feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
168
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp
vendored
Normal file
168
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp
vendored
Normal file
@ -0,0 +1,168 @@
|
||||
/**
|
||||
* @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed and Distance Transformation
|
||||
* @author OpenCV Team
|
||||
*/
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
//! [load_image]
|
||||
// Load the image
|
||||
CommandLineParser parser( argc, argv, "{@input | cards.png | input image}" );
|
||||
Mat src = imread( samples::findFile( parser.get<String>( "@input" ) ) );
|
||||
if( src.empty() )
|
||||
{
|
||||
cout << "Could not open or find the image!\n" << endl;
|
||||
cout << "Usage: " << argv[0] << " <Input image>" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Show the source image
|
||||
imshow("Source Image", src);
|
||||
//! [load_image]
|
||||
|
||||
//! [black_bg]
|
||||
// Change the background from white to black, since that will help later to extract
|
||||
// better results during the use of Distance Transform
|
||||
Mat mask;
|
||||
inRange(src, Scalar(255, 255, 255), Scalar(255, 255, 255), mask);
|
||||
src.setTo(Scalar(0, 0, 0), mask);
|
||||
|
||||
// Show output image
|
||||
imshow("Black Background Image", src);
|
||||
//! [black_bg]
|
||||
|
||||
//! [sharp]
|
||||
// Create a kernel that we will use to sharpen our image
|
||||
Mat kernel = (Mat_<float>(3,3) <<
|
||||
1, 1, 1,
|
||||
1, -8, 1,
|
||||
1, 1, 1); // an approximation of second derivative, a quite strong kernel
|
||||
|
||||
// do the laplacian filtering as it is
|
||||
// well, we need to convert everything in something more deeper then CV_8U
|
||||
// because the kernel has some negative values,
|
||||
// and we can expect in general to have a Laplacian image with negative values
|
||||
// BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
|
||||
// so the possible negative number will be truncated
|
||||
Mat imgLaplacian;
|
||||
filter2D(src, imgLaplacian, CV_32F, kernel);
|
||||
Mat sharp;
|
||||
src.convertTo(sharp, CV_32F);
|
||||
Mat imgResult = sharp - imgLaplacian;
|
||||
|
||||
// convert back to 8bits gray scale
|
||||
imgResult.convertTo(imgResult, CV_8UC3);
|
||||
imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
|
||||
|
||||
// imshow( "Laplace Filtered Image", imgLaplacian );
|
||||
imshow( "New Sharped Image", imgResult );
|
||||
//! [sharp]
|
||||
|
||||
//! [bin]
|
||||
// Create binary image from source image
|
||||
Mat bw;
|
||||
cvtColor(imgResult, bw, COLOR_BGR2GRAY);
|
||||
threshold(bw, bw, 40, 255, THRESH_BINARY | THRESH_OTSU);
|
||||
imshow("Binary Image", bw);
|
||||
//! [bin]
|
||||
|
||||
//! [dist]
|
||||
// Perform the distance transform algorithm
|
||||
Mat dist;
|
||||
distanceTransform(bw, dist, DIST_L2, 3);
|
||||
|
||||
// Normalize the distance image for range = {0.0, 1.0}
|
||||
// so we can visualize and threshold it
|
||||
normalize(dist, dist, 0, 1.0, NORM_MINMAX);
|
||||
imshow("Distance Transform Image", dist);
|
||||
//! [dist]
|
||||
|
||||
//! [peaks]
|
||||
// Threshold to obtain the peaks
|
||||
// This will be the markers for the foreground objects
|
||||
threshold(dist, dist, 0.4, 1.0, THRESH_BINARY);
|
||||
|
||||
// Dilate a bit the dist image
|
||||
Mat kernel1 = Mat::ones(3, 3, CV_8U);
|
||||
dilate(dist, dist, kernel1);
|
||||
imshow("Peaks", dist);
|
||||
//! [peaks]
|
||||
|
||||
//! [seeds]
|
||||
// Create the CV_8U version of the distance image
|
||||
// It is needed for findContours()
|
||||
Mat dist_8u;
|
||||
dist.convertTo(dist_8u, CV_8U);
|
||||
|
||||
// Find total markers
|
||||
vector<vector<Point> > contours;
|
||||
findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
|
||||
|
||||
// Create the marker image for the watershed algorithm
|
||||
Mat markers = Mat::zeros(dist.size(), CV_32S);
|
||||
|
||||
// Draw the foreground markers
|
||||
for (size_t i = 0; i < contours.size(); i++)
|
||||
{
|
||||
drawContours(markers, contours, static_cast<int>(i), Scalar(static_cast<int>(i)+1), -1);
|
||||
}
|
||||
|
||||
// Draw the background marker
|
||||
circle(markers, Point(5,5), 3, Scalar(255), -1);
|
||||
Mat markers8u;
|
||||
markers.convertTo(markers8u, CV_8U, 10);
|
||||
imshow("Markers", markers8u);
|
||||
//! [seeds]
|
||||
|
||||
//! [watershed]
|
||||
// Perform the watershed algorithm
|
||||
watershed(imgResult, markers);
|
||||
|
||||
Mat mark;
|
||||
markers.convertTo(mark, CV_8U);
|
||||
bitwise_not(mark, mark);
|
||||
// imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
|
||||
// image looks like at that point
|
||||
|
||||
// Generate random colors
|
||||
vector<Vec3b> colors;
|
||||
for (size_t i = 0; i < contours.size(); i++)
|
||||
{
|
||||
int b = theRNG().uniform(0, 256);
|
||||
int g = theRNG().uniform(0, 256);
|
||||
int r = theRNG().uniform(0, 256);
|
||||
|
||||
colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
|
||||
}
|
||||
|
||||
// Create the result image
|
||||
Mat dst = Mat::zeros(markers.size(), CV_8UC3);
|
||||
|
||||
// Fill labeled objects with random colors
|
||||
for (int i = 0; i < markers.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < markers.cols; j++)
|
||||
{
|
||||
int index = markers.at<int>(i,j);
|
||||
if (index > 0 && index <= static_cast<int>(contours.size()))
|
||||
{
|
||||
dst.at<Vec3b>(i,j) = colors[index-1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Visualize the final image
|
||||
imshow("Final Result", dst);
|
||||
//! [watershed]
|
||||
|
||||
waitKey();
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user