feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
10
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/gpu/gpu-thrust-interop/CMakeLists.txt
vendored
Normal file
10
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/gpu/gpu-thrust-interop/CMakeLists.txt
vendored
Normal file
@ -0,0 +1,10 @@
|
||||
CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
|
||||
|
||||
FIND_PACKAGE(CUDA REQUIRED)
|
||||
INCLUDE_DIRECTORIES(${CUDA_INCLUDE_DIRS})
|
||||
|
||||
FIND_PACKAGE(OpenCV REQUIRED COMPONENTS core)
|
||||
INCLUDE_DIRECTORIES(${OpenCV_INCLUDE_DIRS})
|
||||
|
||||
CUDA_ADD_EXECUTABLE(opencv_thrust main.cu)
|
||||
TARGET_LINK_LIBRARIES(opencv_thrust ${OpenCV_LIBS})
|
74
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/gpu/gpu-thrust-interop/Thrust_interop.hpp
vendored
Normal file
74
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/gpu/gpu-thrust-interop/Thrust_interop.hpp
vendored
Normal file
@ -0,0 +1,74 @@
|
||||
#pragma once
|
||||
#include <opencv2/core/cuda.hpp>
|
||||
|
||||
#include <thrust/iterator/permutation_iterator.h>
|
||||
#include <thrust/iterator/transform_iterator.h>
|
||||
#include <thrust/iterator/counting_iterator.h>
|
||||
#include <thrust/device_ptr.h>
|
||||
|
||||
/*
|
||||
@Brief step_functor is an object to correctly step a thrust iterator according to the stride of a matrix
|
||||
*/
|
||||
//! [step_functor]
|
||||
template<typename T> struct step_functor : public thrust::unary_function<int, int>
|
||||
{
|
||||
int columns;
|
||||
int step;
|
||||
int channels;
|
||||
__host__ __device__ step_functor(int columns_, int step_, int channels_ = 1) : columns(columns_), step(step_), channels(channels_) { };
|
||||
__host__ step_functor(cv::cuda::GpuMat& mat)
|
||||
{
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
columns = mat.cols;
|
||||
step = mat.step / sizeof(T);
|
||||
channels = mat.channels();
|
||||
}
|
||||
__host__ __device__
|
||||
int operator()(int x) const
|
||||
{
|
||||
int row = x / columns;
|
||||
int idx = (row * step) + (x % columns)*channels;
|
||||
return idx;
|
||||
}
|
||||
};
|
||||
//! [step_functor]
|
||||
//! [begin_itr]
|
||||
/*
|
||||
@Brief GpuMatBeginItr returns a thrust compatible iterator to the beginning of a GPU mat's memory.
|
||||
@Param mat is the input matrix
|
||||
@Param channel is the channel of the matrix that the iterator is accessing. If set to -1, the iterator will access every element in sequential order
|
||||
*/
|
||||
template<typename T>
|
||||
thrust::permutation_iterator<thrust::device_ptr<T>, thrust::transform_iterator<step_functor<T>, thrust::counting_iterator<int>>> GpuMatBeginItr(cv::cuda::GpuMat mat, int channel = 0)
|
||||
{
|
||||
if (channel == -1)
|
||||
{
|
||||
mat = mat.reshape(1);
|
||||
channel = 0;
|
||||
}
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
CV_Assert(channel < mat.channels());
|
||||
return thrust::make_permutation_iterator(thrust::device_pointer_cast(mat.ptr<T>(0) + channel),
|
||||
thrust::make_transform_iterator(thrust::make_counting_iterator(0), step_functor<T>(mat.cols, mat.step / sizeof(T), mat.channels())));
|
||||
}
|
||||
//! [begin_itr]
|
||||
//! [end_itr]
|
||||
/*
|
||||
@Brief GpuMatEndItr returns a thrust compatible iterator to the end of a GPU mat's memory.
|
||||
@Param mat is the input matrix
|
||||
@Param channel is the channel of the matrix that the iterator is accessing. If set to -1, the iterator will access every element in sequential order
|
||||
*/
|
||||
template<typename T>
|
||||
thrust::permutation_iterator<thrust::device_ptr<T>, thrust::transform_iterator<step_functor<T>, thrust::counting_iterator<int>>> GpuMatEndItr(cv::cuda::GpuMat mat, int channel = 0)
|
||||
{
|
||||
if (channel == -1)
|
||||
{
|
||||
mat = mat.reshape(1);
|
||||
channel = 0;
|
||||
}
|
||||
CV_Assert(mat.depth() == cv::DataType<T>::depth);
|
||||
CV_Assert(channel < mat.channels());
|
||||
return thrust::make_permutation_iterator(thrust::device_pointer_cast(mat.ptr<T>(0) + channel),
|
||||
thrust::make_transform_iterator(thrust::make_counting_iterator(mat.rows*mat.cols), step_functor<T>(mat.cols, mat.step / sizeof(T), mat.channels())));
|
||||
}
|
||||
//! [end_itr]
|
110
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/gpu/gpu-thrust-interop/main.cu
vendored
Normal file
110
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/gpu/gpu-thrust-interop/main.cu
vendored
Normal file
@ -0,0 +1,110 @@
|
||||
#include "Thrust_interop.hpp"
|
||||
#include <opencv2/core/cuda_stream_accessor.hpp>
|
||||
|
||||
#include <thrust/transform.h>
|
||||
#include <thrust/random.h>
|
||||
#include <thrust/sort.h>
|
||||
#include <thrust/system/cuda/execution_policy.h>
|
||||
//! [prg]
|
||||
struct prg
|
||||
{
|
||||
float a, b;
|
||||
|
||||
__host__ __device__
|
||||
prg(float _a = 0.f, float _b = 1.f) : a(_a), b(_b) {};
|
||||
|
||||
__host__ __device__
|
||||
float operator()(const unsigned int n) const
|
||||
{
|
||||
thrust::default_random_engine rng;
|
||||
thrust::uniform_real_distribution<float> dist(a, b);
|
||||
rng.discard(n);
|
||||
return dist(rng);
|
||||
}
|
||||
};
|
||||
//! [prg]
|
||||
|
||||
|
||||
//! [pred_greater]
|
||||
template<typename T> struct pred_greater
|
||||
{
|
||||
T value;
|
||||
__host__ __device__ pred_greater(T value_) : value(value_){}
|
||||
__host__ __device__ bool operator()(const T& val) const
|
||||
{
|
||||
return val > value;
|
||||
}
|
||||
};
|
||||
//! [pred_greater]
|
||||
|
||||
|
||||
int main(void)
|
||||
{
|
||||
// Generate a 2 channel row matrix with 100 elements. Set the first channel to be the element index, and the second to be a randomly
|
||||
// generated value. Sort by the randomly generated value while maintaining index association.
|
||||
//! [sort]
|
||||
{
|
||||
cv::cuda::GpuMat d_data(1, 100, CV_32SC2);
|
||||
// Thrust compatible begin and end iterators to channel 1 of this matrix
|
||||
auto keyBegin = GpuMatBeginItr<int>(d_data, 1);
|
||||
auto keyEnd = GpuMatEndItr<int>(d_data, 1);
|
||||
// Thrust compatible begin and end iterators to channel 0 of this matrix
|
||||
auto idxBegin = GpuMatBeginItr<int>(d_data, 0);
|
||||
auto idxEnd = GpuMatEndItr<int>(d_data, 0);
|
||||
// Fill the index channel with a sequence of numbers from 0 to 100
|
||||
thrust::sequence(idxBegin, idxEnd);
|
||||
// Fill the key channel with random numbers between 0 and 10. A counting iterator is used here to give an integer value for each location as an input to prg::operator()
|
||||
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_data.cols), keyBegin, prg(0, 10));
|
||||
// Sort the key channel and index channel such that the keys and indecies stay together
|
||||
thrust::sort_by_key(keyBegin, keyEnd, idxBegin);
|
||||
|
||||
cv::Mat h_idx(d_data);
|
||||
}
|
||||
//! [sort]
|
||||
|
||||
// Randomly fill a row matrix with 100 elements between -1 and 1
|
||||
//! [random]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32F);
|
||||
auto valueBegin = GpuMatBeginItr<float>(d_value);
|
||||
auto valueEnd = GpuMatEndItr<float>(d_value);
|
||||
thrust::transform(thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
|
||||
|
||||
cv::Mat h_value(d_value);
|
||||
}
|
||||
//! [random]
|
||||
|
||||
// OpenCV has count non zero, but what if you want to count a specific value?
|
||||
//! [count_value]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32S);
|
||||
d_value.setTo(cv::Scalar(0));
|
||||
d_value.colRange(10, 50).setTo(cv::Scalar(15));
|
||||
auto count = thrust::count(GpuMatBeginItr<int>(d_value), GpuMatEndItr<int>(d_value), 15);
|
||||
std::cout << count << std::endl;
|
||||
}
|
||||
//! [count_value]
|
||||
|
||||
// Randomly fill an array then copy only values greater than 0. Perform these tasks on a stream.
|
||||
//! [copy_greater]
|
||||
{
|
||||
cv::cuda::GpuMat d_value(1, 100, CV_32F);
|
||||
auto valueBegin = GpuMatBeginItr<float>(d_value);
|
||||
auto valueEnd = GpuMatEndItr<float>(d_value);
|
||||
cv::cuda::Stream stream;
|
||||
//! [random_gen_stream]
|
||||
// Same as the random generation code from before except now the transformation is being performed on a stream
|
||||
thrust::transform(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), thrust::make_counting_iterator(0), thrust::make_counting_iterator(d_value.cols), valueBegin, prg(-1, 1));
|
||||
//! [random_gen_stream]
|
||||
// Count the number of values we are going to copy
|
||||
int count = thrust::count_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, pred_greater<float>(0.0));
|
||||
// Allocate a destination for copied values
|
||||
cv::cuda::GpuMat d_valueGreater(1, count, CV_32F);
|
||||
// Copy values that satisfy the predicate.
|
||||
thrust::copy_if(thrust::system::cuda::par.on(cv::cuda::StreamAccessor::getStream(stream)), valueBegin, valueEnd, GpuMatBeginItr<float>(d_valueGreater), pred_greater<float>(0.0));
|
||||
cv::Mat h_greater(d_valueGreater);
|
||||
}
|
||||
//! [copy_greater]
|
||||
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user