feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
100
3rdparty/opencv-4.5.4/modules/video/misc/python/test/test_lk_homography.py
vendored
Normal file
100
3rdparty/opencv-4.5.4/modules/video/misc/python/test/test_lk_homography.py
vendored
Normal file
@ -0,0 +1,100 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Lucas-Kanade homography tracker test
|
||||
===============================
|
||||
Uses goodFeaturesToTrack for track initialization and back-tracking for match verification
|
||||
between frames. Finds homography between reference and current views.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
#local modules
|
||||
from tst_scene_render import TestSceneRender
|
||||
from tests_common import NewOpenCVTests, isPointInRect
|
||||
|
||||
lk_params = dict( winSize = (19, 19),
|
||||
maxLevel = 2,
|
||||
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
|
||||
feature_params = dict( maxCorners = 1000,
|
||||
qualityLevel = 0.01,
|
||||
minDistance = 8,
|
||||
blockSize = 19 )
|
||||
|
||||
def checkedTrace(img0, img1, p0, back_threshold = 1.0):
|
||||
p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
d = abs(p0-p0r).reshape(-1, 2).max(-1)
|
||||
status = d < back_threshold
|
||||
return p1, status
|
||||
|
||||
class lk_homography_test(NewOpenCVTests):
|
||||
|
||||
render = None
|
||||
framesCounter = 0
|
||||
frame = frame0 = None
|
||||
p0 = None
|
||||
p1 = None
|
||||
gray0 = gray1 = None
|
||||
numFeaturesInRectOnStart = 0
|
||||
|
||||
def test_lk_homography(self):
|
||||
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'),
|
||||
self.get_sample('samples/data/box.png'), noise = 0.1, speed = 1.0)
|
||||
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
self.frame0 = frame.copy()
|
||||
self.p0 = cv.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
|
||||
isForegroundHomographyFound = False
|
||||
|
||||
if self.p0 is not None:
|
||||
self.p1 = self.p0
|
||||
self.gray0 = frame_gray
|
||||
self.gray1 = frame_gray
|
||||
currRect = self.render.getCurrentRect()
|
||||
for (x,y) in self.p0[:,0]:
|
||||
if isPointInRect((x,y), currRect):
|
||||
self.numFeaturesInRectOnStart += 1
|
||||
|
||||
while self.framesCounter < 200:
|
||||
self.framesCounter += 1
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
if self.p0 is not None:
|
||||
p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1)
|
||||
|
||||
self.p1 = p2[trace_status].copy()
|
||||
self.p0 = self.p0[trace_status].copy()
|
||||
self.gray1 = frame_gray
|
||||
|
||||
if len(self.p0) < 4:
|
||||
self.p0 = None
|
||||
continue
|
||||
_H, status = cv.findHomography(self.p0, self.p1, cv.RANSAC, 5.0)
|
||||
|
||||
goodPointsInRect = 0
|
||||
goodPointsOutsideRect = 0
|
||||
for (_x0, _y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]):
|
||||
if good:
|
||||
if isPointInRect((x1,y1), self.render.getCurrentRect()):
|
||||
goodPointsInRect += 1
|
||||
else: goodPointsOutsideRect += 1
|
||||
|
||||
if goodPointsOutsideRect < goodPointsInRect:
|
||||
isForegroundHomographyFound = True
|
||||
self.assertGreater(float(goodPointsInRect) / (self.numFeaturesInRectOnStart + 1), 0.6)
|
||||
else:
|
||||
self.p0 = cv.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
|
||||
self.assertEqual(isForegroundHomographyFound, True)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
115
3rdparty/opencv-4.5.4/modules/video/misc/python/test/test_lk_track.py
vendored
Normal file
115
3rdparty/opencv-4.5.4/modules/video/misc/python/test/test_lk_track.py
vendored
Normal file
@ -0,0 +1,115 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Lucas-Kanade tracker
|
||||
====================
|
||||
|
||||
Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
|
||||
for track initialization and back-tracking for match verification
|
||||
between frames.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
#local modules
|
||||
from tst_scene_render import TestSceneRender
|
||||
from tests_common import NewOpenCVTests, intersectionRate, isPointInRect
|
||||
|
||||
lk_params = dict( winSize = (15, 15),
|
||||
maxLevel = 2,
|
||||
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
|
||||
feature_params = dict( maxCorners = 500,
|
||||
qualityLevel = 0.3,
|
||||
minDistance = 7,
|
||||
blockSize = 7 )
|
||||
|
||||
def getRectFromPoints(points):
|
||||
|
||||
distances = []
|
||||
for point in points:
|
||||
distances.append(cv.norm(point, cv.NORM_L2))
|
||||
|
||||
x0, y0 = points[np.argmin(distances)]
|
||||
x1, y1 = points[np.argmax(distances)]
|
||||
|
||||
return np.array([x0, y0, x1, y1])
|
||||
|
||||
|
||||
class lk_track_test(NewOpenCVTests):
|
||||
|
||||
track_len = 10
|
||||
detect_interval = 5
|
||||
tracks = []
|
||||
frame_idx = 0
|
||||
render = None
|
||||
|
||||
def test_lk_track(self):
|
||||
|
||||
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'))
|
||||
self.runTracker()
|
||||
|
||||
def runTracker(self):
|
||||
foregroundPointsNum = 0
|
||||
|
||||
while True:
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
|
||||
|
||||
if len(self.tracks) > 0:
|
||||
img0, img1 = self.prev_gray, frame_gray
|
||||
p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2)
|
||||
p1, _st, _err = cv.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, _st, _err = cv.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
d = abs(p0-p0r).reshape(-1, 2).max(-1)
|
||||
good = d < 1
|
||||
new_tracks = []
|
||||
for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
|
||||
if not good_flag:
|
||||
continue
|
||||
tr.append([(x, y), self.frame_idx])
|
||||
if len(tr) > self.track_len:
|
||||
del tr[0]
|
||||
new_tracks.append(tr)
|
||||
self.tracks = new_tracks
|
||||
|
||||
if self.frame_idx % self.detect_interval == 0:
|
||||
goodTracksCount = 0
|
||||
for tr in self.tracks:
|
||||
oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1])
|
||||
newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1])
|
||||
if isPointInRect(tr[0][0], oldRect) and isPointInRect(tr[-1][0], newRect):
|
||||
goodTracksCount += 1
|
||||
|
||||
if self.frame_idx == self.detect_interval:
|
||||
foregroundPointsNum = goodTracksCount
|
||||
|
||||
fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1)
|
||||
fgRate = float(goodTracksCount) / (len(self.tracks) + 1)
|
||||
|
||||
if self.frame_idx > 0:
|
||||
self.assertGreater(fgIndex, 0.9)
|
||||
self.assertGreater(fgRate, 0.2)
|
||||
|
||||
mask = np.zeros_like(frame_gray)
|
||||
mask[:] = 255
|
||||
for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]:
|
||||
cv.circle(mask, (x, y), 5, 0, -1)
|
||||
p = cv.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
|
||||
if p is not None:
|
||||
for x, y in np.float32(p).reshape(-1, 2):
|
||||
self.tracks.append([[(x, y), self.frame_idx]])
|
||||
|
||||
self.frame_idx += 1
|
||||
self.prev_gray = frame_gray
|
||||
|
||||
if self.frame_idx > 300:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
19
3rdparty/opencv-4.5.4/modules/video/misc/python/test/test_tracking.py
vendored
Normal file
19
3rdparty/opencv-4.5.4/modules/video/misc/python/test/test_tracking.py
vendored
Normal file
@ -0,0 +1,19 @@
|
||||
#!/usr/bin/env python
|
||||
import os
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests, unittest
|
||||
|
||||
class tracking_test(NewOpenCVTests):
|
||||
|
||||
def test_createTracker(self):
|
||||
t = cv.TrackerMIL_create()
|
||||
try:
|
||||
t = cv.TrackerGOTURN_create()
|
||||
except cv.error as e:
|
||||
pass # may fail due to missing DL model files
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
Reference in New Issue
Block a user