feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
146
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ml/introduction_to_pca/introduction_to_pca.cpp
vendored
Normal file
146
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ml/introduction_to_pca/introduction_to_pca.cpp
vendored
Normal file
@ -0,0 +1,146 @@
|
||||
/**
|
||||
* @file introduction_to_pca.cpp
|
||||
* @brief This program demonstrates how to use OpenCV PCA to extract the orientation of an object
|
||||
* @author OpenCV team
|
||||
*/
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include <iostream>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
// Function declarations
|
||||
void drawAxis(Mat&, Point, Point, Scalar, const float);
|
||||
double getOrientation(const vector<Point> &, Mat&);
|
||||
|
||||
/**
|
||||
* @function drawAxis
|
||||
*/
|
||||
void drawAxis(Mat& img, Point p, Point q, Scalar colour, const float scale = 0.2)
|
||||
{
|
||||
//! [visualization1]
|
||||
double angle = atan2( (double) p.y - q.y, (double) p.x - q.x ); // angle in radians
|
||||
double hypotenuse = sqrt( (double) (p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));
|
||||
|
||||
// Here we lengthen the arrow by a factor of scale
|
||||
q.x = (int) (p.x - scale * hypotenuse * cos(angle));
|
||||
q.y = (int) (p.y - scale * hypotenuse * sin(angle));
|
||||
line(img, p, q, colour, 1, LINE_AA);
|
||||
|
||||
// create the arrow hooks
|
||||
p.x = (int) (q.x + 9 * cos(angle + CV_PI / 4));
|
||||
p.y = (int) (q.y + 9 * sin(angle + CV_PI / 4));
|
||||
line(img, p, q, colour, 1, LINE_AA);
|
||||
|
||||
p.x = (int) (q.x + 9 * cos(angle - CV_PI / 4));
|
||||
p.y = (int) (q.y + 9 * sin(angle - CV_PI / 4));
|
||||
line(img, p, q, colour, 1, LINE_AA);
|
||||
//! [visualization1]
|
||||
}
|
||||
|
||||
/**
|
||||
* @function getOrientation
|
||||
*/
|
||||
double getOrientation(const vector<Point> &pts, Mat &img)
|
||||
{
|
||||
//! [pca]
|
||||
//Construct a buffer used by the pca analysis
|
||||
int sz = static_cast<int>(pts.size());
|
||||
Mat data_pts = Mat(sz, 2, CV_64F);
|
||||
for (int i = 0; i < data_pts.rows; i++)
|
||||
{
|
||||
data_pts.at<double>(i, 0) = pts[i].x;
|
||||
data_pts.at<double>(i, 1) = pts[i].y;
|
||||
}
|
||||
|
||||
//Perform PCA analysis
|
||||
PCA pca_analysis(data_pts, Mat(), PCA::DATA_AS_ROW);
|
||||
|
||||
//Store the center of the object
|
||||
Point cntr = Point(static_cast<int>(pca_analysis.mean.at<double>(0, 0)),
|
||||
static_cast<int>(pca_analysis.mean.at<double>(0, 1)));
|
||||
|
||||
//Store the eigenvalues and eigenvectors
|
||||
vector<Point2d> eigen_vecs(2);
|
||||
vector<double> eigen_val(2);
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0),
|
||||
pca_analysis.eigenvectors.at<double>(i, 1));
|
||||
|
||||
eigen_val[i] = pca_analysis.eigenvalues.at<double>(i);
|
||||
}
|
||||
//! [pca]
|
||||
|
||||
//! [visualization]
|
||||
// Draw the principal components
|
||||
circle(img, cntr, 3, Scalar(255, 0, 255), 2);
|
||||
Point p1 = cntr + 0.02 * Point(static_cast<int>(eigen_vecs[0].x * eigen_val[0]), static_cast<int>(eigen_vecs[0].y * eigen_val[0]));
|
||||
Point p2 = cntr - 0.02 * Point(static_cast<int>(eigen_vecs[1].x * eigen_val[1]), static_cast<int>(eigen_vecs[1].y * eigen_val[1]));
|
||||
drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1);
|
||||
drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5);
|
||||
|
||||
double angle = atan2(eigen_vecs[0].y, eigen_vecs[0].x); // orientation in radians
|
||||
//! [visualization]
|
||||
|
||||
return angle;
|
||||
}
|
||||
|
||||
/**
|
||||
* @function main
|
||||
*/
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
//! [pre-process]
|
||||
// Load image
|
||||
CommandLineParser parser(argc, argv, "{@input | pca_test1.jpg | input image}");
|
||||
parser.about( "This program demonstrates how to use OpenCV PCA to extract the orientation of an object.\n" );
|
||||
parser.printMessage();
|
||||
|
||||
Mat src = imread( samples::findFile( parser.get<String>("@input") ) );
|
||||
|
||||
// Check if image is loaded successfully
|
||||
if(src.empty())
|
||||
{
|
||||
cout << "Problem loading image!!!" << endl;
|
||||
return EXIT_FAILURE;
|
||||
}
|
||||
|
||||
imshow("src", src);
|
||||
|
||||
// Convert image to grayscale
|
||||
Mat gray;
|
||||
cvtColor(src, gray, COLOR_BGR2GRAY);
|
||||
|
||||
// Convert image to binary
|
||||
Mat bw;
|
||||
threshold(gray, bw, 50, 255, THRESH_BINARY | THRESH_OTSU);
|
||||
//! [pre-process]
|
||||
|
||||
//! [contours]
|
||||
// Find all the contours in the thresholded image
|
||||
vector<vector<Point> > contours;
|
||||
findContours(bw, contours, RETR_LIST, CHAIN_APPROX_NONE);
|
||||
|
||||
for (size_t i = 0; i < contours.size(); i++)
|
||||
{
|
||||
// Calculate the area of each contour
|
||||
double area = contourArea(contours[i]);
|
||||
// Ignore contours that are too small or too large
|
||||
if (area < 1e2 || 1e5 < area) continue;
|
||||
|
||||
// Draw each contour only for visualisation purposes
|
||||
drawContours(src, contours, static_cast<int>(i), Scalar(0, 0, 255), 2);
|
||||
// Find the orientation of each shape
|
||||
getOrientation(contours[i], src);
|
||||
}
|
||||
//! [contours]
|
||||
|
||||
imshow("output", src);
|
||||
|
||||
waitKey();
|
||||
return EXIT_SUCCESS;
|
||||
}
|
81
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp
vendored
Normal file
81
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp
vendored
Normal file
@ -0,0 +1,81 @@
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/imgcodecs.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/ml.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
|
||||
int main(int, char**)
|
||||
{
|
||||
// Set up training data
|
||||
//! [setup1]
|
||||
int labels[4] = {1, -1, -1, -1};
|
||||
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
|
||||
//! [setup1]
|
||||
//! [setup2]
|
||||
Mat trainingDataMat(4, 2, CV_32F, trainingData);
|
||||
Mat labelsMat(4, 1, CV_32SC1, labels);
|
||||
//! [setup2]
|
||||
|
||||
// Train the SVM
|
||||
//! [init]
|
||||
Ptr<SVM> svm = SVM::create();
|
||||
svm->setType(SVM::C_SVC);
|
||||
svm->setKernel(SVM::LINEAR);
|
||||
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
|
||||
//! [init]
|
||||
//! [train]
|
||||
svm->train(trainingDataMat, ROW_SAMPLE, labelsMat);
|
||||
//! [train]
|
||||
|
||||
// Data for visual representation
|
||||
int width = 512, height = 512;
|
||||
Mat image = Mat::zeros(height, width, CV_8UC3);
|
||||
|
||||
// Show the decision regions given by the SVM
|
||||
//! [show]
|
||||
Vec3b green(0,255,0), blue(255,0,0);
|
||||
for (int i = 0; i < image.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < image.cols; j++)
|
||||
{
|
||||
Mat sampleMat = (Mat_<float>(1,2) << j,i);
|
||||
float response = svm->predict(sampleMat);
|
||||
|
||||
if (response == 1)
|
||||
image.at<Vec3b>(i,j) = green;
|
||||
else if (response == -1)
|
||||
image.at<Vec3b>(i,j) = blue;
|
||||
}
|
||||
}
|
||||
//! [show]
|
||||
|
||||
// Show the training data
|
||||
//! [show_data]
|
||||
int thickness = -1;
|
||||
circle( image, Point(501, 10), 5, Scalar( 0, 0, 0), thickness );
|
||||
circle( image, Point(255, 10), 5, Scalar(255, 255, 255), thickness );
|
||||
circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness );
|
||||
circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness );
|
||||
//! [show_data]
|
||||
|
||||
// Show support vectors
|
||||
//! [show_vectors]
|
||||
thickness = 2;
|
||||
Mat sv = svm->getUncompressedSupportVectors();
|
||||
|
||||
for (int i = 0; i < sv.rows; i++)
|
||||
{
|
||||
const float* v = sv.ptr<float>(i);
|
||||
circle(image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness);
|
||||
}
|
||||
//! [show_vectors]
|
||||
|
||||
imwrite("result.png", image); // save the image
|
||||
|
||||
imshow("SVM Simple Example", image); // show it to the user
|
||||
waitKey();
|
||||
return 0;
|
||||
}
|
144
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp
vendored
Normal file
144
3rdparty/opencv-4.5.4/samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp
vendored
Normal file
@ -0,0 +1,144 @@
|
||||
#include <iostream>
|
||||
#include <opencv2/core.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/ml.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::ml;
|
||||
using namespace std;
|
||||
|
||||
static void help()
|
||||
{
|
||||
cout<< "\n--------------------------------------------------------------------------" << endl
|
||||
<< "This program shows Support Vector Machines for Non-Linearly Separable Data. " << endl
|
||||
<< "--------------------------------------------------------------------------" << endl
|
||||
<< endl;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
help();
|
||||
|
||||
const int NTRAINING_SAMPLES = 100; // Number of training samples per class
|
||||
const float FRAC_LINEAR_SEP = 0.9f; // Fraction of samples which compose the linear separable part
|
||||
|
||||
// Data for visual representation
|
||||
const int WIDTH = 512, HEIGHT = 512;
|
||||
Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3);
|
||||
|
||||
//--------------------- 1. Set up training data randomly ---------------------------------------
|
||||
Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32F);
|
||||
Mat labels (2*NTRAINING_SAMPLES, 1, CV_32S);
|
||||
|
||||
RNG rng(100); // Random value generation class
|
||||
|
||||
// Set up the linearly separable part of the training data
|
||||
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
|
||||
|
||||
//! [setup1]
|
||||
// Generate random points for the class 1
|
||||
Mat trainClass = trainData.rowRange(0, nLinearSamples);
|
||||
// The x coordinate of the points is in [0, 0.4)
|
||||
Mat c = trainClass.colRange(0, 1);
|
||||
rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(0.4 * WIDTH));
|
||||
// The y coordinate of the points is in [0, 1)
|
||||
c = trainClass.colRange(1,2);
|
||||
rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));
|
||||
|
||||
// Generate random points for the class 2
|
||||
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
|
||||
// The x coordinate of the points is in [0.6, 1]
|
||||
c = trainClass.colRange(0 , 1);
|
||||
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
|
||||
// The y coordinate of the points is in [0, 1)
|
||||
c = trainClass.colRange(1,2);
|
||||
rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));
|
||||
//! [setup1]
|
||||
|
||||
//------------------ Set up the non-linearly separable part of the training data ---------------
|
||||
//! [setup2]
|
||||
// Generate random points for the classes 1 and 2
|
||||
trainClass = trainData.rowRange(nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
|
||||
// The x coordinate of the points is in [0.4, 0.6)
|
||||
c = trainClass.colRange(0,1);
|
||||
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
|
||||
// The y coordinate of the points is in [0, 1)
|
||||
c = trainClass.colRange(1,2);
|
||||
rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));
|
||||
//! [setup2]
|
||||
|
||||
//------------------------- Set up the labels for the classes ---------------------------------
|
||||
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
|
||||
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
|
||||
|
||||
//------------------------ 2. Set up the support vector machines parameters --------------------
|
||||
cout << "Starting training process" << endl;
|
||||
//! [init]
|
||||
Ptr<SVM> svm = SVM::create();
|
||||
svm->setType(SVM::C_SVC);
|
||||
svm->setC(0.1);
|
||||
svm->setKernel(SVM::LINEAR);
|
||||
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6));
|
||||
//! [init]
|
||||
|
||||
//------------------------ 3. Train the svm ----------------------------------------------------
|
||||
//! [train]
|
||||
svm->train(trainData, ROW_SAMPLE, labels);
|
||||
//! [train]
|
||||
cout << "Finished training process" << endl;
|
||||
|
||||
//------------------------ 4. Show the decision regions ----------------------------------------
|
||||
//! [show]
|
||||
Vec3b green(0,100,0), blue(100,0,0);
|
||||
for (int i = 0; i < I.rows; i++)
|
||||
{
|
||||
for (int j = 0; j < I.cols; j++)
|
||||
{
|
||||
Mat sampleMat = (Mat_<float>(1,2) << j, i);
|
||||
float response = svm->predict(sampleMat);
|
||||
|
||||
if (response == 1) I.at<Vec3b>(i,j) = green;
|
||||
else if (response == 2) I.at<Vec3b>(i,j) = blue;
|
||||
}
|
||||
}
|
||||
//! [show]
|
||||
|
||||
//----------------------- 5. Show the training data --------------------------------------------
|
||||
//! [show_data]
|
||||
int thick = -1;
|
||||
float px, py;
|
||||
// Class 1
|
||||
for (int i = 0; i < NTRAINING_SAMPLES; i++)
|
||||
{
|
||||
px = trainData.at<float>(i,0);
|
||||
py = trainData.at<float>(i,1);
|
||||
circle(I, Point( (int) px, (int) py ), 3, Scalar(0, 255, 0), thick);
|
||||
}
|
||||
// Class 2
|
||||
for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; i++)
|
||||
{
|
||||
px = trainData.at<float>(i,0);
|
||||
py = trainData.at<float>(i,1);
|
||||
circle(I, Point( (int) px, (int) py ), 3, Scalar(255, 0, 0), thick);
|
||||
}
|
||||
//! [show_data]
|
||||
|
||||
//------------------------- 6. Show support vectors --------------------------------------------
|
||||
//! [show_vectors]
|
||||
thick = 2;
|
||||
Mat sv = svm->getUncompressedSupportVectors();
|
||||
|
||||
for (int i = 0; i < sv.rows; i++)
|
||||
{
|
||||
const float* v = sv.ptr<float>(i);
|
||||
circle(I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick);
|
||||
}
|
||||
//! [show_vectors]
|
||||
|
||||
imwrite("result.png", I); // save the Image
|
||||
imshow("SVM for Non-Linear Training Data", I); // show it to the user
|
||||
waitKey();
|
||||
return 0;
|
||||
}
|
Reference in New Issue
Block a user