feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
@ -0,0 +1,410 @@
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#if defined(HAVE_OPENCV_GAPI)
|
||||
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include "opencv2/gapi.hpp"
|
||||
#include "opencv2/gapi/core.hpp"
|
||||
#include "opencv2/gapi/imgproc.hpp"
|
||||
#include "opencv2/gapi/infer.hpp"
|
||||
#include "opencv2/gapi/infer/ie.hpp"
|
||||
#include "opencv2/gapi/cpu/gcpukernel.hpp"
|
||||
#include "opencv2/gapi/streaming/cap.hpp"
|
||||
|
||||
namespace {
|
||||
const std::string about =
|
||||
"This is an OpenCV-based version of Security Barrier Camera example";
|
||||
const std::string keys =
|
||||
"{ h help | | print this help message }"
|
||||
"{ input | | Path to an input video file }"
|
||||
"{ fdm | | IE face detection model IR }"
|
||||
"{ fdw | | IE face detection model weights }"
|
||||
"{ fdd | | IE face detection device }"
|
||||
"{ agem | | IE age/gender recognition model IR }"
|
||||
"{ agew | | IE age/gender recognition model weights }"
|
||||
"{ aged | | IE age/gender recognition model device }"
|
||||
"{ emom | | IE emotions recognition model IR }"
|
||||
"{ emow | | IE emotions recognition model weights }"
|
||||
"{ emod | | IE emotions recognition model device }"
|
||||
"{ pure | | When set, no output is displayed. Useful for benchmarking }"
|
||||
"{ ser | | Run serially (no pipelining involved). Useful for benchmarking }";
|
||||
|
||||
struct Avg {
|
||||
struct Elapsed {
|
||||
explicit Elapsed(double ms) : ss(ms/1000.), mm(static_cast<int>(ss)/60) {}
|
||||
const double ss;
|
||||
const int mm;
|
||||
};
|
||||
|
||||
using MS = std::chrono::duration<double, std::ratio<1, 1000>>;
|
||||
using TS = std::chrono::time_point<std::chrono::high_resolution_clock>;
|
||||
TS started;
|
||||
|
||||
void start() { started = now(); }
|
||||
TS now() const { return std::chrono::high_resolution_clock::now(); }
|
||||
double tick() const { return std::chrono::duration_cast<MS>(now() - started).count(); }
|
||||
Elapsed elapsed() const { return Elapsed{tick()}; }
|
||||
double fps(std::size_t n) const { return static_cast<double>(n) / (tick() / 1000.); }
|
||||
};
|
||||
std::ostream& operator<<(std::ostream &os, const Avg::Elapsed &e) {
|
||||
os << e.mm << ':' << (e.ss - 60*e.mm);
|
||||
return os;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
namespace custom {
|
||||
// Describe networks we use in our program.
|
||||
// In G-API, topologies act like "operations". Here we define our
|
||||
// topologies as operations which have inputs and outputs.
|
||||
|
||||
// Every network requires three parameters to define:
|
||||
// 1) Network's TYPE name - this TYPE is then used as a template
|
||||
// parameter to generic functions like cv::gapi::infer<>(),
|
||||
// and is used to define network's configuration (per-backend).
|
||||
// 2) Network's SIGNATURE - a std::function<>-like record which defines
|
||||
// networks' input and output parameters (its API)
|
||||
// 3) Network's IDENTIFIER - a string defining what the network is.
|
||||
// Must be unique within the pipeline.
|
||||
|
||||
// Note: these definitions are neutral to _how_ the networks are
|
||||
// executed. The _how_ is defined at graph compilation stage (via parameters),
|
||||
// not on the graph construction stage.
|
||||
|
||||
//! [G_API_NET]
|
||||
// Face detector: takes one Mat, returns another Mat
|
||||
G_API_NET(Faces, <cv::GMat(cv::GMat)>, "face-detector");
|
||||
|
||||
// Age/Gender recognition - takes one Mat, returns two:
|
||||
// one for Age and one for Gender. In G-API, multiple-return-value operations
|
||||
// are defined using std::tuple<>.
|
||||
using AGInfo = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(AgeGender, <AGInfo(cv::GMat)>, "age-gender-recoginition");
|
||||
|
||||
// Emotion recognition - takes one Mat, returns another.
|
||||
G_API_NET(Emotions, <cv::GMat(cv::GMat)>, "emotions-recognition");
|
||||
//! [G_API_NET]
|
||||
|
||||
//! [Postproc]
|
||||
// SSD Post-processing function - this is not a network but a kernel.
|
||||
// The kernel body is declared separately, this is just an interface.
|
||||
// This operation takes two Mats (detections and the source image),
|
||||
// and returns a vector of ROI (filtered by a default threshold).
|
||||
// Threshold (or a class to select) may become a parameter, but since
|
||||
// this kernel is custom, it doesn't make a lot of sense.
|
||||
G_API_OP(PostProc, <cv::GArray<cv::Rect>(cv::GMat, cv::GMat)>, "custom.fd_postproc") {
|
||||
static cv::GArrayDesc outMeta(const cv::GMatDesc &, const cv::GMatDesc &) {
|
||||
// This function is required for G-API engine to figure out
|
||||
// what the output format is, given the input parameters.
|
||||
// Since the output is an array (with a specific type),
|
||||
// there's nothing to describe.
|
||||
return cv::empty_array_desc();
|
||||
}
|
||||
};
|
||||
|
||||
// OpenCV-based implementation of the above kernel.
|
||||
GAPI_OCV_KERNEL(OCVPostProc, PostProc) {
|
||||
static void run(const cv::Mat &in_ssd_result,
|
||||
const cv::Mat &in_frame,
|
||||
std::vector<cv::Rect> &out_faces) {
|
||||
const int MAX_PROPOSALS = 200;
|
||||
const int OBJECT_SIZE = 7;
|
||||
const cv::Size upscale = in_frame.size();
|
||||
const cv::Rect surface({0,0}, upscale);
|
||||
|
||||
out_faces.clear();
|
||||
|
||||
const float *data = in_ssd_result.ptr<float>();
|
||||
for (int i = 0; i < MAX_PROPOSALS; i++) {
|
||||
const float image_id = data[i * OBJECT_SIZE + 0]; // batch id
|
||||
const float confidence = data[i * OBJECT_SIZE + 2];
|
||||
const float rc_left = data[i * OBJECT_SIZE + 3];
|
||||
const float rc_top = data[i * OBJECT_SIZE + 4];
|
||||
const float rc_right = data[i * OBJECT_SIZE + 5];
|
||||
const float rc_bottom = data[i * OBJECT_SIZE + 6];
|
||||
|
||||
if (image_id < 0.f) { // indicates end of detections
|
||||
break;
|
||||
}
|
||||
if (confidence < 0.5f) { // a hard-coded snapshot
|
||||
continue;
|
||||
}
|
||||
|
||||
// Convert floating-point coordinates to the absolute image
|
||||
// frame coordinates; clip by the source image boundaries.
|
||||
cv::Rect rc;
|
||||
rc.x = static_cast<int>(rc_left * upscale.width);
|
||||
rc.y = static_cast<int>(rc_top * upscale.height);
|
||||
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
|
||||
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
|
||||
out_faces.push_back(rc & surface);
|
||||
}
|
||||
}
|
||||
};
|
||||
//! [Postproc]
|
||||
|
||||
} // namespace custom
|
||||
|
||||
namespace labels {
|
||||
const std::string genders[] = {
|
||||
"Female", "Male"
|
||||
};
|
||||
const std::string emotions[] = {
|
||||
"neutral", "happy", "sad", "surprise", "anger"
|
||||
};
|
||||
namespace {
|
||||
void DrawResults(cv::Mat &frame,
|
||||
const std::vector<cv::Rect> &faces,
|
||||
const std::vector<cv::Mat> &out_ages,
|
||||
const std::vector<cv::Mat> &out_genders,
|
||||
const std::vector<cv::Mat> &out_emotions) {
|
||||
CV_Assert(faces.size() == out_ages.size());
|
||||
CV_Assert(faces.size() == out_genders.size());
|
||||
CV_Assert(faces.size() == out_emotions.size());
|
||||
|
||||
for (auto it = faces.begin(); it != faces.end(); ++it) {
|
||||
const auto idx = std::distance(faces.begin(), it);
|
||||
const auto &rc = *it;
|
||||
|
||||
const float *ages_data = out_ages[idx].ptr<float>();
|
||||
const float *genders_data = out_genders[idx].ptr<float>();
|
||||
const float *emotions_data = out_emotions[idx].ptr<float>();
|
||||
const auto gen_id = std::max_element(genders_data, genders_data + 2) - genders_data;
|
||||
const auto emo_id = std::max_element(emotions_data, emotions_data + 5) - emotions_data;
|
||||
|
||||
std::stringstream ss;
|
||||
ss << static_cast<int>(ages_data[0]*100)
|
||||
<< ' '
|
||||
<< genders[gen_id]
|
||||
<< ' '
|
||||
<< emotions[emo_id];
|
||||
|
||||
const int ATTRIB_OFFSET = 15;
|
||||
cv::rectangle(frame, rc, {0, 255, 0}, 4);
|
||||
cv::putText(frame, ss.str(),
|
||||
cv::Point(rc.x, rc.y - ATTRIB_OFFSET),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL,
|
||||
1,
|
||||
cv::Scalar(0, 0, 255));
|
||||
}
|
||||
}
|
||||
|
||||
void DrawFPS(cv::Mat &frame, std::size_t n, double fps) {
|
||||
std::ostringstream out;
|
||||
out << "FRAME " << n << ": "
|
||||
<< std::fixed << std::setprecision(2) << fps
|
||||
<< " FPS (AVG)";
|
||||
cv::putText(frame, out.str(),
|
||||
cv::Point(0, frame.rows),
|
||||
cv::FONT_HERSHEY_SIMPLEX,
|
||||
1,
|
||||
cv::Scalar(0, 255, 0),
|
||||
2);
|
||||
}
|
||||
} // anonymous namespace
|
||||
} // namespace labels
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
cv::CommandLineParser cmd(argc, argv, keys);
|
||||
cmd.about(about);
|
||||
if (cmd.has("help")) {
|
||||
cmd.printMessage();
|
||||
return 0;
|
||||
}
|
||||
const std::string input = cmd.get<std::string>("input");
|
||||
const bool no_show = cmd.get<bool>("pure");
|
||||
const bool be_serial = cmd.get<bool>("ser");
|
||||
|
||||
// Express our processing pipeline. Lambda-based constructor
|
||||
// is used to keep all temporary objects in a dedicated scope.
|
||||
//! [GComputation]
|
||||
cv::GComputation pp([]() {
|
||||
// Declare an empty GMat - the beginning of the pipeline.
|
||||
cv::GMat in;
|
||||
|
||||
// Run face detection on the input frame. Result is a single GMat,
|
||||
// internally representing an 1x1x200x7 SSD output.
|
||||
// This is a single-patch version of infer:
|
||||
// - Inference is running on the whole input image;
|
||||
// - Image is converted and resized to the network's expected format
|
||||
// automatically.
|
||||
cv::GMat detections = cv::gapi::infer<custom::Faces>(in);
|
||||
|
||||
// Parse SSD output to a list of ROI (rectangles) using
|
||||
// a custom kernel. Note: parsing SSD may become a "standard" kernel.
|
||||
cv::GArray<cv::Rect> faces = custom::PostProc::on(detections, in);
|
||||
|
||||
// Now run Age/Gender model on every detected face. This model has two
|
||||
// outputs (for age and gender respectively).
|
||||
// A special ROI-list-oriented form of infer<>() is used here:
|
||||
// - First input argument is the list of rectangles to process,
|
||||
// - Second one is the image where to take ROI from;
|
||||
// - Crop/Resize/Layout conversion happens automatically for every image patch
|
||||
// from the list
|
||||
// - Inference results are also returned in form of list (GArray<>)
|
||||
// - Since there're two outputs, infer<> return two arrays (via std::tuple).
|
||||
cv::GArray<cv::GMat> ages;
|
||||
cv::GArray<cv::GMat> genders;
|
||||
std::tie(ages, genders) = cv::gapi::infer<custom::AgeGender>(faces, in);
|
||||
|
||||
// Recognize emotions on every face.
|
||||
// ROI-list-oriented infer<>() is used here as well.
|
||||
// Since custom::Emotions network produce a single output, only one
|
||||
// GArray<> is returned here.
|
||||
cv::GArray<cv::GMat> emotions = cv::gapi::infer<custom::Emotions>(faces, in);
|
||||
|
||||
// Return the decoded frame as a result as well.
|
||||
// Input matrix can't be specified as output one, so use copy() here
|
||||
// (this copy will be optimized out in the future).
|
||||
cv::GMat frame = cv::gapi::copy(in);
|
||||
|
||||
// Now specify the computation's boundaries - our pipeline consumes
|
||||
// one images and produces five outputs.
|
||||
return cv::GComputation(cv::GIn(in),
|
||||
cv::GOut(frame, faces, ages, genders, emotions));
|
||||
});
|
||||
//! [GComputation]
|
||||
|
||||
// Note: it might be very useful to have dimensions loaded at this point!
|
||||
// After our computation is defined, specify how it should be executed.
|
||||
// Execution is defined by inference backends and kernel backends we use to
|
||||
// compile the pipeline (it is a different step).
|
||||
|
||||
// Declare IE parameters for FaceDetection network. Note here custom::Face
|
||||
// is the type name we specified in GAPI_NETWORK() previously.
|
||||
// cv::gapi::ie::Params<> is a generic configuration description which is
|
||||
// specialized to every particular network we use.
|
||||
//
|
||||
// OpenCV DNN backend will have its own parmater structure with settings
|
||||
// relevant to OpenCV DNN module. Same applies to other possible inference
|
||||
// backends...
|
||||
//! [Param_Cfg]
|
||||
auto det_net = cv::gapi::ie::Params<custom::Faces> {
|
||||
cmd.get<std::string>("fdm"), // read cmd args: path to topology IR
|
||||
cmd.get<std::string>("fdw"), // read cmd args: path to weights
|
||||
cmd.get<std::string>("fdd"), // read cmd args: device specifier
|
||||
};
|
||||
|
||||
auto age_net = cv::gapi::ie::Params<custom::AgeGender> {
|
||||
cmd.get<std::string>("agem"), // read cmd args: path to topology IR
|
||||
cmd.get<std::string>("agew"), // read cmd args: path to weights
|
||||
cmd.get<std::string>("aged"), // read cmd args: device specifier
|
||||
}.cfgOutputLayers({ "age_conv3", "prob" });
|
||||
|
||||
auto emo_net = cv::gapi::ie::Params<custom::Emotions> {
|
||||
cmd.get<std::string>("emom"), // read cmd args: path to topology IR
|
||||
cmd.get<std::string>("emow"), // read cmd args: path to weights
|
||||
cmd.get<std::string>("emod"), // read cmd args: device specifier
|
||||
};
|
||||
//! [Param_Cfg]
|
||||
|
||||
//! [Compile]
|
||||
// Form a kernel package (with a single OpenCV-based implementation of our
|
||||
// post-processing) and a network package (holding our three networks).
|
||||
auto kernels = cv::gapi::kernels<custom::OCVPostProc>();
|
||||
auto networks = cv::gapi::networks(det_net, age_net, emo_net);
|
||||
|
||||
// Compile our pipeline and pass our kernels & networks as
|
||||
// parameters. This is the place where G-API learns which
|
||||
// networks & kernels we're actually operating with (the graph
|
||||
// description itself known nothing about that).
|
||||
auto cc = pp.compileStreaming(cv::compile_args(kernels, networks));
|
||||
//! [Compile]
|
||||
|
||||
Avg avg;
|
||||
std::size_t frames = 0u; // Frame counter (not produced by the graph)
|
||||
|
||||
std::cout << "Reading " << input << std::endl;
|
||||
// Duplicate huge portions of the code in if/else branches in the sake of
|
||||
// better documentation snippets
|
||||
if (!be_serial) {
|
||||
//! [Source]
|
||||
auto in_src = cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input);
|
||||
cc.setSource(cv::gin(in_src));
|
||||
//! [Source]
|
||||
|
||||
avg.start();
|
||||
|
||||
//! [Run]
|
||||
// After data source is specified, start the execution
|
||||
cc.start();
|
||||
|
||||
// Declare data objects we will be receiving from the pipeline.
|
||||
cv::Mat frame; // The captured frame itself
|
||||
std::vector<cv::Rect> faces; // Array of detected faces
|
||||
std::vector<cv::Mat> out_ages; // Array of inferred ages (one blob per face)
|
||||
std::vector<cv::Mat> out_genders; // Array of inferred genders (one blob per face)
|
||||
std::vector<cv::Mat> out_emotions; // Array of classified emotions (one blob per face)
|
||||
|
||||
// Implement different execution policies depending on the display option
|
||||
// for the best performance.
|
||||
while (cc.running()) {
|
||||
auto out_vector = cv::gout(frame, faces, out_ages, out_genders, out_emotions);
|
||||
if (no_show) {
|
||||
// This is purely a video processing. No need to balance
|
||||
// with UI rendering. Use a blocking pull() to obtain
|
||||
// data. Break the loop if the stream is over.
|
||||
if (!cc.pull(std::move(out_vector)))
|
||||
break;
|
||||
} else if (!cc.try_pull(std::move(out_vector))) {
|
||||
// Use a non-blocking try_pull() to obtain data.
|
||||
// If there's no data, let UI refresh (and handle keypress)
|
||||
if (cv::waitKey(1) >= 0) break;
|
||||
else continue;
|
||||
}
|
||||
// At this point we have data for sure (obtained in either
|
||||
// blocking or non-blocking way).
|
||||
frames++;
|
||||
labels::DrawResults(frame, faces, out_ages, out_genders, out_emotions);
|
||||
labels::DrawFPS(frame, frames, avg.fps(frames));
|
||||
if (!no_show) cv::imshow("Out", frame);
|
||||
}
|
||||
//! [Run]
|
||||
} else { // (serial flag)
|
||||
//! [Run_Serial]
|
||||
cv::VideoCapture cap(input);
|
||||
cv::Mat in_frame, frame; // The captured frame itself
|
||||
std::vector<cv::Rect> faces; // Array of detected faces
|
||||
std::vector<cv::Mat> out_ages; // Array of inferred ages (one blob per face)
|
||||
std::vector<cv::Mat> out_genders; // Array of inferred genders (one blob per face)
|
||||
std::vector<cv::Mat> out_emotions; // Array of classified emotions (one blob per face)
|
||||
|
||||
while (cap.read(in_frame)) {
|
||||
pp.apply(cv::gin(in_frame),
|
||||
cv::gout(frame, faces, out_ages, out_genders, out_emotions),
|
||||
cv::compile_args(kernels, networks));
|
||||
labels::DrawResults(frame, faces, out_ages, out_genders, out_emotions);
|
||||
frames++;
|
||||
if (frames == 1u) {
|
||||
// Start timer only after 1st frame processed -- compilation
|
||||
// happens on-the-fly here
|
||||
avg.start();
|
||||
} else {
|
||||
// Measurfe & draw FPS for all other frames
|
||||
labels::DrawFPS(frame, frames, avg.fps(frames-1));
|
||||
}
|
||||
if (!no_show) {
|
||||
cv::imshow("Out", frame);
|
||||
if (cv::waitKey(1) >= 0) break;
|
||||
}
|
||||
}
|
||||
//! [Run_Serial]
|
||||
}
|
||||
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
|
||||
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
#include <iostream>
|
||||
int main()
|
||||
{
|
||||
std::cerr << "This tutorial code requires G-API module "
|
||||
"with Inference Engine backend to run"
|
||||
<< std::endl;
|
||||
return 1;
|
||||
}
|
||||
#endif // HAVE_OPECV_GAPI
|
905
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/gapi/face_beautification/face_beautification.cpp
vendored
Normal file
905
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/gapi/face_beautification/face_beautification.cpp
vendored
Normal file
@ -0,0 +1,905 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level
|
||||
// directory of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (C) 2018-2019 Intel Corporation
|
||||
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#if defined(HAVE_OPENCV_GAPI)
|
||||
|
||||
#include <opencv2/gapi.hpp>
|
||||
#include <opencv2/gapi/core.hpp>
|
||||
#include <opencv2/gapi/imgproc.hpp>
|
||||
#include <opencv2/gapi/fluid/core.hpp>
|
||||
#include <opencv2/gapi/infer.hpp>
|
||||
#include <opencv2/gapi/infer/ie.hpp>
|
||||
#include <opencv2/gapi/cpu/gcpukernel.hpp>
|
||||
#include <opencv2/gapi/streaming/cap.hpp>
|
||||
|
||||
#include <opencv2/highgui.hpp> // windows
|
||||
|
||||
namespace config
|
||||
{
|
||||
constexpr char kWinFaceBeautification[] = "FaceBeautificator";
|
||||
constexpr char kWinInput[] = "Input";
|
||||
constexpr char kParserAbout[] =
|
||||
"Use this script to run the face beautification algorithm with G-API.";
|
||||
constexpr char kParserOptions[] =
|
||||
"{ help h || print the help message. }"
|
||||
|
||||
"{ facepath f || a path to a Face detection model file (.xml).}"
|
||||
"{ facedevice |GPU| the face detection computation device.}"
|
||||
|
||||
"{ landmpath l || a path to a Landmarks detection model file (.xml).}"
|
||||
"{ landmdevice |CPU| the landmarks detection computation device.}"
|
||||
|
||||
"{ input i || a path to an input. Skip to capture from a camera.}"
|
||||
"{ boxes b |false| set true to draw face Boxes in the \"Input\" window.}"
|
||||
"{ landmarks m |false| set true to draw landMarks in the \"Input\" window.}"
|
||||
"{ streaming s |true| set false to disable stream pipelining.}"
|
||||
"{ performance p |false| set true to disable output displaying.}";
|
||||
|
||||
const cv::Scalar kClrWhite (255, 255, 255);
|
||||
const cv::Scalar kClrGreen ( 0, 255, 0);
|
||||
const cv::Scalar kClrYellow( 0, 255, 255);
|
||||
|
||||
constexpr float kConfThresh = 0.7f;
|
||||
|
||||
const cv::Size kGKernelSize(5, 5);
|
||||
constexpr double kGSigma = 0.0;
|
||||
constexpr int kBSize = 9;
|
||||
constexpr double kBSigmaCol = 30.0;
|
||||
constexpr double kBSigmaSp = 30.0;
|
||||
constexpr int kUnshSigma = 3;
|
||||
constexpr float kUnshStrength = 0.7f;
|
||||
constexpr int kAngDelta = 1;
|
||||
constexpr bool kClosedLine = true;
|
||||
} // namespace config
|
||||
|
||||
namespace
|
||||
{
|
||||
//! [vec_ROI]
|
||||
using VectorROI = std::vector<cv::Rect>;
|
||||
//! [vec_ROI]
|
||||
using GArrayROI = cv::GArray<cv::Rect>;
|
||||
using Contour = std::vector<cv::Point>;
|
||||
using Landmarks = std::vector<cv::Point>;
|
||||
|
||||
|
||||
// Wrapper function
|
||||
template<typename Tp> inline int toIntRounded(const Tp x)
|
||||
{
|
||||
return static_cast<int>(std::lround(x));
|
||||
}
|
||||
|
||||
//! [toDbl]
|
||||
template<typename Tp> inline double toDouble(const Tp x)
|
||||
{
|
||||
return static_cast<double>(x);
|
||||
}
|
||||
//! [toDbl]
|
||||
|
||||
struct Avg {
|
||||
struct Elapsed {
|
||||
explicit Elapsed(double ms) : ss(ms / 1000.),
|
||||
mm(toIntRounded(ss / 60)) {}
|
||||
const double ss;
|
||||
const int mm;
|
||||
};
|
||||
|
||||
using MS = std::chrono::duration<double, std::ratio<1, 1000>>;
|
||||
using TS = std::chrono::time_point<std::chrono::high_resolution_clock>;
|
||||
TS started;
|
||||
|
||||
void start() { started = now(); }
|
||||
TS now() const { return std::chrono::high_resolution_clock::now(); }
|
||||
double tick() const { return std::chrono::duration_cast<MS>(now() - started).count(); }
|
||||
Elapsed elapsed() const { return Elapsed{tick()}; }
|
||||
double fps(std::size_t n) const { return static_cast<double>(n) / (tick() / 1000.); }
|
||||
};
|
||||
std::ostream& operator<<(std::ostream &os, const Avg::Elapsed &e) {
|
||||
os << e.mm << ':' << (e.ss - 60*e.mm);
|
||||
return os;
|
||||
}
|
||||
|
||||
std::string getWeightsPath(const std::string &mdlXMLPath) // mdlXMLPath =
|
||||
// "The/Full/Path.xml"
|
||||
{
|
||||
size_t size = mdlXMLPath.size();
|
||||
CV_Assert(mdlXMLPath.substr(size - 4, size) // The last 4 symbols
|
||||
== ".xml"); // must be ".xml"
|
||||
std::string mdlBinPath(mdlXMLPath);
|
||||
return mdlBinPath.replace(size - 3, 3, "bin"); // return
|
||||
// "The/Full/Path.bin"
|
||||
}
|
||||
} // anonymous namespace
|
||||
|
||||
|
||||
|
||||
namespace custom
|
||||
{
|
||||
using TplPtsFaceElements_Jaw = std::tuple<cv::GArray<Landmarks>,
|
||||
cv::GArray<Contour>>;
|
||||
|
||||
// Wrapper-functions
|
||||
inline int getLineInclinationAngleDegrees(const cv::Point &ptLeft,
|
||||
const cv::Point &ptRight);
|
||||
inline Contour getForeheadEllipse(const cv::Point &ptJawLeft,
|
||||
const cv::Point &ptJawRight,
|
||||
const cv::Point &ptJawMiddle);
|
||||
inline Contour getEyeEllipse(const cv::Point &ptLeft,
|
||||
const cv::Point &ptRight);
|
||||
inline Contour getPatchedEllipse(const cv::Point &ptLeft,
|
||||
const cv::Point &ptRight,
|
||||
const cv::Point &ptUp,
|
||||
const cv::Point &ptDown);
|
||||
|
||||
// Networks
|
||||
//! [net_decl]
|
||||
G_API_NET(FaceDetector, <cv::GMat(cv::GMat)>, "face_detector");
|
||||
G_API_NET(LandmDetector, <cv::GMat(cv::GMat)>, "landm_detector");
|
||||
//! [net_decl]
|
||||
|
||||
// Function kernels
|
||||
G_TYPED_KERNEL(GBilatFilter, <cv::GMat(cv::GMat,int,double,double)>,
|
||||
"custom.faceb12n.bilateralFilter")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, int,double,double)
|
||||
{
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GLaplacian, <cv::GMat(cv::GMat,int)>,
|
||||
"custom.faceb12n.Laplacian")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, int)
|
||||
{
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GFillPolyGContours, <cv::GMat(cv::GMat,cv::GArray<Contour>)>,
|
||||
"custom.faceb12n.fillPolyGContours")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc)
|
||||
{
|
||||
return in.withType(CV_8U, 1);
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GPolyLines, <cv::GMat(cv::GMat,cv::GArray<Contour>,bool,
|
||||
cv::Scalar)>,
|
||||
"custom.faceb12n.polyLines")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc,bool,cv::Scalar)
|
||||
{
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GRectangle, <cv::GMat(cv::GMat,GArrayROI,cv::Scalar)>,
|
||||
"custom.faceb12n.rectangle")
|
||||
{
|
||||
static cv::GMatDesc outMeta(cv::GMatDesc in, cv::GArrayDesc,cv::Scalar)
|
||||
{
|
||||
return in;
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL(GFacePostProc, <GArrayROI(cv::GMat,cv::GMat,float)>,
|
||||
"custom.faceb12n.faceDetectPostProc")
|
||||
{
|
||||
static cv::GArrayDesc outMeta(const cv::GMatDesc&,const cv::GMatDesc&,float)
|
||||
{
|
||||
return cv::empty_array_desc();
|
||||
}
|
||||
};
|
||||
|
||||
G_TYPED_KERNEL_M(GLandmPostProc, <TplPtsFaceElements_Jaw(cv::GArray<cv::GMat>,
|
||||
GArrayROI)>,
|
||||
"custom.faceb12n.landmDetectPostProc")
|
||||
{
|
||||
static std::tuple<cv::GArrayDesc,cv::GArrayDesc> outMeta(
|
||||
const cv::GArrayDesc&,const cv::GArrayDesc&)
|
||||
{
|
||||
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
|
||||
}
|
||||
};
|
||||
|
||||
//! [kern_m_decl]
|
||||
using TplFaces_FaceElements = std::tuple<cv::GArray<Contour>, cv::GArray<Contour>>;
|
||||
G_TYPED_KERNEL_M(GGetContours, <TplFaces_FaceElements (cv::GArray<Landmarks>, cv::GArray<Contour>)>,
|
||||
"custom.faceb12n.getContours")
|
||||
{
|
||||
static std::tuple<cv::GArrayDesc,cv::GArrayDesc> outMeta(const cv::GArrayDesc&,const cv::GArrayDesc&)
|
||||
{
|
||||
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
|
||||
}
|
||||
};
|
||||
//! [kern_m_decl]
|
||||
|
||||
|
||||
// OCV_Kernels
|
||||
// This kernel applies Bilateral filter to an input src with default
|
||||
// "cv::bilateralFilter" border argument
|
||||
GAPI_OCV_KERNEL(GCPUBilateralFilter, custom::GBilatFilter)
|
||||
{
|
||||
static void run(const cv::Mat &src,
|
||||
const int diameter,
|
||||
const double sigmaColor,
|
||||
const double sigmaSpace,
|
||||
cv::Mat &out)
|
||||
{
|
||||
cv::bilateralFilter(src, out, diameter, sigmaColor, sigmaSpace);
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel applies Laplace operator to an input src with default
|
||||
// "cv::Laplacian" arguments
|
||||
GAPI_OCV_KERNEL(GCPULaplacian, custom::GLaplacian)
|
||||
{
|
||||
static void run(const cv::Mat &src,
|
||||
const int ddepth,
|
||||
cv::Mat &out)
|
||||
{
|
||||
cv::Laplacian(src, out, ddepth);
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel draws given white filled contours "cnts" on a clear Mat "out"
|
||||
// (defined by a Scalar(0)) with standard "cv::fillPoly" arguments.
|
||||
// It should be used to create a mask.
|
||||
// The input Mat seems unused inside the function "run", but it is used deeper
|
||||
// in the kernel to define an output size.
|
||||
GAPI_OCV_KERNEL(GCPUFillPolyGContours, custom::GFillPolyGContours)
|
||||
{
|
||||
static void run(const cv::Mat &,
|
||||
const std::vector<Contour> &cnts,
|
||||
cv::Mat &out)
|
||||
{
|
||||
out = cv::Scalar(0);
|
||||
cv::fillPoly(out, cnts, config::kClrWhite);
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel draws given contours on an input src with default "cv::polylines"
|
||||
// arguments
|
||||
GAPI_OCV_KERNEL(GCPUPolyLines, custom::GPolyLines)
|
||||
{
|
||||
static void run(const cv::Mat &src,
|
||||
const std::vector<Contour> &cnts,
|
||||
const bool isClosed,
|
||||
const cv::Scalar &color,
|
||||
cv::Mat &out)
|
||||
{
|
||||
src.copyTo(out);
|
||||
cv::polylines(out, cnts, isClosed, color);
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel draws given rectangles on an input src with default
|
||||
// "cv::rectangle" arguments
|
||||
GAPI_OCV_KERNEL(GCPURectangle, custom::GRectangle)
|
||||
{
|
||||
static void run(const cv::Mat &src,
|
||||
const VectorROI &vctFaceBoxes,
|
||||
const cv::Scalar &color,
|
||||
cv::Mat &out)
|
||||
{
|
||||
src.copyTo(out);
|
||||
for (const cv::Rect &box : vctFaceBoxes)
|
||||
{
|
||||
cv::rectangle(out, box, color);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// A face detector outputs a blob with the shape: [1, 1, N, 7], where N is
|
||||
// the number of detected bounding boxes. Structure of an output for every
|
||||
// detected face is the following:
|
||||
// [image_id, label, conf, x_min, y_min, x_max, y_max], all the seven elements
|
||||
// are floating point. For more details please visit:
|
||||
// https://github.com/opencv/open_model_zoo/blob/master/intel_models/face-detection-adas-0001
|
||||
// This kernel is the face detection output blob parsing that returns a vector
|
||||
// of detected faces' rects:
|
||||
//! [fd_pp]
|
||||
GAPI_OCV_KERNEL(GCPUFacePostProc, GFacePostProc)
|
||||
{
|
||||
static void run(const cv::Mat &inDetectResult,
|
||||
const cv::Mat &inFrame,
|
||||
const float faceConfThreshold,
|
||||
VectorROI &outFaces)
|
||||
{
|
||||
const int kObjectSize = 7;
|
||||
const int imgCols = inFrame.size().width;
|
||||
const int imgRows = inFrame.size().height;
|
||||
const cv::Rect borders({0, 0}, inFrame.size());
|
||||
outFaces.clear();
|
||||
const int numOfDetections = inDetectResult.size[2];
|
||||
const float *data = inDetectResult.ptr<float>();
|
||||
for (int i = 0; i < numOfDetections; i++)
|
||||
{
|
||||
const float faceId = data[i * kObjectSize + 0];
|
||||
if (faceId < 0.f) // indicates the end of detections
|
||||
{
|
||||
break;
|
||||
}
|
||||
const float faceConfidence = data[i * kObjectSize + 2];
|
||||
// We can cut detections by the `conf` field
|
||||
// to avoid mistakes of the detector.
|
||||
if (faceConfidence > faceConfThreshold)
|
||||
{
|
||||
const float left = data[i * kObjectSize + 3];
|
||||
const float top = data[i * kObjectSize + 4];
|
||||
const float right = data[i * kObjectSize + 5];
|
||||
const float bottom = data[i * kObjectSize + 6];
|
||||
// These are normalized coordinates and are between 0 and 1;
|
||||
// to get the real pixel coordinates we should multiply it by
|
||||
// the image sizes respectively to the directions:
|
||||
cv::Point tl(toIntRounded(left * imgCols),
|
||||
toIntRounded(top * imgRows));
|
||||
cv::Point br(toIntRounded(right * imgCols),
|
||||
toIntRounded(bottom * imgRows));
|
||||
outFaces.push_back(cv::Rect(tl, br) & borders);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
//! [fd_pp]
|
||||
|
||||
// This kernel is the facial landmarks detection output Mat parsing for every
|
||||
// detected face; returns a tuple containing a vector of vectors of
|
||||
// face elements' Points and a vector of vectors of jaw's Points:
|
||||
// There are 35 landmarks given by the default detector for each face
|
||||
// in a frame; the first 18 of them are face elements (eyes, eyebrows,
|
||||
// a nose, a mouth) and the last 17 - a jaw contour. The detector gives
|
||||
// floating point values for landmarks' normed coordinates relatively
|
||||
// to an input ROI (not the original frame).
|
||||
// For more details please visit:
|
||||
// https://github.com/opencv/open_model_zoo/blob/master/intel_models/facial-landmarks-35-adas-0002
|
||||
GAPI_OCV_KERNEL(GCPULandmPostProc, GLandmPostProc)
|
||||
{
|
||||
static void run(const std::vector<cv::Mat> &vctDetectResults,
|
||||
const VectorROI &vctRects,
|
||||
std::vector<Landmarks> &vctPtsFaceElems,
|
||||
std::vector<Contour> &vctCntJaw)
|
||||
{
|
||||
static constexpr int kNumFaceElems = 18;
|
||||
static constexpr int kNumTotal = 35;
|
||||
const size_t numFaces = vctRects.size();
|
||||
CV_Assert(vctPtsFaceElems.size() == 0ul);
|
||||
CV_Assert(vctCntJaw.size() == 0ul);
|
||||
vctPtsFaceElems.reserve(numFaces);
|
||||
vctCntJaw.reserve(numFaces);
|
||||
|
||||
Landmarks ptsFaceElems;
|
||||
Contour cntJaw;
|
||||
ptsFaceElems.reserve(kNumFaceElems);
|
||||
cntJaw.reserve(kNumTotal - kNumFaceElems);
|
||||
|
||||
for (size_t i = 0; i < numFaces; i++)
|
||||
{
|
||||
const float *data = vctDetectResults[i].ptr<float>();
|
||||
// The face elements points:
|
||||
ptsFaceElems.clear();
|
||||
for (int j = 0; j < kNumFaceElems * 2; j += 2)
|
||||
{
|
||||
cv::Point pt = cv::Point(toIntRounded(data[j] * vctRects[i].width),
|
||||
toIntRounded(data[j+1] * vctRects[i].height)) + vctRects[i].tl();
|
||||
ptsFaceElems.push_back(pt);
|
||||
}
|
||||
vctPtsFaceElems.push_back(ptsFaceElems);
|
||||
|
||||
// The jaw contour points:
|
||||
cntJaw.clear();
|
||||
for(int j = kNumFaceElems * 2; j < kNumTotal * 2; j += 2)
|
||||
{
|
||||
cv::Point pt = cv::Point(toIntRounded(data[j] * vctRects[i].width),
|
||||
toIntRounded(data[j+1] * vctRects[i].height)) + vctRects[i].tl();
|
||||
cntJaw.push_back(pt);
|
||||
}
|
||||
vctCntJaw.push_back(cntJaw);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// This kernel is the facial landmarks detection post-processing for every face
|
||||
// detected before; output is a tuple of vectors of detected face contours and
|
||||
// facial elements contours:
|
||||
//! [ld_pp_cnts]
|
||||
//! [kern_m_impl]
|
||||
GAPI_OCV_KERNEL(GCPUGetContours, GGetContours)
|
||||
{
|
||||
static void run(const std::vector<Landmarks> &vctPtsFaceElems, // 18 landmarks of the facial elements
|
||||
const std::vector<Contour> &vctCntJaw, // 17 landmarks of a jaw
|
||||
std::vector<Contour> &vctElemsContours,
|
||||
std::vector<Contour> &vctFaceContours)
|
||||
{
|
||||
//! [kern_m_impl]
|
||||
size_t numFaces = vctCntJaw.size();
|
||||
CV_Assert(numFaces == vctPtsFaceElems.size());
|
||||
CV_Assert(vctElemsContours.size() == 0ul);
|
||||
CV_Assert(vctFaceContours.size() == 0ul);
|
||||
// vctFaceElemsContours will store all the face elements' contours found
|
||||
// in an input image, namely 4 elements (two eyes, nose, mouth) for every detected face:
|
||||
vctElemsContours.reserve(numFaces * 4);
|
||||
// vctFaceElemsContours will store all the faces' contours found in an input image:
|
||||
vctFaceContours.reserve(numFaces);
|
||||
|
||||
Contour cntFace, cntLeftEye, cntRightEye, cntNose, cntMouth;
|
||||
cntNose.reserve(4);
|
||||
|
||||
for (size_t i = 0ul; i < numFaces; i++)
|
||||
{
|
||||
// The face elements contours
|
||||
|
||||
// A left eye:
|
||||
// Approximating the lower eye contour by half-ellipse (using eye points) and storing in cntLeftEye:
|
||||
cntLeftEye = getEyeEllipse(vctPtsFaceElems[i][1], vctPtsFaceElems[i][0]);
|
||||
// Pushing the left eyebrow clock-wise:
|
||||
cntLeftEye.insert(cntLeftEye.end(), {vctPtsFaceElems[i][12], vctPtsFaceElems[i][13],
|
||||
vctPtsFaceElems[i][14]});
|
||||
|
||||
// A right eye:
|
||||
// Approximating the lower eye contour by half-ellipse (using eye points) and storing in vctRightEye:
|
||||
cntRightEye = getEyeEllipse(vctPtsFaceElems[i][2], vctPtsFaceElems[i][3]);
|
||||
// Pushing the right eyebrow clock-wise:
|
||||
cntRightEye.insert(cntRightEye.end(), {vctPtsFaceElems[i][15], vctPtsFaceElems[i][16],
|
||||
vctPtsFaceElems[i][17]});
|
||||
|
||||
// A nose:
|
||||
// Storing the nose points clock-wise
|
||||
cntNose.clear();
|
||||
cntNose.insert(cntNose.end(), {vctPtsFaceElems[i][4], vctPtsFaceElems[i][7],
|
||||
vctPtsFaceElems[i][5], vctPtsFaceElems[i][6]});
|
||||
|
||||
// A mouth:
|
||||
// Approximating the mouth contour by two half-ellipses (using mouth points) and storing in vctMouth:
|
||||
cntMouth = getPatchedEllipse(vctPtsFaceElems[i][8], vctPtsFaceElems[i][9],
|
||||
vctPtsFaceElems[i][10], vctPtsFaceElems[i][11]);
|
||||
|
||||
// Storing all the elements in a vector:
|
||||
vctElemsContours.insert(vctElemsContours.end(), {cntLeftEye, cntRightEye, cntNose, cntMouth});
|
||||
|
||||
// The face contour:
|
||||
// Approximating the forehead contour by half-ellipse (using jaw points) and storing in vctFace:
|
||||
cntFace = getForeheadEllipse(vctCntJaw[i][0], vctCntJaw[i][16], vctCntJaw[i][8]);
|
||||
// The ellipse is drawn clock-wise, but jaw contour points goes vice versa, so it's necessary to push
|
||||
// cntJaw from the end to the begin using a reverse iterator:
|
||||
std::copy(vctCntJaw[i].crbegin(), vctCntJaw[i].crend(), std::back_inserter(cntFace));
|
||||
// Storing the face contour in another vector:
|
||||
vctFaceContours.push_back(cntFace);
|
||||
}
|
||||
}
|
||||
};
|
||||
//! [ld_pp_cnts]
|
||||
|
||||
// GAPI subgraph functions
|
||||
inline cv::GMat unsharpMask(const cv::GMat &src,
|
||||
const int sigma,
|
||||
const float strength);
|
||||
inline cv::GMat mask3C(const cv::GMat &src,
|
||||
const cv::GMat &mask);
|
||||
} // namespace custom
|
||||
|
||||
|
||||
// Functions implementation:
|
||||
// Returns an angle (in degrees) between a line given by two Points and
|
||||
// the horison. Note that the result depends on the arguments order:
|
||||
//! [ld_pp_incl]
|
||||
inline int custom::getLineInclinationAngleDegrees(const cv::Point &ptLeft, const cv::Point &ptRight)
|
||||
{
|
||||
const cv::Point residual = ptRight - ptLeft;
|
||||
if (residual.y == 0 && residual.x == 0)
|
||||
return 0;
|
||||
else
|
||||
return toIntRounded(atan2(toDouble(residual.y), toDouble(residual.x)) * 180.0 / CV_PI);
|
||||
}
|
||||
//! [ld_pp_incl]
|
||||
|
||||
// Approximates a forehead by half-ellipse using jaw points and some geometry
|
||||
// and then returns points of the contour; "capacity" is used to reserve enough
|
||||
// memory as there will be other points inserted.
|
||||
//! [ld_pp_fhd]
|
||||
inline Contour custom::getForeheadEllipse(const cv::Point &ptJawLeft,
|
||||
const cv::Point &ptJawRight,
|
||||
const cv::Point &ptJawLower)
|
||||
{
|
||||
Contour cntForehead;
|
||||
// The point amid the top two points of a jaw:
|
||||
const cv::Point ptFaceCenter((ptJawLeft + ptJawRight) / 2);
|
||||
// This will be the center of the ellipse.
|
||||
|
||||
// The angle between the jaw and the vertical:
|
||||
const int angFace = getLineInclinationAngleDegrees(ptJawLeft, ptJawRight);
|
||||
// This will be the inclination of the ellipse
|
||||
|
||||
// Counting the half-axis of the ellipse:
|
||||
const double jawWidth = cv::norm(ptJawLeft - ptJawRight);
|
||||
// A forehead width equals the jaw width, and we need a half-axis:
|
||||
const int axisX = toIntRounded(jawWidth / 2.0);
|
||||
|
||||
const double jawHeight = cv::norm(ptFaceCenter - ptJawLower);
|
||||
// According to research, in average a forehead is approximately 2/3 of
|
||||
// a jaw:
|
||||
const int axisY = toIntRounded(jawHeight * 2 / 3.0);
|
||||
|
||||
// We need the upper part of an ellipse:
|
||||
static constexpr int kAngForeheadStart = 180;
|
||||
static constexpr int kAngForeheadEnd = 360;
|
||||
cv::ellipse2Poly(ptFaceCenter, cv::Size(axisX, axisY), angFace, kAngForeheadStart, kAngForeheadEnd,
|
||||
config::kAngDelta, cntForehead);
|
||||
return cntForehead;
|
||||
}
|
||||
//! [ld_pp_fhd]
|
||||
|
||||
// Approximates the lower eye contour by half-ellipse using eye points and some
|
||||
// geometry and then returns points of the contour.
|
||||
//! [ld_pp_eye]
|
||||
inline Contour custom::getEyeEllipse(const cv::Point &ptLeft, const cv::Point &ptRight)
|
||||
{
|
||||
Contour cntEyeBottom;
|
||||
const cv::Point ptEyeCenter((ptRight + ptLeft) / 2);
|
||||
const int angle = getLineInclinationAngleDegrees(ptLeft, ptRight);
|
||||
const int axisX = toIntRounded(cv::norm(ptRight - ptLeft) / 2.0);
|
||||
// According to research, in average a Y axis of an eye is approximately
|
||||
// 1/3 of an X one.
|
||||
const int axisY = axisX / 3;
|
||||
// We need the lower part of an ellipse:
|
||||
static constexpr int kAngEyeStart = 0;
|
||||
static constexpr int kAngEyeEnd = 180;
|
||||
cv::ellipse2Poly(ptEyeCenter, cv::Size(axisX, axisY), angle, kAngEyeStart, kAngEyeEnd, config::kAngDelta,
|
||||
cntEyeBottom);
|
||||
return cntEyeBottom;
|
||||
}
|
||||
//! [ld_pp_eye]
|
||||
|
||||
//This function approximates an object (a mouth) by two half-ellipses using
|
||||
// 4 points of the axes' ends and then returns points of the contour:
|
||||
inline Contour custom::getPatchedEllipse(const cv::Point &ptLeft,
|
||||
const cv::Point &ptRight,
|
||||
const cv::Point &ptUp,
|
||||
const cv::Point &ptDown)
|
||||
{
|
||||
// Shared characteristics for both half-ellipses:
|
||||
const cv::Point ptMouthCenter((ptLeft + ptRight) / 2);
|
||||
const int angMouth = getLineInclinationAngleDegrees(ptLeft, ptRight);
|
||||
const int axisX = toIntRounded(cv::norm(ptRight - ptLeft) / 2.0);
|
||||
|
||||
// The top half-ellipse:
|
||||
Contour cntMouthTop;
|
||||
const int axisYTop = toIntRounded(cv::norm(ptMouthCenter - ptUp));
|
||||
// We need the upper part of an ellipse:
|
||||
static constexpr int angTopStart = 180;
|
||||
static constexpr int angTopEnd = 360;
|
||||
cv::ellipse2Poly(ptMouthCenter, cv::Size(axisX, axisYTop), angMouth, angTopStart, angTopEnd, config::kAngDelta, cntMouthTop);
|
||||
|
||||
// The bottom half-ellipse:
|
||||
Contour cntMouth;
|
||||
const int axisYBot = toIntRounded(cv::norm(ptMouthCenter - ptDown));
|
||||
// We need the lower part of an ellipse:
|
||||
static constexpr int angBotStart = 0;
|
||||
static constexpr int angBotEnd = 180;
|
||||
cv::ellipse2Poly(ptMouthCenter, cv::Size(axisX, axisYBot), angMouth, angBotStart, angBotEnd, config::kAngDelta, cntMouth);
|
||||
|
||||
// Pushing the upper part to vctOut
|
||||
std::copy(cntMouthTop.cbegin(), cntMouthTop.cend(), std::back_inserter(cntMouth));
|
||||
return cntMouth;
|
||||
}
|
||||
|
||||
//! [unsh]
|
||||
inline cv::GMat custom::unsharpMask(const cv::GMat &src,
|
||||
const int sigma,
|
||||
const float strength)
|
||||
{
|
||||
cv::GMat blurred = cv::gapi::medianBlur(src, sigma);
|
||||
cv::GMat laplacian = custom::GLaplacian::on(blurred, CV_8U);
|
||||
return (src - (laplacian * strength));
|
||||
}
|
||||
//! [unsh]
|
||||
|
||||
inline cv::GMat custom::mask3C(const cv::GMat &src,
|
||||
const cv::GMat &mask)
|
||||
{
|
||||
std::tuple<cv::GMat,cv::GMat,cv::GMat> tplIn = cv::gapi::split3(src);
|
||||
cv::GMat masked0 = cv::gapi::mask(std::get<0>(tplIn), mask);
|
||||
cv::GMat masked1 = cv::gapi::mask(std::get<1>(tplIn), mask);
|
||||
cv::GMat masked2 = cv::gapi::mask(std::get<2>(tplIn), mask);
|
||||
return cv::gapi::merge3(masked0, masked1, masked2);
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
cv::namedWindow(config::kWinFaceBeautification, cv::WINDOW_NORMAL);
|
||||
cv::namedWindow(config::kWinInput, cv::WINDOW_NORMAL);
|
||||
|
||||
cv::CommandLineParser parser(argc, argv, config::kParserOptions);
|
||||
parser.about(config::kParserAbout);
|
||||
if (argc == 1 || parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Parsing input arguments
|
||||
const std::string faceXmlPath = parser.get<std::string>("facepath");
|
||||
const std::string faceBinPath = getWeightsPath(faceXmlPath);
|
||||
const std::string faceDevice = parser.get<std::string>("facedevice");
|
||||
|
||||
const std::string landmXmlPath = parser.get<std::string>("landmpath");
|
||||
const std::string landmBinPath = getWeightsPath(landmXmlPath);
|
||||
const std::string landmDevice = parser.get<std::string>("landmdevice");
|
||||
|
||||
// Declaring a graph
|
||||
// The version of a pipeline expression with a lambda-based
|
||||
// constructor is used to keep all temporary objects in a dedicated scope.
|
||||
//! [ppl]
|
||||
cv::GComputation pipeline([=]()
|
||||
{
|
||||
//! [net_usg_fd]
|
||||
cv::GMat gimgIn; // input
|
||||
|
||||
cv::GMat faceOut = cv::gapi::infer<custom::FaceDetector>(gimgIn);
|
||||
//! [net_usg_fd]
|
||||
GArrayROI garRects = custom::GFacePostProc::on(faceOut, gimgIn, config::kConfThresh); // post-proc
|
||||
|
||||
//! [net_usg_ld]
|
||||
cv::GArray<cv::GMat> landmOut = cv::gapi::infer<custom::LandmDetector>(garRects, gimgIn);
|
||||
//! [net_usg_ld]
|
||||
cv::GArray<Landmarks> garElems; // |
|
||||
cv::GArray<Contour> garJaws; // |output arrays
|
||||
std::tie(garElems, garJaws) = custom::GLandmPostProc::on(landmOut, garRects); // post-proc
|
||||
cv::GArray<Contour> garElsConts; // face elements
|
||||
cv::GArray<Contour> garFaceConts; // whole faces
|
||||
std::tie(garElsConts, garFaceConts) = custom::GGetContours::on(garElems, garJaws); // interpolation
|
||||
|
||||
//! [msk_ppline]
|
||||
cv::GMat mskSharp = custom::GFillPolyGContours::on(gimgIn, garElsConts); // |
|
||||
cv::GMat mskSharpG = cv::gapi::gaussianBlur(mskSharp, config::kGKernelSize, // |
|
||||
config::kGSigma); // |
|
||||
cv::GMat mskBlur = custom::GFillPolyGContours::on(gimgIn, garFaceConts); // |
|
||||
cv::GMat mskBlurG = cv::gapi::gaussianBlur(mskBlur, config::kGKernelSize, // |
|
||||
config::kGSigma); // |draw masks
|
||||
// The first argument in mask() is Blur as we want to subtract from // |
|
||||
// BlurG the next step: // |
|
||||
cv::GMat mskBlurFinal = mskBlurG - cv::gapi::mask(mskBlurG, mskSharpG); // |
|
||||
cv::GMat mskFacesGaussed = mskBlurFinal + mskSharpG; // |
|
||||
cv::GMat mskFacesWhite = cv::gapi::threshold(mskFacesGaussed, 0, 255, cv::THRESH_BINARY); // |
|
||||
cv::GMat mskNoFaces = cv::gapi::bitwise_not(mskFacesWhite); // |
|
||||
//! [msk_ppline]
|
||||
|
||||
cv::GMat gimgBilat = custom::GBilatFilter::on(gimgIn, config::kBSize,
|
||||
config::kBSigmaCol, config::kBSigmaSp);
|
||||
cv::GMat gimgSharp = custom::unsharpMask(gimgIn, config::kUnshSigma,
|
||||
config::kUnshStrength);
|
||||
// Applying the masks
|
||||
// Custom function mask3C() should be used instead of just gapi::mask()
|
||||
// as mask() provides CV_8UC1 source only (and we have CV_8U3C)
|
||||
cv::GMat gimgBilatMasked = custom::mask3C(gimgBilat, mskBlurFinal);
|
||||
cv::GMat gimgSharpMasked = custom::mask3C(gimgSharp, mskSharpG);
|
||||
cv::GMat gimgInMasked = custom::mask3C(gimgIn, mskNoFaces);
|
||||
cv::GMat gimgBeautif = gimgBilatMasked + gimgSharpMasked + gimgInMasked;
|
||||
return cv::GComputation(cv::GIn(gimgIn), cv::GOut(gimgBeautif,
|
||||
cv::gapi::copy(gimgIn),
|
||||
garFaceConts,
|
||||
garElsConts,
|
||||
garRects));
|
||||
});
|
||||
//! [ppl]
|
||||
// Declaring IE params for networks
|
||||
//! [net_param]
|
||||
auto faceParams = cv::gapi::ie::Params<custom::FaceDetector>
|
||||
{
|
||||
/*std::string*/ faceXmlPath,
|
||||
/*std::string*/ faceBinPath,
|
||||
/*std::string*/ faceDevice
|
||||
};
|
||||
auto landmParams = cv::gapi::ie::Params<custom::LandmDetector>
|
||||
{
|
||||
/*std::string*/ landmXmlPath,
|
||||
/*std::string*/ landmBinPath,
|
||||
/*std::string*/ landmDevice
|
||||
};
|
||||
//! [net_param]
|
||||
//! [netw]
|
||||
auto networks = cv::gapi::networks(faceParams, landmParams);
|
||||
//! [netw]
|
||||
// Declaring custom and fluid kernels have been used:
|
||||
//! [kern_pass_1]
|
||||
auto customKernels = cv::gapi::kernels<custom::GCPUBilateralFilter,
|
||||
custom::GCPULaplacian,
|
||||
custom::GCPUFillPolyGContours,
|
||||
custom::GCPUPolyLines,
|
||||
custom::GCPURectangle,
|
||||
custom::GCPUFacePostProc,
|
||||
custom::GCPULandmPostProc,
|
||||
custom::GCPUGetContours>();
|
||||
auto kernels = cv::gapi::combine(cv::gapi::core::fluid::kernels(),
|
||||
customKernels);
|
||||
//! [kern_pass_1]
|
||||
|
||||
Avg avg;
|
||||
size_t frames = 0;
|
||||
|
||||
// The flags for drawing/not drawing face boxes or/and landmarks in the
|
||||
// \"Input\" window:
|
||||
const bool flgBoxes = parser.get<bool>("boxes");
|
||||
const bool flgLandmarks = parser.get<bool>("landmarks");
|
||||
// The flag to involve stream pipelining:
|
||||
const bool flgStreaming = parser.get<bool>("streaming");
|
||||
// The flag to display the output images or not:
|
||||
const bool flgPerformance = parser.get<bool>("performance");
|
||||
// Now we are ready to compile the pipeline to a stream with specified
|
||||
// kernels, networks and image format expected to process
|
||||
if (flgStreaming == true)
|
||||
{
|
||||
//! [str_comp]
|
||||
cv::GStreamingCompiled stream = pipeline.compileStreaming(cv::compile_args(kernels, networks));
|
||||
//! [str_comp]
|
||||
// Setting the source for the stream:
|
||||
//! [str_src]
|
||||
if (parser.has("input"))
|
||||
{
|
||||
stream.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(parser.get<cv::String>("input")));
|
||||
}
|
||||
//! [str_src]
|
||||
else
|
||||
{
|
||||
stream.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(0));
|
||||
}
|
||||
// Declaring output variables
|
||||
// Streaming:
|
||||
cv::Mat imgShow;
|
||||
cv::Mat imgBeautif;
|
||||
std::vector<Contour> vctFaceConts, vctElsConts;
|
||||
VectorROI vctRects;
|
||||
if (flgPerformance == true)
|
||||
{
|
||||
auto out_vector = cv::gout(imgBeautif, imgShow, vctFaceConts,
|
||||
vctElsConts, vctRects);
|
||||
stream.start();
|
||||
avg.start();
|
||||
while (stream.running())
|
||||
{
|
||||
stream.pull(std::move(out_vector));
|
||||
frames++;
|
||||
}
|
||||
}
|
||||
else // flgPerformance == false
|
||||
{
|
||||
//! [str_loop]
|
||||
auto out_vector = cv::gout(imgBeautif, imgShow, vctFaceConts,
|
||||
vctElsConts, vctRects);
|
||||
stream.start();
|
||||
avg.start();
|
||||
while (stream.running())
|
||||
{
|
||||
if (!stream.try_pull(std::move(out_vector)))
|
||||
{
|
||||
// Use a try_pull() to obtain data.
|
||||
// If there's no data, let UI refresh (and handle keypress)
|
||||
if (cv::waitKey(1) >= 0) break;
|
||||
else continue;
|
||||
}
|
||||
frames++;
|
||||
// Drawing face boxes and landmarks if necessary:
|
||||
if (flgLandmarks == true)
|
||||
{
|
||||
cv::polylines(imgShow, vctFaceConts, config::kClosedLine,
|
||||
config::kClrYellow);
|
||||
cv::polylines(imgShow, vctElsConts, config::kClosedLine,
|
||||
config::kClrYellow);
|
||||
}
|
||||
if (flgBoxes == true)
|
||||
for (auto rect : vctRects)
|
||||
cv::rectangle(imgShow, rect, config::kClrGreen);
|
||||
cv::imshow(config::kWinInput, imgShow);
|
||||
cv::imshow(config::kWinFaceBeautification, imgBeautif);
|
||||
}
|
||||
//! [str_loop]
|
||||
}
|
||||
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
|
||||
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
|
||||
}
|
||||
else // serial mode:
|
||||
{
|
||||
//! [bef_cap]
|
||||
#include <opencv2/videoio.hpp>
|
||||
cv::GCompiled cc;
|
||||
cv::VideoCapture cap;
|
||||
if (parser.has("input"))
|
||||
{
|
||||
cap.open(parser.get<cv::String>("input"));
|
||||
}
|
||||
//! [bef_cap]
|
||||
else if (!cap.open(0))
|
||||
{
|
||||
std::cout << "No input available" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
if (flgPerformance == true)
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
cv::Mat img;
|
||||
cv::Mat imgShow;
|
||||
cv::Mat imgBeautif;
|
||||
std::vector<Contour> vctFaceConts, vctElsConts;
|
||||
VectorROI vctRects;
|
||||
cap >> img;
|
||||
if (img.empty())
|
||||
{
|
||||
break;
|
||||
}
|
||||
frames++;
|
||||
if (!cc)
|
||||
{
|
||||
cc = pipeline.compile(cv::descr_of(img), cv::compile_args(kernels, networks));
|
||||
avg.start();
|
||||
}
|
||||
cc(cv::gin(img), cv::gout(imgBeautif, imgShow, vctFaceConts,
|
||||
vctElsConts, vctRects));
|
||||
}
|
||||
}
|
||||
else // flgPerformance == false
|
||||
{
|
||||
//! [bef_loop]
|
||||
while (cv::waitKey(1) < 0)
|
||||
{
|
||||
cv::Mat img;
|
||||
cv::Mat imgShow;
|
||||
cv::Mat imgBeautif;
|
||||
std::vector<Contour> vctFaceConts, vctElsConts;
|
||||
VectorROI vctRects;
|
||||
cap >> img;
|
||||
if (img.empty())
|
||||
{
|
||||
cv::waitKey();
|
||||
break;
|
||||
}
|
||||
frames++;
|
||||
//! [apply]
|
||||
pipeline.apply(cv::gin(img), cv::gout(imgBeautif, imgShow,
|
||||
vctFaceConts,
|
||||
vctElsConts, vctRects),
|
||||
cv::compile_args(kernels, networks));
|
||||
//! [apply]
|
||||
if (frames == 1)
|
||||
{
|
||||
// Start timer only after 1st frame processed -- compilation
|
||||
// happens on-the-fly here
|
||||
avg.start();
|
||||
}
|
||||
// Drawing face boxes and landmarks if necessary:
|
||||
if (flgLandmarks == true)
|
||||
{
|
||||
cv::polylines(imgShow, vctFaceConts, config::kClosedLine,
|
||||
config::kClrYellow);
|
||||
cv::polylines(imgShow, vctElsConts, config::kClosedLine,
|
||||
config::kClrYellow);
|
||||
}
|
||||
if (flgBoxes == true)
|
||||
for (auto rect : vctRects)
|
||||
cv::rectangle(imgShow, rect, config::kClrGreen);
|
||||
cv::imshow(config::kWinInput, imgShow);
|
||||
cv::imshow(config::kWinFaceBeautification, imgBeautif);
|
||||
}
|
||||
}
|
||||
//! [bef_loop]
|
||||
std::cout << "Processed " << frames << " frames in " << avg.elapsed()
|
||||
<< " (" << avg.fps(frames) << " FPS)" << std::endl;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
#include <iostream>
|
||||
int main()
|
||||
{
|
||||
std::cerr << "This tutorial code requires G-API module "
|
||||
"with Inference Engine backend to run"
|
||||
<< std::endl;
|
||||
return 1;
|
||||
}
|
||||
#endif // HAVE_OPECV_GAPI
|
@ -0,0 +1,107 @@
|
||||
/**
|
||||
* @brief You will learn how port an existing algorithm to G-API
|
||||
* @author Dmitry Matveev, dmitry.matveev@intel.com, based
|
||||
* on sample by Karpushin Vladislav, karpushin@ngs.ru
|
||||
*/
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#ifdef HAVE_OPENCV_GAPI
|
||||
|
||||
//! [full_sample]
|
||||
#include <iostream>
|
||||
#include <utility>
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/gapi.hpp"
|
||||
#include "opencv2/gapi/core.hpp"
|
||||
#include "opencv2/gapi/imgproc.hpp"
|
||||
|
||||
//! [calcGST_proto]
|
||||
void calcGST(const cv::GMat& inputImg, cv::GMat& imgCoherencyOut, cv::GMat& imgOrientationOut, int w);
|
||||
//! [calcGST_proto]
|
||||
|
||||
int main()
|
||||
{
|
||||
int W = 52; // window size is WxW
|
||||
double C_Thr = 0.43; // threshold for coherency
|
||||
int LowThr = 35; // threshold1 for orientation, it ranges from 0 to 180
|
||||
int HighThr = 57; // threshold2 for orientation, it ranges from 0 to 180
|
||||
|
||||
cv::Mat imgIn = cv::imread("input.jpg", cv::IMREAD_GRAYSCALE);
|
||||
if (imgIn.empty()) //check whether the image is loaded or not
|
||||
{
|
||||
std::cout << "ERROR : Image cannot be loaded..!!" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
//! [main]
|
||||
// Calculate Gradient Structure Tensor and post-process it for output with G-API
|
||||
cv::GMat in;
|
||||
cv::GMat imgCoherency, imgOrientation;
|
||||
calcGST(in, imgCoherency, imgOrientation, W);
|
||||
|
||||
cv::GMat imgCoherencyBin = imgCoherency > C_Thr;
|
||||
cv::GMat imgOrientationBin = cv::gapi::inRange(imgOrientation, LowThr, HighThr);
|
||||
cv::GMat imgBin = imgCoherencyBin & imgOrientationBin;
|
||||
cv::GMat out = cv::gapi::addWeighted(in, 0.5, imgBin, 0.5, 0.0);
|
||||
|
||||
// Normalize extra outputs
|
||||
cv::GMat imgCoherencyNorm = cv::gapi::normalize(imgCoherency, 0, 255, cv::NORM_MINMAX);
|
||||
cv::GMat imgOrientationNorm = cv::gapi::normalize(imgOrientation, 0, 255, cv::NORM_MINMAX);
|
||||
|
||||
// Capture the graph into object segm
|
||||
cv::GComputation segm(cv::GIn(in), cv::GOut(out, imgCoherencyNorm, imgOrientationNorm));
|
||||
|
||||
// Define cv::Mats for output data
|
||||
cv::Mat imgOut, imgOutCoherency, imgOutOrientation;
|
||||
|
||||
// Run the graph
|
||||
segm.apply(cv::gin(imgIn), cv::gout(imgOut, imgOutCoherency, imgOutOrientation));
|
||||
|
||||
cv::imwrite("result.jpg", imgOut);
|
||||
cv::imwrite("Coherency.jpg", imgOutCoherency);
|
||||
cv::imwrite("Orientation.jpg", imgOutOrientation);
|
||||
//! [main]
|
||||
|
||||
return 0;
|
||||
}
|
||||
//! [calcGST]
|
||||
//! [calcGST_header]
|
||||
void calcGST(const cv::GMat& inputImg, cv::GMat& imgCoherencyOut, cv::GMat& imgOrientationOut, int w)
|
||||
{
|
||||
auto img = cv::gapi::convertTo(inputImg, CV_32F);
|
||||
auto imgDiffX = cv::gapi::Sobel(img, CV_32F, 1, 0, 3);
|
||||
auto imgDiffY = cv::gapi::Sobel(img, CV_32F, 0, 1, 3);
|
||||
auto imgDiffXY = cv::gapi::mul(imgDiffX, imgDiffY);
|
||||
//! [calcGST_header]
|
||||
|
||||
auto imgDiffXX = cv::gapi::mul(imgDiffX, imgDiffX);
|
||||
auto imgDiffYY = cv::gapi::mul(imgDiffY, imgDiffY);
|
||||
|
||||
auto J11 = cv::gapi::boxFilter(imgDiffXX, CV_32F, cv::Size(w, w));
|
||||
auto J22 = cv::gapi::boxFilter(imgDiffYY, CV_32F, cv::Size(w, w));
|
||||
auto J12 = cv::gapi::boxFilter(imgDiffXY, CV_32F, cv::Size(w, w));
|
||||
|
||||
auto tmp1 = J11 + J22;
|
||||
auto tmp2 = J11 - J22;
|
||||
auto tmp22 = cv::gapi::mul(tmp2, tmp2);
|
||||
auto tmp3 = cv::gapi::mul(J12, J12);
|
||||
auto tmp4 = cv::gapi::sqrt(tmp22 + 4.0*tmp3);
|
||||
|
||||
auto lambda1 = tmp1 + tmp4;
|
||||
auto lambda2 = tmp1 - tmp4;
|
||||
|
||||
imgCoherencyOut = (lambda1 - lambda2) / (lambda1 + lambda2);
|
||||
imgOrientationOut = 0.5*cv::gapi::phase(J22 - J11, 2.0*J12, true);
|
||||
}
|
||||
//! [calcGST]
|
||||
|
||||
//! [full_sample]
|
||||
|
||||
#else
|
||||
#include <iostream>
|
||||
int main()
|
||||
{
|
||||
std::cerr << "This tutorial code requires G-API module to run" << std::endl;
|
||||
}
|
||||
#endif // HAVE_OPECV_GAPI
|
@ -0,0 +1,127 @@
|
||||
/**
|
||||
* @brief You will learn how port an existing algorithm to G-API
|
||||
* @author Dmitry Matveev, dmitry.matveev@intel.com, based
|
||||
* on sample by Karpushin Vladislav, karpushin@ngs.ru
|
||||
*/
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#ifdef HAVE_OPENCV_GAPI
|
||||
|
||||
//! [full_sample]
|
||||
#include <iostream>
|
||||
#include <utility>
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/gapi.hpp"
|
||||
#include "opencv2/gapi/core.hpp"
|
||||
#include "opencv2/gapi/imgproc.hpp"
|
||||
//! [fluid_includes]
|
||||
#include "opencv2/gapi/fluid/core.hpp" // Fluid Core kernel library
|
||||
#include "opencv2/gapi/fluid/imgproc.hpp" // Fluid ImgProc kernel library
|
||||
//! [fluid_includes]
|
||||
#include "opencv2/gapi/fluid/gfluidkernel.hpp" // Fluid user kernel API
|
||||
|
||||
//! [calcGST_proto]
|
||||
void calcGST(const cv::GMat& inputImg, cv::GMat& imgCoherencyOut, cv::GMat& imgOrientationOut, int w);
|
||||
//! [calcGST_proto]
|
||||
|
||||
int main()
|
||||
{
|
||||
int W = 52; // window size is WxW
|
||||
double C_Thr = 0.43; // threshold for coherency
|
||||
int LowThr = 35; // threshold1 for orientation, it ranges from 0 to 180
|
||||
int HighThr = 57; // threshold2 for orientation, it ranges from 0 to 180
|
||||
|
||||
cv::Mat imgIn = cv::imread("input.jpg", cv::IMREAD_GRAYSCALE);
|
||||
if (imgIn.empty()) //check whether the image is loaded or not
|
||||
{
|
||||
std::cout << "ERROR : Image cannot be loaded..!!" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
//! [main]
|
||||
// Calculate Gradient Structure Tensor and post-process it for output with G-API
|
||||
cv::GMat in;
|
||||
cv::GMat imgCoherency, imgOrientation;
|
||||
calcGST(in, imgCoherency, imgOrientation, W);
|
||||
|
||||
auto imgCoherencyBin = imgCoherency > C_Thr;
|
||||
auto imgOrientationBin = cv::gapi::inRange(imgOrientation, LowThr, HighThr);
|
||||
auto imgBin = imgCoherencyBin & imgOrientationBin;
|
||||
cv::GMat out = cv::gapi::addWeighted(in, 0.5, imgBin, 0.5, 0.0);
|
||||
|
||||
// Normalize extra outputs
|
||||
cv::GMat imgCoherencyNorm = cv::gapi::normalize(imgCoherency, 0, 255, cv::NORM_MINMAX);
|
||||
cv::GMat imgOrientationNorm = cv::gapi::normalize(imgOrientation, 0, 255, cv::NORM_MINMAX);
|
||||
|
||||
// Capture the graph into object segm
|
||||
cv::GComputation segm(cv::GIn(in), cv::GOut(out, imgCoherencyNorm, imgOrientationNorm));
|
||||
|
||||
// Define cv::Mats for output data
|
||||
cv::Mat imgOut, imgOutCoherency, imgOutOrientation;
|
||||
|
||||
//! [kernel_pkg_proper]
|
||||
//! [kernel_pkg]
|
||||
// Prepare the kernel package and run the graph
|
||||
cv::gapi::GKernelPackage fluid_kernels = cv::gapi::combine // Define a custom kernel package:
|
||||
(cv::gapi::core::fluid::kernels(), // ...with Fluid Core kernels
|
||||
cv::gapi::imgproc::fluid::kernels()); // ...and Fluid ImgProc kernels
|
||||
//! [kernel_pkg]
|
||||
//! [kernel_hotfix]
|
||||
fluid_kernels.remove<cv::gapi::imgproc::GBoxFilter>(); // Remove Fluid Box filter as unsuitable,
|
||||
// G-API will fall-back to OpenCV there.
|
||||
//! [kernel_hotfix]
|
||||
//! [kernel_pkg_use]
|
||||
segm.apply(cv::gin(imgIn), // Input data vector
|
||||
cv::gout(imgOut, imgOutCoherency, imgOutOrientation), // Output data vector
|
||||
cv::compile_args(fluid_kernels)); // Kernel package to use
|
||||
//! [kernel_pkg_use]
|
||||
//! [kernel_pkg_proper]
|
||||
|
||||
cv::imwrite("result.jpg", imgOut);
|
||||
cv::imwrite("Coherency.jpg", imgOutCoherency);
|
||||
cv::imwrite("Orientation.jpg", imgOutOrientation);
|
||||
//! [main]
|
||||
|
||||
return 0;
|
||||
}
|
||||
//! [calcGST]
|
||||
//! [calcGST_header]
|
||||
void calcGST(const cv::GMat& inputImg, cv::GMat& imgCoherencyOut, cv::GMat& imgOrientationOut, int w)
|
||||
{
|
||||
auto img = cv::gapi::convertTo(inputImg, CV_32F);
|
||||
auto imgDiffX = cv::gapi::Sobel(img, CV_32F, 1, 0, 3);
|
||||
auto imgDiffY = cv::gapi::Sobel(img, CV_32F, 0, 1, 3);
|
||||
auto imgDiffXY = cv::gapi::mul(imgDiffX, imgDiffY);
|
||||
//! [calcGST_header]
|
||||
|
||||
auto imgDiffXX = cv::gapi::mul(imgDiffX, imgDiffX);
|
||||
auto imgDiffYY = cv::gapi::mul(imgDiffY, imgDiffY);
|
||||
|
||||
auto J11 = cv::gapi::boxFilter(imgDiffXX, CV_32F, cv::Size(w, w));
|
||||
auto J22 = cv::gapi::boxFilter(imgDiffYY, CV_32F, cv::Size(w, w));
|
||||
auto J12 = cv::gapi::boxFilter(imgDiffXY, CV_32F, cv::Size(w, w));
|
||||
|
||||
auto tmp1 = J11 + J22;
|
||||
auto tmp2 = J11 - J22;
|
||||
auto tmp22 = cv::gapi::mul(tmp2, tmp2);
|
||||
auto tmp3 = cv::gapi::mul(J12, J12);
|
||||
auto tmp4 = cv::gapi::sqrt(tmp22 + 4.0*tmp3);
|
||||
|
||||
auto lambda1 = tmp1 + tmp4;
|
||||
auto lambda2 = tmp1 - tmp4;
|
||||
|
||||
imgCoherencyOut = (lambda1 - lambda2) / (lambda1 + lambda2);
|
||||
imgOrientationOut = 0.5*cv::gapi::phase(J22 - J11, 2.0*J12, true);
|
||||
}
|
||||
//! [calcGST]
|
||||
|
||||
//! [full_sample]
|
||||
|
||||
#else
|
||||
#include <iostream>
|
||||
int main()
|
||||
{
|
||||
std::cerr << "This tutorial code requires G-API module to run" << std::endl;
|
||||
}
|
||||
#endif // HAVE_OPECV_GAPI
|
@ -0,0 +1,351 @@
|
||||
#include "opencv2/opencv_modules.hpp"
|
||||
#include <iostream>
|
||||
#if defined(HAVE_OPENCV_GAPI)
|
||||
|
||||
#include <chrono>
|
||||
#include <iomanip>
|
||||
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/gapi.hpp"
|
||||
#include "opencv2/gapi/core.hpp"
|
||||
#include "opencv2/gapi/imgproc.hpp"
|
||||
#include "opencv2/gapi/infer.hpp"
|
||||
#include "opencv2/gapi/infer/ie.hpp"
|
||||
#include "opencv2/gapi/cpu/gcpukernel.hpp"
|
||||
#include "opencv2/gapi/streaming/cap.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
const std::string about =
|
||||
"This is an OpenCV-based version of Security Barrier Camera example";
|
||||
const std::string keys =
|
||||
"{ h help | | print this help message }"
|
||||
"{ input | | Path to an input video file }"
|
||||
"{ detm | | IE vehicle/license plate detection model IR }"
|
||||
"{ detw | | IE vehicle/license plate detection model weights }"
|
||||
"{ detd | | IE vehicle/license plate detection model device }"
|
||||
"{ vehm | | IE vehicle attributes model IR }"
|
||||
"{ vehw | | IE vehicle attributes model weights }"
|
||||
"{ vehd | | IE vehicle attributes model device }"
|
||||
"{ lprm | | IE license plate recognition model IR }"
|
||||
"{ lprw | | IE license plate recognition model weights }"
|
||||
"{ lprd | | IE license plate recognition model device }"
|
||||
"{ pure | | When set, no output is displayed. Useful for benchmarking }"
|
||||
"{ ser | | When set, runs a regular (serial) pipeline }";
|
||||
|
||||
namespace {
|
||||
struct Avg {
|
||||
struct Elapsed {
|
||||
explicit Elapsed(double ms) : ss(ms/1000.), mm(static_cast<int>(ss)/60) {}
|
||||
const double ss;
|
||||
const int mm;
|
||||
};
|
||||
|
||||
using MS = std::chrono::duration<double, std::ratio<1, 1000>>;
|
||||
using TS = std::chrono::time_point<std::chrono::high_resolution_clock>;
|
||||
TS started;
|
||||
|
||||
void start() { started = now(); }
|
||||
TS now() const { return std::chrono::high_resolution_clock::now(); }
|
||||
double tick() const { return std::chrono::duration_cast<MS>(now() - started).count(); }
|
||||
Elapsed elapsed() const { return Elapsed{tick()}; }
|
||||
double fps(std::size_t n) const { return static_cast<double>(n) / (tick() / 1000.); }
|
||||
};
|
||||
std::ostream& operator<<(std::ostream &os, const Avg::Elapsed &e) {
|
||||
os << e.mm << ':' << (e.ss - 60*e.mm);
|
||||
return os;
|
||||
}
|
||||
} // namespace
|
||||
|
||||
|
||||
namespace custom {
|
||||
G_API_NET(VehicleLicenseDetector, <cv::GMat(cv::GMat)>, "vehicle-license-plate-detector");
|
||||
|
||||
using Attrs = std::tuple<cv::GMat, cv::GMat>;
|
||||
G_API_NET(VehicleAttributes, <Attrs(cv::GMat)>, "vehicle-attributes");
|
||||
G_API_NET(LPR, <cv::GMat(cv::GMat)>, "license-plate-recognition");
|
||||
|
||||
using GVehiclesPlates = std::tuple< cv::GArray<cv::Rect>
|
||||
, cv::GArray<cv::Rect> >;
|
||||
G_API_OP_M(ProcessDetections,
|
||||
<GVehiclesPlates(cv::GMat, cv::GMat)>,
|
||||
"custom.security_barrier.detector.postproc") {
|
||||
static std::tuple<cv::GArrayDesc,cv::GArrayDesc>
|
||||
outMeta(const cv::GMatDesc &, const cv::GMatDesc) {
|
||||
// FIXME: Need to get rid of this - literally there's nothing useful
|
||||
return std::make_tuple(cv::empty_array_desc(), cv::empty_array_desc());
|
||||
}
|
||||
};
|
||||
|
||||
GAPI_OCV_KERNEL(OCVProcessDetections, ProcessDetections) {
|
||||
static void run(const cv::Mat &in_ssd_result,
|
||||
const cv::Mat &in_frame,
|
||||
std::vector<cv::Rect> &out_vehicles,
|
||||
std::vector<cv::Rect> &out_plates) {
|
||||
const int MAX_PROPOSALS = 200;
|
||||
const int OBJECT_SIZE = 7;
|
||||
const cv::Size upscale = in_frame.size();
|
||||
const cv::Rect surface({0,0}, upscale);
|
||||
|
||||
out_vehicles.clear();
|
||||
out_plates.clear();
|
||||
|
||||
const float *data = in_ssd_result.ptr<float>();
|
||||
for (int i = 0; i < MAX_PROPOSALS; i++) {
|
||||
const float image_id = data[i * OBJECT_SIZE + 0]; // batch id
|
||||
const float label = data[i * OBJECT_SIZE + 1];
|
||||
const float confidence = data[i * OBJECT_SIZE + 2];
|
||||
const float rc_left = data[i * OBJECT_SIZE + 3];
|
||||
const float rc_top = data[i * OBJECT_SIZE + 4];
|
||||
const float rc_right = data[i * OBJECT_SIZE + 5];
|
||||
const float rc_bottom = data[i * OBJECT_SIZE + 6];
|
||||
|
||||
if (image_id < 0.f) { // indicates end of detections
|
||||
break;
|
||||
}
|
||||
if (confidence < 0.5f) { // fixme: hard-coded snapshot
|
||||
continue;
|
||||
}
|
||||
|
||||
cv::Rect rc;
|
||||
rc.x = static_cast<int>(rc_left * upscale.width);
|
||||
rc.y = static_cast<int>(rc_top * upscale.height);
|
||||
rc.width = static_cast<int>(rc_right * upscale.width) - rc.x;
|
||||
rc.height = static_cast<int>(rc_bottom * upscale.height) - rc.y;
|
||||
|
||||
using PT = cv::Point;
|
||||
using SZ = cv::Size;
|
||||
switch (static_cast<int>(label)) {
|
||||
case 1: out_vehicles.push_back(rc & surface); break;
|
||||
case 2: out_plates.emplace_back((rc-PT(15,15)+SZ(30,30)) & surface); break;
|
||||
default: CV_Assert(false && "Unknown object class");
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
} // namespace custom
|
||||
|
||||
namespace labels {
|
||||
const std::string colors[] = {
|
||||
"white", "gray", "yellow", "red", "green", "blue", "black"
|
||||
};
|
||||
const std::string types[] = {
|
||||
"car", "van", "truck", "bus"
|
||||
};
|
||||
const std::vector<std::string> license_text = {
|
||||
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
|
||||
"<Anhui>", "<Beijing>", "<Chongqing>", "<Fujian>",
|
||||
"<Gansu>", "<Guangdong>", "<Guangxi>", "<Guizhou>",
|
||||
"<Hainan>", "<Hebei>", "<Heilongjiang>", "<Henan>",
|
||||
"<HongKong>", "<Hubei>", "<Hunan>", "<InnerMongolia>",
|
||||
"<Jiangsu>", "<Jiangxi>", "<Jilin>", "<Liaoning>",
|
||||
"<Macau>", "<Ningxia>", "<Qinghai>", "<Shaanxi>",
|
||||
"<Shandong>", "<Shanghai>", "<Shanxi>", "<Sichuan>",
|
||||
"<Tianjin>", "<Tibet>", "<Xinjiang>", "<Yunnan>",
|
||||
"<Zhejiang>", "<police>",
|
||||
"A", "B", "C", "D", "E", "F", "G", "H", "I", "J",
|
||||
"K", "L", "M", "N", "O", "P", "Q", "R", "S", "T",
|
||||
"U", "V", "W", "X", "Y", "Z"
|
||||
};
|
||||
namespace {
|
||||
void DrawResults(cv::Mat &frame,
|
||||
const std::vector<cv::Rect> &vehicles,
|
||||
const std::vector<cv::Mat> &out_colors,
|
||||
const std::vector<cv::Mat> &out_types,
|
||||
const std::vector<cv::Rect> &plates,
|
||||
const std::vector<cv::Mat> &out_numbers) {
|
||||
CV_Assert(vehicles.size() == out_colors.size());
|
||||
CV_Assert(vehicles.size() == out_types.size());
|
||||
CV_Assert(plates.size() == out_numbers.size());
|
||||
|
||||
for (auto it = vehicles.begin(); it != vehicles.end(); ++it) {
|
||||
const auto idx = std::distance(vehicles.begin(), it);
|
||||
const auto &rc = *it;
|
||||
|
||||
const float *colors_data = out_colors[idx].ptr<float>();
|
||||
const float *types_data = out_types [idx].ptr<float>();
|
||||
const auto color_id = std::max_element(colors_data, colors_data + 7) - colors_data;
|
||||
const auto type_id = std::max_element(types_data, types_data + 4) - types_data;
|
||||
|
||||
const int ATTRIB_OFFSET = 25;
|
||||
cv::rectangle(frame, rc, {0, 255, 0}, 4);
|
||||
cv::putText(frame, labels::colors[color_id],
|
||||
cv::Point(rc.x + 5, rc.y + ATTRIB_OFFSET),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL,
|
||||
1,
|
||||
cv::Scalar(255, 0, 0));
|
||||
cv::putText(frame, labels::types[type_id],
|
||||
cv::Point(rc.x + 5, rc.y + ATTRIB_OFFSET * 2),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL,
|
||||
1,
|
||||
cv::Scalar(255, 0, 0));
|
||||
}
|
||||
|
||||
for (auto it = plates.begin(); it != plates.end(); ++it) {
|
||||
const int MAX_LICENSE = 88;
|
||||
const int LPR_OFFSET = 50;
|
||||
|
||||
const auto &rc = *it;
|
||||
const auto idx = std::distance(plates.begin(), it);
|
||||
|
||||
std::string result;
|
||||
const auto *lpr_data = out_numbers[idx].ptr<float>();
|
||||
for (int i = 0; i < MAX_LICENSE; i++) {
|
||||
if (lpr_data[i] == -1) break;
|
||||
result += labels::license_text[static_cast<size_t>(lpr_data[i])];
|
||||
}
|
||||
|
||||
const int y_pos = std::max(0, rc.y + rc.height - LPR_OFFSET);
|
||||
cv::rectangle(frame, rc, {0, 0, 255}, 4);
|
||||
cv::putText(frame, result,
|
||||
cv::Point(rc.x, y_pos),
|
||||
cv::FONT_HERSHEY_COMPLEX_SMALL,
|
||||
1,
|
||||
cv::Scalar(0, 0, 255));
|
||||
}
|
||||
}
|
||||
|
||||
void DrawFPS(cv::Mat &frame, std::size_t n, double fps) {
|
||||
std::ostringstream out;
|
||||
out << "FRAME " << n << ": "
|
||||
<< std::fixed << std::setprecision(2) << fps
|
||||
<< " FPS (AVG)";
|
||||
cv::putText(frame, out.str(),
|
||||
cv::Point(0, frame.rows),
|
||||
cv::FONT_HERSHEY_SIMPLEX,
|
||||
1,
|
||||
cv::Scalar(0, 0, 0),
|
||||
2);
|
||||
}
|
||||
} // anonymous namespace
|
||||
} // namespace labels
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
cv::CommandLineParser cmd(argc, argv, keys);
|
||||
cmd.about(about);
|
||||
if (cmd.has("help")) {
|
||||
cmd.printMessage();
|
||||
return 0;
|
||||
}
|
||||
const std::string input = cmd.get<std::string>("input");
|
||||
const bool no_show = cmd.get<bool>("pure");
|
||||
|
||||
cv::GComputation pp([]() {
|
||||
cv::GMat in;
|
||||
cv::GMat detections = cv::gapi::infer<custom::VehicleLicenseDetector>(in);
|
||||
cv::GArray<cv::Rect> vehicles;
|
||||
cv::GArray<cv::Rect> plates;
|
||||
std::tie(vehicles, plates) = custom::ProcessDetections::on(detections, in);
|
||||
cv::GArray<cv::GMat> colors;
|
||||
cv::GArray<cv::GMat> types;
|
||||
std::tie(colors, types) = cv::gapi::infer<custom::VehicleAttributes>(vehicles, in);
|
||||
cv::GArray<cv::GMat> numbers = cv::gapi::infer<custom::LPR>(plates, in);
|
||||
cv::GMat frame = cv::gapi::copy(in); // pass-through the input frame
|
||||
return cv::GComputation(cv::GIn(in),
|
||||
cv::GOut(frame, vehicles, colors, types, plates, numbers));
|
||||
});
|
||||
|
||||
// Note: it might be very useful to have dimensions loaded at this point!
|
||||
auto det_net = cv::gapi::ie::Params<custom::VehicleLicenseDetector> {
|
||||
cmd.get<std::string>("detm"), // path to topology IR
|
||||
cmd.get<std::string>("detw"), // path to weights
|
||||
cmd.get<std::string>("detd"), // device specifier
|
||||
};
|
||||
|
||||
auto attr_net = cv::gapi::ie::Params<custom::VehicleAttributes> {
|
||||
cmd.get<std::string>("vehm"), // path to topology IR
|
||||
cmd.get<std::string>("vehw"), // path to weights
|
||||
cmd.get<std::string>("vehd"), // device specifier
|
||||
}.cfgOutputLayers({ "color", "type" });
|
||||
|
||||
// Fill a special LPR input (seq_ind) with a predefined value
|
||||
// First element is 0.f, the rest 87 are 1.f
|
||||
const std::vector<int> lpr_seq_dims = {88,1};
|
||||
cv::Mat lpr_seq(lpr_seq_dims, CV_32F, cv::Scalar(1.f));
|
||||
lpr_seq.ptr<float>()[0] = 0.f;
|
||||
auto lpr_net = cv::gapi::ie::Params<custom::LPR> {
|
||||
cmd.get<std::string>("lprm"), // path to topology IR
|
||||
cmd.get<std::string>("lprw"), // path to weights
|
||||
cmd.get<std::string>("lprd"), // device specifier
|
||||
}.constInput("seq_ind", lpr_seq);
|
||||
|
||||
auto kernels = cv::gapi::kernels<custom::OCVProcessDetections>();
|
||||
auto networks = cv::gapi::networks(det_net, attr_net, lpr_net);
|
||||
|
||||
Avg avg;
|
||||
cv::Mat frame;
|
||||
std::vector<cv::Rect> vehicles, plates;
|
||||
std::vector<cv::Mat> out_colors;
|
||||
std::vector<cv::Mat> out_types;
|
||||
std::vector<cv::Mat> out_numbers;
|
||||
std::size_t frames = 0u;
|
||||
|
||||
std::cout << "Reading " << input << std::endl;
|
||||
|
||||
if (cmd.get<bool>("ser")) {
|
||||
std::cout << "Going serial..." << std::endl;
|
||||
cv::VideoCapture cap(input);
|
||||
|
||||
auto cc = pp.compile(cv::GMatDesc{CV_8U,3,cv::Size(1920,1080)},
|
||||
cv::compile_args(kernels, networks));
|
||||
|
||||
avg.start();
|
||||
while (cv::waitKey(1) < 0) {
|
||||
cap >> frame;
|
||||
if (frame.empty()) break;
|
||||
|
||||
cc(cv::gin(frame),
|
||||
cv::gout(frame, vehicles, out_colors, out_types, plates, out_numbers));
|
||||
frames++;
|
||||
labels::DrawResults(frame, vehicles, out_colors, out_types, plates, out_numbers);
|
||||
labels::DrawFPS(frame, frames, avg.fps(frames));
|
||||
if (!no_show) cv::imshow("Out", frame);
|
||||
}
|
||||
} else {
|
||||
std::cout << "Going pipelined..." << std::endl;
|
||||
|
||||
auto cc = pp.compileStreaming(cv::GMatDesc{CV_8U,3,cv::Size(1920,1080)},
|
||||
cv::compile_args(kernels, networks));
|
||||
|
||||
cc.setSource(cv::gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(input));
|
||||
|
||||
avg.start();
|
||||
cc.start();
|
||||
|
||||
// Implement different execution policies depending on the display option
|
||||
// for the best performance.
|
||||
while (cc.running()) {
|
||||
auto out_vector = cv::gout(frame, vehicles, out_colors, out_types, plates, out_numbers);
|
||||
if (no_show) {
|
||||
// This is purely a video processing. No need to balance with UI rendering.
|
||||
// Use a blocking pull() to obtain data. Break the loop if the stream is over.
|
||||
if (!cc.pull(std::move(out_vector)))
|
||||
break;
|
||||
} else if (!cc.try_pull(std::move(out_vector))) {
|
||||
// Use a non-blocking try_pull() to obtain data.
|
||||
// If there's no data, let UI refresh (and handle keypress)
|
||||
if (cv::waitKey(1) >= 0) break;
|
||||
else continue;
|
||||
}
|
||||
// At this point we have data for sure (obtained in either blocking or non-blocking way).
|
||||
frames++;
|
||||
labels::DrawResults(frame, vehicles, out_colors, out_types, plates, out_numbers);
|
||||
labels::DrawFPS(frame, frames, avg.fps(frames));
|
||||
if (!no_show) cv::imshow("Out", frame);
|
||||
}
|
||||
cc.stop();
|
||||
}
|
||||
std::cout << "Processed " << frames << " frames in " << avg.elapsed() << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
||||
#else
|
||||
int main()
|
||||
{
|
||||
std::cerr << "This tutorial code requires G-API module "
|
||||
"with Inference Engine backend to run"
|
||||
<< std::endl;
|
||||
return 1;
|
||||
}
|
||||
#endif // HAVE_OPECV_GAPI
|
Reference in New Issue
Block a user