feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
89
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ImgTrans/houghlines.cpp
vendored
Normal file
89
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ImgTrans/houghlines.cpp
vendored
Normal file
@ -0,0 +1,89 @@
|
||||
/**
|
||||
* @file houghlines.cpp
|
||||
* @brief This program demonstrates line finding with the Hough transform
|
||||
*/
|
||||
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
// Declare the output variables
|
||||
Mat dst, cdst, cdstP;
|
||||
|
||||
//![load]
|
||||
const char* default_file = "sudoku.png";
|
||||
const char* filename = argc >=2 ? argv[1] : default_file;
|
||||
|
||||
// Loads an image
|
||||
Mat src = imread( samples::findFile( filename ), IMREAD_GRAYSCALE );
|
||||
|
||||
// Check if image is loaded fine
|
||||
if(src.empty()){
|
||||
printf(" Error opening image\n");
|
||||
printf(" Program Arguments: [image_name -- default %s] \n", default_file);
|
||||
return -1;
|
||||
}
|
||||
//![load]
|
||||
|
||||
//![edge_detection]
|
||||
// Edge detection
|
||||
Canny(src, dst, 50, 200, 3);
|
||||
//![edge_detection]
|
||||
|
||||
// Copy edges to the images that will display the results in BGR
|
||||
cvtColor(dst, cdst, COLOR_GRAY2BGR);
|
||||
cdstP = cdst.clone();
|
||||
|
||||
//![hough_lines]
|
||||
// Standard Hough Line Transform
|
||||
vector<Vec2f> lines; // will hold the results of the detection
|
||||
HoughLines(dst, lines, 1, CV_PI/180, 150, 0, 0 ); // runs the actual detection
|
||||
//![hough_lines]
|
||||
//![draw_lines]
|
||||
// Draw the lines
|
||||
for( size_t i = 0; i < lines.size(); i++ )
|
||||
{
|
||||
float rho = lines[i][0], theta = lines[i][1];
|
||||
Point pt1, pt2;
|
||||
double a = cos(theta), b = sin(theta);
|
||||
double x0 = a*rho, y0 = b*rho;
|
||||
pt1.x = cvRound(x0 + 1000*(-b));
|
||||
pt1.y = cvRound(y0 + 1000*(a));
|
||||
pt2.x = cvRound(x0 - 1000*(-b));
|
||||
pt2.y = cvRound(y0 - 1000*(a));
|
||||
line( cdst, pt1, pt2, Scalar(0,0,255), 3, LINE_AA);
|
||||
}
|
||||
//![draw_lines]
|
||||
|
||||
//![hough_lines_p]
|
||||
// Probabilistic Line Transform
|
||||
vector<Vec4i> linesP; // will hold the results of the detection
|
||||
HoughLinesP(dst, linesP, 1, CV_PI/180, 50, 50, 10 ); // runs the actual detection
|
||||
//![hough_lines_p]
|
||||
//![draw_lines_p]
|
||||
// Draw the lines
|
||||
for( size_t i = 0; i < linesP.size(); i++ )
|
||||
{
|
||||
Vec4i l = linesP[i];
|
||||
line( cdstP, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0,0,255), 3, LINE_AA);
|
||||
}
|
||||
//![draw_lines_p]
|
||||
|
||||
//![imshow]
|
||||
// Show results
|
||||
imshow("Source", src);
|
||||
imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst);
|
||||
imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP);
|
||||
//![imshow]
|
||||
|
||||
//![exit]
|
||||
// Wait and Exit
|
||||
waitKey();
|
||||
return 0;
|
||||
//![exit]
|
||||
}
|
Reference in New Issue
Block a user