feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,74 @@
/**
* @file BasicLinearTransforms.cpp
* @brief Simple program to change contrast and brightness
* @author OpenCV team
*/
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
// we're NOT "using namespace std;" here, to avoid collisions between the beta variable and std::beta in c++17
using std::cin;
using std::cout;
using std::endl;
using namespace cv;
/**
* @function main
* @brief Main function
*/
int main( int argc, char** argv )
{
/// Read image given by user
//! [basic-linear-transform-load]
CommandLineParser parser( argc, argv, "{@input | lena.jpg | input image}" );
Mat image = imread( samples::findFile( parser.get<String>( "@input" ) ) );
if( image.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
//! [basic-linear-transform-load]
//! [basic-linear-transform-output]
Mat new_image = Mat::zeros( image.size(), image.type() );
//! [basic-linear-transform-output]
//! [basic-linear-transform-parameters]
double alpha = 1.0; /*< Simple contrast control */
int beta = 0; /*< Simple brightness control */
/// Initialize values
cout << " Basic Linear Transforms " << endl;
cout << "-------------------------" << endl;
cout << "* Enter the alpha value [1.0-3.0]: "; cin >> alpha;
cout << "* Enter the beta value [0-100]: "; cin >> beta;
//! [basic-linear-transform-parameters]
/// Do the operation new_image(i,j) = alpha*image(i,j) + beta
/// Instead of these 'for' loops we could have used simply:
/// image.convertTo(new_image, -1, alpha, beta);
/// but we wanted to show you how to access the pixels :)
//! [basic-linear-transform-operation]
for( int y = 0; y < image.rows; y++ ) {
for( int x = 0; x < image.cols; x++ ) {
for( int c = 0; c < image.channels(); c++ ) {
new_image.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>( alpha*image.at<Vec3b>(y,x)[c] + beta );
}
}
}
//! [basic-linear-transform-operation]
//! [basic-linear-transform-display]
/// Show stuff
imshow("Original Image", image);
imshow("New Image", new_image);
/// Wait until the user press a key
waitKey();
//! [basic-linear-transform-display]
return 0;
}

View File

@ -0,0 +1,44 @@
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
int main(){
Mat input_image = (Mat_<uchar>(8, 8) <<
0, 0, 0, 0, 0, 0, 0, 0,
0, 255, 255, 255, 0, 0, 0, 255,
0, 255, 255, 255, 0, 0, 0, 0,
0, 255, 255, 255, 0, 255, 0, 0,
0, 0, 255, 0, 0, 0, 0, 0,
0, 0, 255, 0, 0, 255, 255, 0,
0, 255, 0, 255, 0, 0, 255, 0,
0, 255, 255, 255, 0, 0, 0, 0);
Mat kernel = (Mat_<int>(3, 3) <<
0, 1, 0,
1, -1, 1,
0, 1, 0);
Mat output_image;
morphologyEx(input_image, output_image, MORPH_HITMISS, kernel);
const int rate = 50;
kernel = (kernel + 1) * 127;
kernel.convertTo(kernel, CV_8U);
resize(kernel, kernel, Size(), rate, rate, INTER_NEAREST);
imshow("kernel", kernel);
moveWindow("kernel", 0, 0);
resize(input_image, input_image, Size(), rate, rate, INTER_NEAREST);
imshow("Original", input_image);
moveWindow("Original", 0, 200);
resize(output_image, output_image, Size(), rate, rate, INTER_NEAREST);
imshow("Hit or Miss", output_image);
moveWindow("Hit or Miss", 500, 200);
waitKey(0);
return 0;
}

View File

@ -0,0 +1,118 @@
/**
* @file Morphology_1.cpp
* @brief Erosion and Dilation sample code
* @author OpenCV team
*/
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using namespace std;
/// Global variables
Mat src, erosion_dst, dilation_dst;
int erosion_elem = 0;
int erosion_size = 0;
int dilation_elem = 0;
int dilation_size = 0;
int const max_elem = 2;
int const max_kernel_size = 21;
/** Function Headers */
void Erosion( int, void* );
void Dilation( int, void* );
//![main]
/**
* @function main
*/
int main( int argc, char** argv )
{
/// Load an image
CommandLineParser parser( argc, argv, "{@input | LinuxLogo.jpg | input image}" );
src = imread( samples::findFile( parser.get<String>( "@input" ) ), IMREAD_COLOR );
if( src.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
/// Create windows
namedWindow( "Erosion Demo", WINDOW_AUTOSIZE );
namedWindow( "Dilation Demo", WINDOW_AUTOSIZE );
moveWindow( "Dilation Demo", src.cols, 0 );
/// Create Erosion Trackbar
createTrackbar( "Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Erosion Demo",
&erosion_elem, max_elem,
Erosion );
createTrackbar( "Kernel size:\n 2n +1", "Erosion Demo",
&erosion_size, max_kernel_size,
Erosion );
/// Create Dilation Trackbar
createTrackbar( "Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Dilation Demo",
&dilation_elem, max_elem,
Dilation );
createTrackbar( "Kernel size:\n 2n +1", "Dilation Demo",
&dilation_size, max_kernel_size,
Dilation );
/// Default start
Erosion( 0, 0 );
Dilation( 0, 0 );
waitKey(0);
return 0;
}
//![main]
//![erosion]
/**
* @function Erosion
*/
void Erosion( int, void* )
{
int erosion_type = 0;
if( erosion_elem == 0 ){ erosion_type = MORPH_RECT; }
else if( erosion_elem == 1 ){ erosion_type = MORPH_CROSS; }
else if( erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }
//![kernel]
Mat element = getStructuringElement( erosion_type,
Size( 2*erosion_size + 1, 2*erosion_size+1 ),
Point( erosion_size, erosion_size ) );
//![kernel]
/// Apply the erosion operation
erode( src, erosion_dst, element );
imshow( "Erosion Demo", erosion_dst );
}
//![erosion]
//![dilation]
/**
* @function Dilation
*/
void Dilation( int, void* )
{
int dilation_type = 0;
if( dilation_elem == 0 ){ dilation_type = MORPH_RECT; }
else if( dilation_elem == 1 ){ dilation_type = MORPH_CROSS; }
else if( dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }
Mat element = getStructuringElement( dilation_type,
Size( 2*dilation_size + 1, 2*dilation_size+1 ),
Point( dilation_size, dilation_size ) );
/// Apply the dilation operation
dilate( src, dilation_dst, element );
imshow( "Dilation Demo", dilation_dst );
}
//![dilation]

View File

@ -0,0 +1,93 @@
/**
* @file Morphology_2.cpp
* @brief Advanced morphology Transformations sample code
* @author OpenCV team
*/
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
/// Global variables
Mat src, dst;
int morph_elem = 0;
int morph_size = 0;
int morph_operator = 0;
int const max_operator = 4;
int const max_elem = 2;
int const max_kernel_size = 21;
const char* window_name = "Morphology Transformations Demo";
/** Function Headers */
void Morphology_Operations( int, void* );
/**
* @function main
*/
int main( int argc, char** argv )
{
//![load]
CommandLineParser parser( argc, argv, "{@input | baboon.jpg | input image}" );
src = imread( samples::findFile( parser.get<String>( "@input" ) ), IMREAD_COLOR );
if (src.empty())
{
std::cout << "Could not open or find the image!\n" << std::endl;
std::cout << "Usage: " << argv[0] << " <Input image>" << std::endl;
return EXIT_FAILURE;
}
//![load]
//![window]
namedWindow( window_name, WINDOW_AUTOSIZE ); // Create window
//![window]
//![create_trackbar1]
/// Create Trackbar to select Morphology operation
createTrackbar("Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat", window_name, &morph_operator, max_operator, Morphology_Operations );
//![create_trackbar1]
//![create_trackbar2]
/// Create Trackbar to select kernel type
createTrackbar( "Element:\n 0: Rect - 1: Cross - 2: Ellipse", window_name,
&morph_elem, max_elem,
Morphology_Operations );
//![create_trackbar2]
//![create_trackbar3]
/// Create Trackbar to choose kernel size
createTrackbar( "Kernel size:\n 2n +1", window_name,
&morph_size, max_kernel_size,
Morphology_Operations );
//![create_trackbar3]
/// Default start
Morphology_Operations( 0, 0 );
waitKey(0);
return 0;
}
//![morphology_operations]
/**
* @function Morphology_Operations
*/
void Morphology_Operations( int, void* )
{
// Since MORPH_X : 2,3,4,5 and 6
//![operation]
int operation = morph_operator + 2;
//![operation]
Mat element = getStructuringElement( morph_elem, Size( 2*morph_size + 1, 2*morph_size+1 ), Point( morph_size, morph_size ) );
/// Apply the specified morphology operation
morphologyEx( src, dst, operation, element );
imshow( window_name, dst );
}
//![morphology_operations]

View File

@ -0,0 +1,69 @@
/**
* @file Pyramids.cpp
* @brief Sample code of image pyramids (pyrDown and pyrUp)
* @author OpenCV team
*/
#include "iostream"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
using namespace cv;
const char* window_name = "Pyramids Demo";
/**
* @function main
*/
int main( int argc, char** argv )
{
/// General instructions
cout << "\n Zoom In-Out demo \n "
"------------------ \n"
" * [i] -> Zoom in \n"
" * [o] -> Zoom out \n"
" * [ESC] -> Close program \n" << endl;
//![load]
const char* filename = argc >=2 ? argv[1] : "chicky_512.png";
// Loads an image
Mat src = imread( samples::findFile( filename ) );
// Check if image is loaded fine
if(src.empty()){
printf(" Error opening image\n");
printf(" Program Arguments: [image_name -- default chicky_512.png] \n");
return EXIT_FAILURE;
}
//![load]
//![loop]
for(;;)
{
//![show_image]
imshow( window_name, src );
//![show_image]
char c = (char)waitKey(0);
if( c == 27 )
{ break; }
//![pyrup]
else if( c == 'i' )
{ pyrUp( src, src, Size( src.cols*2, src.rows*2 ) );
printf( "** Zoom In: Image x 2 \n" );
}
//![pyrup]
//![pyrdown]
else if( c == 'o' )
{ pyrDown( src, src, Size( src.cols/2, src.rows/2 ) );
printf( "** Zoom Out: Image / 2 \n" );
}
//![pyrdown]
}
//![loop]
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,153 @@
/**
* file Smoothing.cpp
* brief Sample code for simple filters
* author OpenCV team
*/
#include <iostream>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
using namespace std;
using namespace cv;
/// Global Variables
int DELAY_CAPTION = 1500;
int DELAY_BLUR = 100;
int MAX_KERNEL_LENGTH = 31;
Mat src; Mat dst;
char window_name[] = "Smoothing Demo";
/// Function headers
int display_caption( const char* caption );
int display_dst( int delay );
/**
* function main
*/
int main( int argc, char ** argv )
{
namedWindow( window_name, WINDOW_AUTOSIZE );
/// Load the source image
const char* filename = argc >=2 ? argv[1] : "lena.jpg";
src = imread( samples::findFile( filename ), IMREAD_COLOR );
if (src.empty())
{
printf(" Error opening image\n");
printf(" Usage:\n %s [image_name-- default lena.jpg] \n", argv[0]);
return EXIT_FAILURE;
}
if( display_caption( "Original Image" ) != 0 )
{
return 0;
}
dst = src.clone();
if( display_dst( DELAY_CAPTION ) != 0 )
{
return 0;
}
/// Applying Homogeneous blur
if( display_caption( "Homogeneous Blur" ) != 0 )
{
return 0;
}
//![blur]
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
{
blur( src, dst, Size( i, i ), Point(-1,-1) );
if( display_dst( DELAY_BLUR ) != 0 )
{
return 0;
}
}
//![blur]
/// Applying Gaussian blur
if( display_caption( "Gaussian Blur" ) != 0 )
{
return 0;
}
//![gaussianblur]
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
{
GaussianBlur( src, dst, Size( i, i ), 0, 0 );
if( display_dst( DELAY_BLUR ) != 0 )
{
return 0;
}
}
//![gaussianblur]
/// Applying Median blur
if( display_caption( "Median Blur" ) != 0 )
{
return 0;
}
//![medianblur]
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
{
medianBlur ( src, dst, i );
if( display_dst( DELAY_BLUR ) != 0 )
{
return 0;
}
}
//![medianblur]
/// Applying Bilateral Filter
if( display_caption( "Bilateral Blur" ) != 0 )
{
return 0;
}
//![bilateralfilter]
for ( int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2 )
{
bilateralFilter ( src, dst, i, i*2, i/2 );
if( display_dst( DELAY_BLUR ) != 0 )
{
return 0;
}
}
//![bilateralfilter]
/// Done
display_caption( "Done!" );
return 0;
}
/**
* @function display_caption
*/
int display_caption( const char* caption )
{
dst = Mat::zeros( src.size(), src.type() );
putText( dst, caption,
Point( src.cols/4, src.rows/2),
FONT_HERSHEY_COMPLEX, 1, Scalar(255, 255, 255) );
return display_dst(DELAY_CAPTION);
}
/**
* @function display_dst
*/
int display_dst( int delay )
{
imshow( window_name, dst );
int c = waitKey ( delay );
if( c >= 0 ) { return -1; }
return 0;
}

View File

@ -0,0 +1,87 @@
/**
* @file Threshold.cpp
* @brief Sample code that shows how to use the diverse threshold options offered by OpenCV
* @author OpenCV team
*/
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include <iostream>
using namespace cv;
using std::cout;
/// Global variables
int threshold_value = 0;
int threshold_type = 3;
int const max_value = 255;
int const max_type = 4;
int const max_binary_value = 255;
Mat src, src_gray, dst;
const char* window_name = "Threshold Demo";
const char* trackbar_type = "Type: \n 0: Binary \n 1: Binary Inverted \n 2: Truncate \n 3: To Zero \n 4: To Zero Inverted";
const char* trackbar_value = "Value";
//![Threshold_Demo]
/**
* @function Threshold_Demo
*/
static void Threshold_Demo( int, void* )
{
/* 0: Binary
1: Binary Inverted
2: Threshold Truncated
3: Threshold to Zero
4: Threshold to Zero Inverted
*/
threshold( src_gray, dst, threshold_value, max_binary_value, threshold_type );
imshow( window_name, dst );
}
//![Threshold_Demo]
/**
* @function main
*/
int main( int argc, char** argv )
{
//! [load]
String imageName("stuff.jpg"); // by default
if (argc > 1)
{
imageName = argv[1];
}
src = imread( samples::findFile( imageName ), IMREAD_COLOR ); // Load an image
if (src.empty())
{
cout << "Cannot read the image: " << imageName << std::endl;
return -1;
}
cvtColor( src, src_gray, COLOR_BGR2GRAY ); // Convert the image to Gray
//! [load]
//! [window]
namedWindow( window_name, WINDOW_AUTOSIZE ); // Create a window to display results
//! [window]
//! [trackbar]
createTrackbar( trackbar_type,
window_name, &threshold_type,
max_type, Threshold_Demo ); // Create a Trackbar to choose type of Threshold
createTrackbar( trackbar_value,
window_name, &threshold_value,
max_value, Threshold_Demo ); // Create a Trackbar to choose Threshold value
//! [trackbar]
Threshold_Demo( 0, 0 ); // Call the function to initialize
/// Wait until the user finishes the program
waitKey();
return 0;
}

View File

@ -0,0 +1,105 @@
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/videoio.hpp"
#include <iostream>
using namespace cv;
/** Global Variables */
const int max_value_H = 360/2;
const int max_value = 255;
const String window_capture_name = "Video Capture";
const String window_detection_name = "Object Detection";
int low_H = 0, low_S = 0, low_V = 0;
int high_H = max_value_H, high_S = max_value, high_V = max_value;
//! [low]
static void on_low_H_thresh_trackbar(int, void *)
{
low_H = min(high_H-1, low_H);
setTrackbarPos("Low H", window_detection_name, low_H);
}
//! [low]
//! [high]
static void on_high_H_thresh_trackbar(int, void *)
{
high_H = max(high_H, low_H+1);
setTrackbarPos("High H", window_detection_name, high_H);
}
//! [high]
static void on_low_S_thresh_trackbar(int, void *)
{
low_S = min(high_S-1, low_S);
setTrackbarPos("Low S", window_detection_name, low_S);
}
static void on_high_S_thresh_trackbar(int, void *)
{
high_S = max(high_S, low_S+1);
setTrackbarPos("High S", window_detection_name, high_S);
}
static void on_low_V_thresh_trackbar(int, void *)
{
low_V = min(high_V-1, low_V);
setTrackbarPos("Low V", window_detection_name, low_V);
}
static void on_high_V_thresh_trackbar(int, void *)
{
high_V = max(high_V, low_V+1);
setTrackbarPos("High V", window_detection_name, high_V);
}
int main(int argc, char* argv[])
{
//! [cap]
VideoCapture cap(argc > 1 ? atoi(argv[1]) : 0);
//! [cap]
//! [window]
namedWindow(window_capture_name);
namedWindow(window_detection_name);
//! [window]
//! [trackbar]
// Trackbars to set thresholds for HSV values
createTrackbar("Low H", window_detection_name, &low_H, max_value_H, on_low_H_thresh_trackbar);
createTrackbar("High H", window_detection_name, &high_H, max_value_H, on_high_H_thresh_trackbar);
createTrackbar("Low S", window_detection_name, &low_S, max_value, on_low_S_thresh_trackbar);
createTrackbar("High S", window_detection_name, &high_S, max_value, on_high_S_thresh_trackbar);
createTrackbar("Low V", window_detection_name, &low_V, max_value, on_low_V_thresh_trackbar);
createTrackbar("High V", window_detection_name, &high_V, max_value, on_high_V_thresh_trackbar);
//! [trackbar]
Mat frame, frame_HSV, frame_threshold;
while (true) {
//! [while]
cap >> frame;
if(frame.empty())
{
break;
}
// Convert from BGR to HSV colorspace
cvtColor(frame, frame_HSV, COLOR_BGR2HSV);
// Detect the object based on HSV Range Values
inRange(frame_HSV, Scalar(low_H, low_S, low_V), Scalar(high_H, high_S, high_V), frame_threshold);
//! [while]
//! [show]
// Show the frames
imshow(window_capture_name, frame);
imshow(window_detection_name, frame_threshold);
//! [show]
char key = (char) waitKey(30);
if (key == 'q' || key == 27)
{
break;
}
}
return 0;
}

View File

@ -0,0 +1,113 @@
/**
* @brief You will learn how to segment an anisotropic image with a single local orientation by a gradient structure tensor (GST)
* @author Karpushin Vladislav, karpushin@ngs.ru, https://github.com/VladKarpushin
*/
#include <iostream>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
using namespace cv;
using namespace std;
//! [calcGST_proto]
void calcGST(const Mat& inputImg, Mat& imgCoherencyOut, Mat& imgOrientationOut, int w);
//! [calcGST_proto]
int main()
{
int W = 52; // window size is WxW
double C_Thr = 0.43; // threshold for coherency
int LowThr = 35; // threshold1 for orientation, it ranges from 0 to 180
int HighThr = 57; // threshold2 for orientation, it ranges from 0 to 180
Mat imgIn = imread("input.jpg", IMREAD_GRAYSCALE);
if (imgIn.empty()) //check whether the image is loaded or not
{
cout << "ERROR : Image cannot be loaded..!!" << endl;
return -1;
}
//! [main_extra]
//! [main]
Mat imgCoherency, imgOrientation;
calcGST(imgIn, imgCoherency, imgOrientation, W);
//! [thresholding]
Mat imgCoherencyBin;
imgCoherencyBin = imgCoherency > C_Thr;
Mat imgOrientationBin;
inRange(imgOrientation, Scalar(LowThr), Scalar(HighThr), imgOrientationBin);
//! [thresholding]
//! [combining]
Mat imgBin;
imgBin = imgCoherencyBin & imgOrientationBin;
//! [combining]
//! [main]
normalize(imgCoherency, imgCoherency, 0, 255, NORM_MINMAX);
normalize(imgOrientation, imgOrientation, 0, 255, NORM_MINMAX);
imwrite("result.jpg", 0.5*(imgIn + imgBin));
imwrite("Coherency.jpg", imgCoherency);
imwrite("Orientation.jpg", imgOrientation);
//! [main_extra]
return 0;
}
//! [calcGST]
//! [calcJ_header]
void calcGST(const Mat& inputImg, Mat& imgCoherencyOut, Mat& imgOrientationOut, int w)
{
Mat img;
inputImg.convertTo(img, CV_32F);
// GST components calculation (start)
// J = (J11 J12; J12 J22) - GST
Mat imgDiffX, imgDiffY, imgDiffXY;
Sobel(img, imgDiffX, CV_32F, 1, 0, 3);
Sobel(img, imgDiffY, CV_32F, 0, 1, 3);
multiply(imgDiffX, imgDiffY, imgDiffXY);
//! [calcJ_header]
Mat imgDiffXX, imgDiffYY;
multiply(imgDiffX, imgDiffX, imgDiffXX);
multiply(imgDiffY, imgDiffY, imgDiffYY);
Mat J11, J22, J12; // J11, J22 and J12 are GST components
boxFilter(imgDiffXX, J11, CV_32F, Size(w, w));
boxFilter(imgDiffYY, J22, CV_32F, Size(w, w));
boxFilter(imgDiffXY, J12, CV_32F, Size(w, w));
// GST components calculation (stop)
// eigenvalue calculation (start)
// lambda1 = 0.5*(J11 + J22 + sqrt((J11-J22)^2 + 4*J12^2))
// lambda2 = 0.5*(J11 + J22 - sqrt((J11-J22)^2 + 4*J12^2))
Mat tmp1, tmp2, tmp3, tmp4;
tmp1 = J11 + J22;
tmp2 = J11 - J22;
multiply(tmp2, tmp2, tmp2);
multiply(J12, J12, tmp3);
sqrt(tmp2 + 4.0 * tmp3, tmp4);
Mat lambda1, lambda2;
lambda1 = tmp1 + tmp4;
lambda1 = 0.5*lambda1; // biggest eigenvalue
lambda2 = tmp1 - tmp4;
lambda2 = 0.5*lambda2; // smallest eigenvalue
// eigenvalue calculation (stop)
// Coherency calculation (start)
// Coherency = (lambda1 - lambda2)/(lambda1 + lambda2)) - measure of anisotropism
// Coherency is anisotropy degree (consistency of local orientation)
divide(lambda1 - lambda2, lambda1 + lambda2, imgCoherencyOut);
// Coherency calculation (stop)
// orientation angle calculation (start)
// tan(2*Alpha) = 2*J12/(J22 - J11)
// Alpha = 0.5 atan2(2*J12/(J22 - J11))
phase(J22 - J11, 2.0*J12, imgOrientationOut, true);
imgOrientationOut = 0.5*imgOrientationOut;
// orientation angle calculation (stop)
}
//! [calcGST]

View File

@ -0,0 +1,185 @@
/**
* @file Drawing_1.cpp
* @brief Simple geometric drawing
* @author OpenCV team
*/
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#define w 400
using namespace cv;
/// Function headers
void MyEllipse( Mat img, double angle );
void MyFilledCircle( Mat img, Point center );
void MyPolygon( Mat img );
void MyLine( Mat img, Point start, Point end );
/**
* @function main
* @brief Main function
*/
int main( void ){
//![create_images]
/// Windows names
char atom_window[] = "Drawing 1: Atom";
char rook_window[] = "Drawing 2: Rook";
/// Create black empty images
Mat atom_image = Mat::zeros( w, w, CV_8UC3 );
Mat rook_image = Mat::zeros( w, w, CV_8UC3 );
//![create_images]
/// 1. Draw a simple atom:
/// -----------------------
//![draw_atom]
/// 1.a. Creating ellipses
MyEllipse( atom_image, 90 );
MyEllipse( atom_image, 0 );
MyEllipse( atom_image, 45 );
MyEllipse( atom_image, -45 );
/// 1.b. Creating circles
MyFilledCircle( atom_image, Point( w/2, w/2) );
//![draw_atom]
/// 2. Draw a rook
/// ------------------
//![draw_rook]
/// 2.a. Create a convex polygon
MyPolygon( rook_image );
//![rectangle]
/// 2.b. Creating rectangles
rectangle( rook_image,
Point( 0, 7*w/8 ),
Point( w, w),
Scalar( 0, 255, 255 ),
FILLED,
LINE_8 );
//![rectangle]
/// 2.c. Create a few lines
MyLine( rook_image, Point( 0, 15*w/16 ), Point( w, 15*w/16 ) );
MyLine( rook_image, Point( w/4, 7*w/8 ), Point( w/4, w ) );
MyLine( rook_image, Point( w/2, 7*w/8 ), Point( w/2, w ) );
MyLine( rook_image, Point( 3*w/4, 7*w/8 ), Point( 3*w/4, w ) );
//![draw_rook]
/// 3. Display your stuff!
imshow( atom_window, atom_image );
moveWindow( atom_window, 0, 200 );
imshow( rook_window, rook_image );
moveWindow( rook_window, w, 200 );
waitKey( 0 );
return(0);
}
/// Function Declaration
/**
* @function MyEllipse
* @brief Draw a fixed-size ellipse with different angles
*/
//![my_ellipse]
void MyEllipse( Mat img, double angle )
{
int thickness = 2;
int lineType = 8;
ellipse( img,
Point( w/2, w/2 ),
Size( w/4, w/16 ),
angle,
0,
360,
Scalar( 255, 0, 0 ),
thickness,
lineType );
}
//![my_ellipse]
/**
* @function MyFilledCircle
* @brief Draw a fixed-size filled circle
*/
//![my_filled_circle]
void MyFilledCircle( Mat img, Point center )
{
circle( img,
center,
w/32,
Scalar( 0, 0, 255 ),
FILLED,
LINE_8 );
}
//![my_filled_circle]
/**
* @function MyPolygon
* @brief Draw a simple concave polygon (rook)
*/
//![my_polygon]
void MyPolygon( Mat img )
{
int lineType = LINE_8;
/** Create some points */
Point rook_points[1][20];
rook_points[0][0] = Point( w/4, 7*w/8 );
rook_points[0][1] = Point( 3*w/4, 7*w/8 );
rook_points[0][2] = Point( 3*w/4, 13*w/16 );
rook_points[0][3] = Point( 11*w/16, 13*w/16 );
rook_points[0][4] = Point( 19*w/32, 3*w/8 );
rook_points[0][5] = Point( 3*w/4, 3*w/8 );
rook_points[0][6] = Point( 3*w/4, w/8 );
rook_points[0][7] = Point( 26*w/40, w/8 );
rook_points[0][8] = Point( 26*w/40, w/4 );
rook_points[0][9] = Point( 22*w/40, w/4 );
rook_points[0][10] = Point( 22*w/40, w/8 );
rook_points[0][11] = Point( 18*w/40, w/8 );
rook_points[0][12] = Point( 18*w/40, w/4 );
rook_points[0][13] = Point( 14*w/40, w/4 );
rook_points[0][14] = Point( 14*w/40, w/8 );
rook_points[0][15] = Point( w/4, w/8 );
rook_points[0][16] = Point( w/4, 3*w/8 );
rook_points[0][17] = Point( 13*w/32, 3*w/8 );
rook_points[0][18] = Point( 5*w/16, 13*w/16 );
rook_points[0][19] = Point( w/4, 13*w/16 );
const Point* ppt[1] = { rook_points[0] };
int npt[] = { 20 };
fillPoly( img,
ppt,
npt,
1,
Scalar( 255, 255, 255 ),
lineType );
}
//![my_polygon]
/**
* @function MyLine
* @brief Draw a simple line
*/
//![my_line]
void MyLine( Mat img, Point start, Point end )
{
int thickness = 2;
int lineType = LINE_8;
line( img,
start,
end,
Scalar( 0, 0, 0 ),
thickness,
lineType );
}
//![my_line]

View File

@ -0,0 +1,326 @@
/**
* @file Drawing_2.cpp
* @brief Simple sample code
*/
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
#include <stdio.h>
using namespace cv;
/// Global Variables
const int NUMBER = 100;
const int DELAY = 5;
const int window_width = 900;
const int window_height = 600;
int x_1 = -window_width/2;
int x_2 = window_width*3/2;
int y_1 = -window_width/2;
int y_2 = window_width*3/2;
/// Function headers
static Scalar randomColor( RNG& rng );
int Drawing_Random_Lines( Mat image, char* window_name, RNG rng );
int Drawing_Random_Rectangles( Mat image, char* window_name, RNG rng );
int Drawing_Random_Ellipses( Mat image, char* window_name, RNG rng );
int Drawing_Random_Polylines( Mat image, char* window_name, RNG rng );
int Drawing_Random_Filled_Polygons( Mat image, char* window_name, RNG rng );
int Drawing_Random_Circles( Mat image, char* window_name, RNG rng );
int Displaying_Random_Text( Mat image, char* window_name, RNG rng );
int Displaying_Big_End( Mat image, char* window_name, RNG rng );
/**
* @function main
*/
int main( void )
{
int c;
/// Start creating a window
char window_name[] = "Drawing_2 Tutorial";
/// Also create a random object (RNG)
RNG rng( 0xFFFFFFFF );
/// Initialize a matrix filled with zeros
Mat image = Mat::zeros( window_height, window_width, CV_8UC3 );
/// Show it in a window during DELAY ms
imshow( window_name, image );
waitKey( DELAY );
/// Now, let's draw some lines
c = Drawing_Random_Lines(image, window_name, rng);
if( c != 0 ) return 0;
/// Go on drawing, this time nice rectangles
c = Drawing_Random_Rectangles(image, window_name, rng);
if( c != 0 ) return 0;
/// Draw some ellipses
c = Drawing_Random_Ellipses( image, window_name, rng );
if( c != 0 ) return 0;
/// Now some polylines
c = Drawing_Random_Polylines( image, window_name, rng );
if( c != 0 ) return 0;
/// Draw filled polygons
c = Drawing_Random_Filled_Polygons( image, window_name, rng );
if( c != 0 ) return 0;
/// Draw circles
c = Drawing_Random_Circles( image, window_name, rng );
if( c != 0 ) return 0;
/// Display text in random positions
c = Displaying_Random_Text( image, window_name, rng );
if( c != 0 ) return 0;
/// Displaying the big end!
c = Displaying_Big_End( image, window_name, rng );
if( c != 0 ) return 0;
waitKey(0);
return 0;
}
/// Function definitions
/**
* @function randomColor
* @brief Produces a random color given a random object
*/
static Scalar randomColor( RNG& rng )
{
int icolor = (unsigned) rng;
return Scalar( icolor&255, (icolor>>8)&255, (icolor>>16)&255 );
}
/**
* @function Drawing_Random_Lines
*/
int Drawing_Random_Lines( Mat image, char* window_name, RNG rng )
{
Point pt1, pt2;
for( int i = 0; i < NUMBER; i++ )
{
pt1.x = rng.uniform( x_1, x_2 );
pt1.y = rng.uniform( y_1, y_2 );
pt2.x = rng.uniform( x_1, x_2 );
pt2.y = rng.uniform( y_1, y_2 );
line( image, pt1, pt2, randomColor(rng), rng.uniform(1, 10), 8 );
imshow( window_name, image );
if( waitKey( DELAY ) >= 0 )
{ return -1; }
}
return 0;
}
/**
* @function Drawing_Rectangles
*/
int Drawing_Random_Rectangles( Mat image, char* window_name, RNG rng )
{
Point pt1, pt2;
int lineType = 8;
int thickness = rng.uniform( -3, 10 );
for( int i = 0; i < NUMBER; i++ )
{
pt1.x = rng.uniform( x_1, x_2 );
pt1.y = rng.uniform( y_1, y_2 );
pt2.x = rng.uniform( x_1, x_2 );
pt2.y = rng.uniform( y_1, y_2 );
rectangle( image, pt1, pt2, randomColor(rng), MAX( thickness, -1 ), lineType );
imshow( window_name, image );
if( waitKey( DELAY ) >= 0 )
{ return -1; }
}
return 0;
}
/**
* @function Drawing_Random_Ellipses
*/
int Drawing_Random_Ellipses( Mat image, char* window_name, RNG rng )
{
int lineType = 8;
for ( int i = 0; i < NUMBER; i++ )
{
Point center;
center.x = rng.uniform(x_1, x_2);
center.y = rng.uniform(y_1, y_2);
Size axes;
axes.width = rng.uniform(0, 200);
axes.height = rng.uniform(0, 200);
double angle = rng.uniform(0, 180);
ellipse( image, center, axes, angle, angle - 100, angle + 200,
randomColor(rng), rng.uniform(-1,9), lineType );
imshow( window_name, image );
if( waitKey(DELAY) >= 0 )
{ return -1; }
}
return 0;
}
/**
* @function Drawing_Random_Polylines
*/
int Drawing_Random_Polylines( Mat image, char* window_name, RNG rng )
{
int lineType = 8;
for( int i = 0; i< NUMBER; i++ )
{
Point pt[2][3];
pt[0][0].x = rng.uniform(x_1, x_2);
pt[0][0].y = rng.uniform(y_1, y_2);
pt[0][1].x = rng.uniform(x_1, x_2);
pt[0][1].y = rng.uniform(y_1, y_2);
pt[0][2].x = rng.uniform(x_1, x_2);
pt[0][2].y = rng.uniform(y_1, y_2);
pt[1][0].x = rng.uniform(x_1, x_2);
pt[1][0].y = rng.uniform(y_1, y_2);
pt[1][1].x = rng.uniform(x_1, x_2);
pt[1][1].y = rng.uniform(y_1, y_2);
pt[1][2].x = rng.uniform(x_1, x_2);
pt[1][2].y = rng.uniform(y_1, y_2);
const Point* ppt[2] = {pt[0], pt[1]};
int npt[] = {3, 3};
polylines(image, ppt, npt, 2, true, randomColor(rng), rng.uniform(1,10), lineType);
imshow( window_name, image );
if( waitKey(DELAY) >= 0 )
{ return -1; }
}
return 0;
}
/**
* @function Drawing_Random_Filled_Polygons
*/
int Drawing_Random_Filled_Polygons( Mat image, char* window_name, RNG rng )
{
int lineType = 8;
for ( int i = 0; i < NUMBER; i++ )
{
Point pt[2][3];
pt[0][0].x = rng.uniform(x_1, x_2);
pt[0][0].y = rng.uniform(y_1, y_2);
pt[0][1].x = rng.uniform(x_1, x_2);
pt[0][1].y = rng.uniform(y_1, y_2);
pt[0][2].x = rng.uniform(x_1, x_2);
pt[0][2].y = rng.uniform(y_1, y_2);
pt[1][0].x = rng.uniform(x_1, x_2);
pt[1][0].y = rng.uniform(y_1, y_2);
pt[1][1].x = rng.uniform(x_1, x_2);
pt[1][1].y = rng.uniform(y_1, y_2);
pt[1][2].x = rng.uniform(x_1, x_2);
pt[1][2].y = rng.uniform(y_1, y_2);
const Point* ppt[2] = {pt[0], pt[1]};
int npt[] = {3, 3};
fillPoly( image, ppt, npt, 2, randomColor(rng), lineType );
imshow( window_name, image );
if( waitKey(DELAY) >= 0 )
{ return -1; }
}
return 0;
}
/**
* @function Drawing_Random_Circles
*/
int Drawing_Random_Circles( Mat image, char* window_name, RNG rng )
{
int lineType = 8;
for (int i = 0; i < NUMBER; i++)
{
Point center;
center.x = rng.uniform(x_1, x_2);
center.y = rng.uniform(y_1, y_2);
circle( image, center, rng.uniform(0, 300), randomColor(rng),
rng.uniform(-1, 9), lineType );
imshow( window_name, image );
if( waitKey(DELAY) >= 0 )
{ return -1; }
}
return 0;
}
/**
* @function Displaying_Random_Text
*/
int Displaying_Random_Text( Mat image, char* window_name, RNG rng )
{
int lineType = 8;
for ( int i = 1; i < NUMBER; i++ )
{
Point org;
org.x = rng.uniform(x_1, x_2);
org.y = rng.uniform(y_1, y_2);
putText( image, "Testing text rendering", org, rng.uniform(0,8),
rng.uniform(0,100)*0.05+0.1, randomColor(rng), rng.uniform(1, 10), lineType);
imshow( window_name, image );
if( waitKey(DELAY) >= 0 )
{ return -1; }
}
return 0;
}
/**
* @function Displaying_Big_End
*/
int Displaying_Big_End( Mat image, char* window_name, RNG )
{
Size textsize = getTextSize("OpenCV forever!", FONT_HERSHEY_COMPLEX, 3, 5, 0);
Point org((window_width - textsize.width)/2, (window_height - textsize.height)/2);
int lineType = 8;
Mat image2;
for( int i = 0; i < 255; i += 2 )
{
image2 = image - Scalar::all(i);
putText( image2, "OpenCV forever!", org, FONT_HERSHEY_COMPLEX, 3,
Scalar(i, i, 255), 5, lineType );
imshow( window_name, image2 );
if( waitKey(DELAY) >= 0 )
{ return -1; }
}
return 0;
}

View File

@ -0,0 +1,98 @@
#include <iostream>
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
// we're NOT "using namespace std;" here, to avoid collisions between the beta variable and std::beta in c++17
using std::cout;
using std::endl;
using namespace cv;
namespace
{
/** Global Variables */
int alpha = 100;
int beta = 100;
int gamma_cor = 100;
Mat img_original, img_corrected, img_gamma_corrected;
void basicLinearTransform(const Mat &img, const double alpha_, const int beta_)
{
Mat res;
img.convertTo(res, -1, alpha_, beta_);
hconcat(img, res, img_corrected);
imshow("Brightness and contrast adjustments", img_corrected);
}
void gammaCorrection(const Mat &img, const double gamma_)
{
CV_Assert(gamma_ >= 0);
//! [changing-contrast-brightness-gamma-correction]
Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.ptr();
for( int i = 0; i < 256; ++i)
p[i] = saturate_cast<uchar>(pow(i / 255.0, gamma_) * 255.0);
Mat res = img.clone();
LUT(img, lookUpTable, res);
//! [changing-contrast-brightness-gamma-correction]
hconcat(img, res, img_gamma_corrected);
imshow("Gamma correction", img_gamma_corrected);
}
void on_linear_transform_alpha_trackbar(int, void *)
{
double alpha_value = alpha / 100.0;
int beta_value = beta - 100;
basicLinearTransform(img_original, alpha_value, beta_value);
}
void on_linear_transform_beta_trackbar(int, void *)
{
double alpha_value = alpha / 100.0;
int beta_value = beta - 100;
basicLinearTransform(img_original, alpha_value, beta_value);
}
void on_gamma_correction_trackbar(int, void *)
{
double gamma_value = gamma_cor / 100.0;
gammaCorrection(img_original, gamma_value);
}
}
int main( int argc, char** argv )
{
CommandLineParser parser( argc, argv, "{@input | lena.jpg | input image}" );
img_original = imread( samples::findFile( parser.get<String>( "@input" ) ) );
if( img_original.empty() )
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
img_corrected = Mat(img_original.rows, img_original.cols*2, img_original.type());
img_gamma_corrected = Mat(img_original.rows, img_original.cols*2, img_original.type());
hconcat(img_original, img_original, img_corrected);
hconcat(img_original, img_original, img_gamma_corrected);
namedWindow("Brightness and contrast adjustments");
namedWindow("Gamma correction");
createTrackbar("Alpha gain (contrast)", "Brightness and contrast adjustments", &alpha, 500, on_linear_transform_alpha_trackbar);
createTrackbar("Beta bias (brightness)", "Brightness and contrast adjustments", &beta, 200, on_linear_transform_beta_trackbar);
createTrackbar("Gamma correction", "Gamma correction", &gamma_cor, 200, on_gamma_correction_trackbar);
on_linear_transform_alpha_trackbar(0, 0);
on_gamma_correction_trackbar(0, 0);
waitKey();
imwrite("linear_transform_correction.png", img_corrected);
imwrite("gamma_correction.png", img_gamma_corrected);
return 0;
}

View File

@ -0,0 +1,139 @@
/**
* @file Morphology_3(Extract_Lines).cpp
* @brief Use morphology transformations for extracting horizontal and vertical lines sample code
* @author OpenCV team
*/
#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <iostream>
void show_wait_destroy(const char* winname, cv::Mat img);
using namespace std;
using namespace cv;
int main(int argc, char** argv)
{
//! [load_image]
CommandLineParser parser(argc, argv, "{@input | notes.png | input image}");
Mat src = imread( samples::findFile( parser.get<String>("@input") ), IMREAD_COLOR);
if (src.empty())
{
cout << "Could not open or find the image!\n" << endl;
cout << "Usage: " << argv[0] << " <Input image>" << endl;
return -1;
}
// Show source image
imshow("src", src);
//! [load_image]
//! [gray]
// Transform source image to gray if it is not already
Mat gray;
if (src.channels() == 3)
{
cvtColor(src, gray, COLOR_BGR2GRAY);
}
else
{
gray = src;
}
// Show gray image
show_wait_destroy("gray", gray);
//! [gray]
//! [bin]
// Apply adaptiveThreshold at the bitwise_not of gray, notice the ~ symbol
Mat bw;
adaptiveThreshold(~gray, bw, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 15, -2);
// Show binary image
show_wait_destroy("binary", bw);
//! [bin]
//! [init]
// Create the images that will use to extract the horizontal and vertical lines
Mat horizontal = bw.clone();
Mat vertical = bw.clone();
//! [init]
//! [horiz]
// Specify size on horizontal axis
int horizontal_size = horizontal.cols / 30;
// Create structure element for extracting horizontal lines through morphology operations
Mat horizontalStructure = getStructuringElement(MORPH_RECT, Size(horizontal_size, 1));
// Apply morphology operations
erode(horizontal, horizontal, horizontalStructure, Point(-1, -1));
dilate(horizontal, horizontal, horizontalStructure, Point(-1, -1));
// Show extracted horizontal lines
show_wait_destroy("horizontal", horizontal);
//! [horiz]
//! [vert]
// Specify size on vertical axis
int vertical_size = vertical.rows / 30;
// Create structure element for extracting vertical lines through morphology operations
Mat verticalStructure = getStructuringElement(MORPH_RECT, Size(1, vertical_size));
// Apply morphology operations
erode(vertical, vertical, verticalStructure, Point(-1, -1));
dilate(vertical, vertical, verticalStructure, Point(-1, -1));
// Show extracted vertical lines
show_wait_destroy("vertical", vertical);
//! [vert]
//! [smooth]
// Inverse vertical image
bitwise_not(vertical, vertical);
show_wait_destroy("vertical_bit", vertical);
// Extract edges and smooth image according to the logic
// 1. extract edges
// 2. dilate(edges)
// 3. src.copyTo(smooth)
// 4. blur smooth img
// 5. smooth.copyTo(src, edges)
// Step 1
Mat edges;
adaptiveThreshold(vertical, edges, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 3, -2);
show_wait_destroy("edges", edges);
// Step 2
Mat kernel = Mat::ones(2, 2, CV_8UC1);
dilate(edges, edges, kernel);
show_wait_destroy("dilate", edges);
// Step 3
Mat smooth;
vertical.copyTo(smooth);
// Step 4
blur(smooth, smooth, Size(2, 2));
// Step 5
smooth.copyTo(vertical, edges);
// Show final result
show_wait_destroy("smooth - final", vertical);
//! [smooth]
return 0;
}
void show_wait_destroy(const char* winname, cv::Mat img) {
imshow(winname, img);
moveWindow(winname, 500, 0);
waitKey(0);
destroyWindow(winname);
}

View File

@ -0,0 +1,184 @@
/**
* @brief You will learn how to recover an image with motion blur distortion using a Wiener filter
* @author Karpushin Vladislav, karpushin@ngs.ru, https://github.com/VladKarpushin
*/
#include <iostream>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
using namespace cv;
using namespace std;
void help();
void calcPSF(Mat& outputImg, Size filterSize, int len, double theta);
void fftshift(const Mat& inputImg, Mat& outputImg);
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr);
void edgetaper(const Mat& inputImg, Mat& outputImg, double gamma = 5.0, double beta = 0.2);
const String keys =
"{help h usage ? | | print this message }"
"{image |input.png | input image name }"
"{LEN |125 | length of a motion }"
"{THETA |0 | angle of a motion in degrees }"
"{SNR |700 | signal to noise ratio }"
;
int main(int argc, char *argv[])
{
help();
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
int LEN = parser.get<int>("LEN");
double THETA = parser.get<double>("THETA");
int snr = parser.get<int>("SNR");
string strInFileName = parser.get<String>("image");
if (!parser.check())
{
parser.printErrors();
return 0;
}
Mat imgIn;
imgIn = imread(strInFileName, IMREAD_GRAYSCALE);
if (imgIn.empty()) //check whether the image is loaded or not
{
cout << "ERROR : Image cannot be loaded..!!" << endl;
return -1;
}
Mat imgOut;
//! [main]
// it needs to process even image only
Rect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);
//Hw calculation (start)
Mat Hw, h;
calcPSF(h, roi.size(), LEN, THETA);
calcWnrFilter(h, Hw, 1.0 / double(snr));
//Hw calculation (stop)
imgIn.convertTo(imgIn, CV_32F);
edgetaper(imgIn, imgIn);
// filtering (start)
filter2DFreq(imgIn(roi), imgOut, Hw);
// filtering (stop)
//! [main]
imgOut.convertTo(imgOut, CV_8U);
normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);
imwrite("result.jpg", imgOut);
return 0;
}
void help()
{
cout << "2018-08-14" << endl;
cout << "Motion_deblur_v2" << endl;
cout << "You will learn how to recover an image with motion blur distortion using a Wiener filter" << endl;
}
//! [calcPSF]
void calcPSF(Mat& outputImg, Size filterSize, int len, double theta)
{
Mat h(filterSize, CV_32F, Scalar(0));
Point point(filterSize.width / 2, filterSize.height / 2);
ellipse(h, point, Size(0, cvRound(float(len) / 2.0)), 90.0 - theta, 0, 360, Scalar(255), FILLED);
Scalar summa = sum(h);
outputImg = h / summa[0];
}
//! [calcPSF]
//! [fftshift]
void fftshift(const Mat& inputImg, Mat& outputImg)
{
outputImg = inputImg.clone();
int cx = outputImg.cols / 2;
int cy = outputImg.rows / 2;
Mat q0(outputImg, Rect(0, 0, cx, cy));
Mat q1(outputImg, Rect(cx, 0, cx, cy));
Mat q2(outputImg, Rect(0, cy, cx, cy));
Mat q3(outputImg, Rect(cx, cy, cx, cy));
Mat tmp;
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
}
//! [fftshift]
//! [filter2DFreq]
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{
Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI, DFT_SCALE);
Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };
Mat complexH;
merge(planesH, 2, complexH);
Mat complexIH;
mulSpectrums(complexI, complexH, complexIH, 0);
idft(complexIH, complexIH);
split(complexIH, planes);
outputImg = planes[0];
}
//! [filter2DFreq]
//! [calcWnrFilter]
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{
Mat h_PSF_shifted;
fftshift(input_h_PSF, h_PSF_shifted);
Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI);
split(complexI, planes);
Mat denom;
pow(abs(planes[0]), 2, denom);
denom += nsr;
divide(planes[0], denom, output_G);
}
//! [calcWnrFilter]
//! [edgetaper]
void edgetaper(const Mat& inputImg, Mat& outputImg, double gamma, double beta)
{
int Nx = inputImg.cols;
int Ny = inputImg.rows;
Mat w1(1, Nx, CV_32F, Scalar(0));
Mat w2(Ny, 1, CV_32F, Scalar(0));
float* p1 = w1.ptr<float>(0);
float* p2 = w2.ptr<float>(0);
float dx = float(2.0 * CV_PI / Nx);
float x = float(-CV_PI);
for (int i = 0; i < Nx; i++)
{
p1[i] = float(0.5 * (tanh((x + gamma / 2) / beta) - tanh((x - gamma / 2) / beta)));
x += dx;
}
float dy = float(2.0 * CV_PI / Ny);
float y = float(-CV_PI);
for (int i = 0; i < Ny; i++)
{
p2[i] = float(0.5 * (tanh((y + gamma / 2) / beta) - tanh((y - gamma / 2) / beta)));
y += dy;
}
Mat w = w2 * w1;
multiply(inputImg, w, outputImg);
}
//! [edgetaper]

View File

@ -0,0 +1,149 @@
/**
* @brief You will learn how to recover an out-of-focus image by Wiener filter
* @author Karpushin Vladislav, karpushin@ngs.ru, https://github.com/VladKarpushin
*/
#include <iostream>
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
using namespace cv;
using namespace std;
void help();
void calcPSF(Mat& outputImg, Size filterSize, int R);
void fftshift(const Mat& inputImg, Mat& outputImg);
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr);
const String keys =
"{help h usage ? | | print this message }"
"{image |original.JPG | input image name }"
"{R |53 | radius }"
"{SNR |5200 | signal to noise ratio}"
;
int main(int argc, char *argv[])
{
help();
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
int R = parser.get<int>("R");
int snr = parser.get<int>("SNR");
string strInFileName = parser.get<String>("image");
if (!parser.check())
{
parser.printErrors();
return 0;
}
Mat imgIn;
imgIn = imread(strInFileName, IMREAD_GRAYSCALE);
if (imgIn.empty()) //check whether the image is loaded or not
{
cout << "ERROR : Image cannot be loaded..!!" << endl;
return -1;
}
Mat imgOut;
//! [main]
// it needs to process even image only
Rect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);
//Hw calculation (start)
Mat Hw, h;
calcPSF(h, roi.size(), R);
calcWnrFilter(h, Hw, 1.0 / double(snr));
//Hw calculation (stop)
// filtering (start)
filter2DFreq(imgIn(roi), imgOut, Hw);
// filtering (stop)
//! [main]
imgOut.convertTo(imgOut, CV_8U);
normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);
imwrite("result.jpg", imgOut);
return 0;
}
void help()
{
cout << "2018-07-12" << endl;
cout << "DeBlur_v8" << endl;
cout << "You will learn how to recover an out-of-focus image by Wiener filter" << endl;
}
//! [calcPSF]
void calcPSF(Mat& outputImg, Size filterSize, int R)
{
Mat h(filterSize, CV_32F, Scalar(0));
Point point(filterSize.width / 2, filterSize.height / 2);
circle(h, point, R, 255, -1, 8);
Scalar summa = sum(h);
outputImg = h / summa[0];
}
//! [calcPSF]
//! [fftshift]
void fftshift(const Mat& inputImg, Mat& outputImg)
{
outputImg = inputImg.clone();
int cx = outputImg.cols / 2;
int cy = outputImg.rows / 2;
Mat q0(outputImg, Rect(0, 0, cx, cy));
Mat q1(outputImg, Rect(cx, 0, cx, cy));
Mat q2(outputImg, Rect(0, cy, cx, cy));
Mat q3(outputImg, Rect(cx, cy, cx, cy));
Mat tmp;
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
}
//! [fftshift]
//! [filter2DFreq]
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{
Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI, DFT_SCALE);
Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };
Mat complexH;
merge(planesH, 2, complexH);
Mat complexIH;
mulSpectrums(complexI, complexH, complexIH, 0);
idft(complexIH, complexIH);
split(complexIH, planes);
outputImg = planes[0];
}
//! [filter2DFreq]
//! [calcWnrFilter]
void calcWnrFilter(const Mat& input_h_PSF, Mat& output_G, double nsr)
{
Mat h_PSF_shifted;
fftshift(input_h_PSF, h_PSF_shifted);
Mat planes[2] = { Mat_<float>(h_PSF_shifted.clone()), Mat::zeros(h_PSF_shifted.size(), CV_32F) };
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI);
split(complexI, planes);
Mat denom;
pow(abs(planes[0]), 2, denom);
denom += nsr;
divide(planes[0], denom, output_G);
}
//! [calcWnrFilter]

View File

@ -0,0 +1,148 @@
/**
* @brief You will learn how to remove periodic noise in the Fourier domain
* @author Karpushin Vladislav, karpushin@ngs.ru, https://github.com/VladKarpushin
*/
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
using namespace cv;
using namespace std;
void fftshift(const Mat& inputImg, Mat& outputImg);
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H);
void synthesizeFilterH(Mat& inputOutput_H, Point center, int radius);
void calcPSD(const Mat& inputImg, Mat& outputImg, int flag = 0);
int main()
{
Mat imgIn = imread("input.jpg", IMREAD_GRAYSCALE);
if (imgIn.empty()) //check whether the image is loaded or not
{
cout << "ERROR : Image cannot be loaded..!!" << endl;
return -1;
}
imgIn.convertTo(imgIn, CV_32F);
//! [main]
// it needs to process even image only
Rect roi = Rect(0, 0, imgIn.cols & -2, imgIn.rows & -2);
imgIn = imgIn(roi);
// PSD calculation (start)
Mat imgPSD;
calcPSD(imgIn, imgPSD);
fftshift(imgPSD, imgPSD);
normalize(imgPSD, imgPSD, 0, 255, NORM_MINMAX);
// PSD calculation (stop)
//H calculation (start)
Mat H = Mat(roi.size(), CV_32F, Scalar(1));
const int r = 21;
synthesizeFilterH(H, Point(705, 458), r);
synthesizeFilterH(H, Point(850, 391), r);
synthesizeFilterH(H, Point(993, 325), r);
//H calculation (stop)
// filtering (start)
Mat imgOut;
fftshift(H, H);
filter2DFreq(imgIn, imgOut, H);
// filtering (stop)
//! [main]
imgOut.convertTo(imgOut, CV_8U);
normalize(imgOut, imgOut, 0, 255, NORM_MINMAX);
imwrite("result.jpg", imgOut);
imwrite("PSD.jpg", imgPSD);
fftshift(H, H);
normalize(H, H, 0, 255, NORM_MINMAX);
imwrite("filter.jpg", H);
return 0;
}
//! [fftshift]
void fftshift(const Mat& inputImg, Mat& outputImg)
{
outputImg = inputImg.clone();
int cx = outputImg.cols / 2;
int cy = outputImg.rows / 2;
Mat q0(outputImg, Rect(0, 0, cx, cy));
Mat q1(outputImg, Rect(cx, 0, cx, cy));
Mat q2(outputImg, Rect(0, cy, cx, cy));
Mat q3(outputImg, Rect(cx, cy, cx, cy));
Mat tmp;
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp);
q2.copyTo(q1);
tmp.copyTo(q2);
}
//! [fftshift]
//! [filter2DFreq]
void filter2DFreq(const Mat& inputImg, Mat& outputImg, const Mat& H)
{
Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI, DFT_SCALE);
Mat planesH[2] = { Mat_<float>(H.clone()), Mat::zeros(H.size(), CV_32F) };
Mat complexH;
merge(planesH, 2, complexH);
Mat complexIH;
mulSpectrums(complexI, complexH, complexIH, 0);
idft(complexIH, complexIH);
split(complexIH, planes);
outputImg = planes[0];
}
//! [filter2DFreq]
//! [synthesizeFilterH]
void synthesizeFilterH(Mat& inputOutput_H, Point center, int radius)
{
Point c2 = center, c3 = center, c4 = center;
c2.y = inputOutput_H.rows - center.y;
c3.x = inputOutput_H.cols - center.x;
c4 = Point(c3.x,c2.y);
circle(inputOutput_H, center, radius, 0, -1, 8);
circle(inputOutput_H, c2, radius, 0, -1, 8);
circle(inputOutput_H, c3, radius, 0, -1, 8);
circle(inputOutput_H, c4, radius, 0, -1, 8);
}
//! [synthesizeFilterH]
// Function calculates PSD(Power spectrum density) by fft with two flags
// flag = 0 means to return PSD
// flag = 1 means to return log(PSD)
//! [calcPSD]
void calcPSD(const Mat& inputImg, Mat& outputImg, int flag)
{
Mat planes[2] = { Mat_<float>(inputImg.clone()), Mat::zeros(inputImg.size(), CV_32F) };
Mat complexI;
merge(planes, 2, complexI);
dft(complexI, complexI);
split(complexI, planes); // planes[0] = Re(DFT(I)), planes[1] = Im(DFT(I))
planes[0].at<float>(0) = 0;
planes[1].at<float>(0) = 0;
// compute the PSD = sqrt(Re(DFT(I))^2 + Im(DFT(I))^2)^2
Mat imgPSD;
magnitude(planes[0], planes[1], imgPSD); //imgPSD = sqrt(Power spectrum density)
pow(imgPSD, 2, imgPSD); //it needs ^2 in order to get PSD
outputImg = imgPSD;
// logPSD = log(1 + PSD)
if (flag)
{
Mat imglogPSD;
imglogPSD = imgPSD + Scalar::all(1);
log(imglogPSD, imglogPSD);
outputImg = imglogPSD;
}
}
//! [calcPSD]