an instance of DISOpticalFlow
|
||||
|
||||
@param preset one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM
|
||||
*/
|
||||
CV_WRAP static Ptr<DISOpticalFlow> create(int preset = DISOpticalFlow::PRESET_FAST);
|
||||
};
|
||||
|
||||
/** @brief Class used for calculating a sparse optical flow.
|
||||
|
||||
The class can calculate an optical flow for a sparse feature set using the
|
||||
iterative Lucas-Kanade method with pyramids.
|
||||
|
||||
@sa calcOpticalFlowPyrLK
|
||||
|
||||
*/
|
||||
class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
|
||||
{
|
||||
public:
|
||||
CV_WRAP virtual Size getWinSize() const = 0;
|
||||
CV_WRAP virtual void setWinSize(Size winSize) = 0;
|
||||
|
||||
CV_WRAP virtual int getMaxLevel() const = 0;
|
||||
CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
|
||||
|
||||
CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
|
||||
CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0;
|
||||
|
||||
CV_WRAP virtual int getFlags() const = 0;
|
||||
CV_WRAP virtual void setFlags(int flags) = 0;
|
||||
|
||||
CV_WRAP virtual double getMinEigThreshold() const = 0;
|
||||
CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0;
|
||||
|
||||
CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create(
|
||||
Size winSize = Size(21, 21),
|
||||
int maxLevel = 3, TermCriteria crit =
|
||||
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
|
||||
int flags = 0,
|
||||
double minEigThreshold = 1e-4);
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
/** @brief Base abstract class for the long-term tracker
|
||||
*/
|
||||
class CV_EXPORTS_W Tracker
|
||||
{
|
||||
protected:
|
||||
Tracker();
|
||||
public:
|
||||
virtual ~Tracker();
|
||||
|
||||
/** @brief Initialize the tracker with a known bounding box that surrounded the target
|
||||
@param image The initial frame
|
||||
@param boundingBox The initial bounding box
|
||||
*/
|
||||
CV_WRAP virtual
|
||||
void init(InputArray image, const Rect& boundingBox) = 0;
|
||||
|
||||
/** @brief Update the tracker, find the new most likely bounding box for the target
|
||||
@param image The current frame
|
||||
@param boundingBox The bounding box that represent the new target location, if true was returned, not
|
||||
modified otherwise
|
||||
|
||||
@return True means that target was located and false means that tracker cannot locate target in
|
||||
current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
|
||||
missing from the frame (say, out of sight)
|
||||
*/
|
||||
CV_WRAP virtual
|
||||
bool update(InputArray image, CV_OUT Rect& boundingBox) = 0;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
|
||||
background.
|
||||
|
||||
Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
|
||||
based on @cite MIL .
|
||||
|
||||
Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
|
||||
*/
|
||||
class CV_EXPORTS_W TrackerMIL : public Tracker
|
||||
{
|
||||
protected:
|
||||
TrackerMIL(); // use ::create()
|
||||
public:
|
||||
virtual ~TrackerMIL() CV_OVERRIDE;
|
||||
|
||||
struct CV_EXPORTS_W_SIMPLE Params
|
||||
{
|
||||
CV_WRAP Params();
|
||||
//parameters for sampler
|
||||
CV_PROP_RW float samplerInitInRadius; //!< radius for gathering positive instances during init
|
||||
CV_PROP_RW int samplerInitMaxNegNum; //!< # negative samples to use during init
|
||||
CV_PROP_RW float samplerSearchWinSize; //!< size of search window
|
||||
CV_PROP_RW float samplerTrackInRadius; //!< radius for gathering positive instances during tracking
|
||||
CV_PROP_RW int samplerTrackMaxPosNum; //!< # positive samples to use during tracking
|
||||
CV_PROP_RW int samplerTrackMaxNegNum; //!< # negative samples to use during tracking
|
||||
CV_PROP_RW int featureSetNumFeatures; //!< # features
|
||||
};
|
||||
|
||||
/** @brief Create MIL tracker instance
|
||||
* @param parameters MIL parameters TrackerMIL::Params
|
||||
*/
|
||||
static CV_WRAP
|
||||
Ptr<TrackerMIL> create(const TrackerMIL::Params ¶meters = TrackerMIL::Params());
|
||||
|
||||
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
|
||||
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
|
||||
};
|
||||
|
||||
|
||||
|
||||
/** @brief the GOTURN (Generic Object Tracking Using Regression Networks) tracker
|
||||
*
|
||||
* GOTURN (@cite GOTURN) is kind of trackers based on Convolutional Neural Networks (CNN). While taking all advantages of CNN trackers,
|
||||
* GOTURN is much faster due to offline training without online fine-tuning nature.
|
||||
* GOTURN tracker addresses the problem of single target tracking: given a bounding box label of an object in the first frame of the video,
|
||||
* we track that object through the rest of the video. NOTE: Current method of GOTURN does not handle occlusions; however, it is fairly
|
||||
* robust to viewpoint changes, lighting changes, and deformations.
|
||||
* Inputs of GOTURN are two RGB patches representing Target and Search patches resized to 227x227.
|
||||
* Outputs of GOTURN are predicted bounding box coordinates, relative to Search patch coordinate system, in format X1,Y1,X2,Y2.
|
||||
* Original paper is here: <http://davheld.github.io/GOTURN/GOTURN.pdf>
|
||||
* As long as original authors implementation: <https://github.com/davheld/GOTURN#train-the-tracker>
|
||||
* Implementation of training algorithm is placed in separately here due to 3d-party dependencies:
|
||||
* <https://github.com/Auron-X/GOTURN_Training_Toolkit>
|
||||
* GOTURN architecture goturn.prototxt and trained model goturn.caffemodel are accessible on opencv_extra GitHub repository.
|
||||
*/
|
||||
class CV_EXPORTS_W TrackerGOTURN : public Tracker
|
||||
{
|
||||
protected:
|
||||
TrackerGOTURN(); // use ::create()
|
||||
public:
|
||||
virtual ~TrackerGOTURN() CV_OVERRIDE;
|
||||
|
||||
struct CV_EXPORTS_W_SIMPLE Params
|
||||
{
|
||||
CV_WRAP Params();
|
||||
CV_PROP_RW std::string modelTxt;
|
||||
CV_PROP_RW std::string modelBin;
|
||||
};
|
||||
|
||||
/** @brief Constructor
|
||||
@param parameters GOTURN parameters TrackerGOTURN::Params
|
||||
*/
|
||||
static CV_WRAP
|
||||
Ptr<TrackerGOTURN> create(const TrackerGOTURN::Params& parameters = TrackerGOTURN::Params());
|
||||
|
||||
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
|
||||
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
|
||||
};
|
||||
|
||||
class CV_EXPORTS_W TrackerDaSiamRPN : public Tracker
|
||||
{
|
||||
protected:
|
||||
TrackerDaSiamRPN(); // use ::create()
|
||||
public:
|
||||
virtual ~TrackerDaSiamRPN() CV_OVERRIDE;
|
||||
|
||||
struct CV_EXPORTS_W_SIMPLE Params
|
||||
{
|
||||
CV_WRAP Params();
|
||||
CV_PROP_RW std::string model;
|
||||
CV_PROP_RW std::string kernel_cls1;
|
||||
CV_PROP_RW std::string kernel_r1;
|
||||
CV_PROP_RW int backend;
|
||||
CV_PROP_RW int target;
|
||||
};
|
||||
|
||||
/** @brief Constructor
|
||||
@param parameters DaSiamRPN parameters TrackerDaSiamRPN::Params
|
||||
*/
|
||||
static CV_WRAP
|
||||
Ptr<TrackerDaSiamRPN> create(const TrackerDaSiamRPN::Params& parameters = TrackerDaSiamRPN::Params());
|
||||
|
||||
/** @brief Return tracking score
|
||||
*/
|
||||
CV_WRAP virtual float getTrackingScore() = 0;
|
||||
|
||||
//void init(InputArray image, const Rect& boundingBox) CV_OVERRIDE;
|
||||
//bool update(InputArray image, CV_OUT Rect& boundingBox) CV_OVERRIDE;
|
||||
};
|
||||
|
||||
|
||||
//! @} video_track
|
||||
|
||||
} // cv
|
||||
|
||||
#endif
|
48
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/video.hpp
vendored
Normal file
48
3rdparty/opencv-4.5.4/modules/video/include/opencv2/video/video.hpp
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifdef __OPENCV_BUILD
|
||||
#error this is a compatibility header which should not be used inside the OpenCV library
|
||||
#endif
|
||||
|
||||
#include "opencv2/video.hpp"
|
Reference in New Issue
Block a user