feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,87 @@
/**
* @file bg_sub.cpp
* @brief Background subtraction tutorial sample code
* @author Domenico D. Bloisi
*/
#include <iostream>
#include <sstream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
const char* params
= "{ help h | | Print usage }"
"{ input | vtest.avi | Path to a video or a sequence of image }"
"{ algo | MOG2 | Background subtraction method (KNN, MOG2) }";
int main(int argc, char* argv[])
{
CommandLineParser parser(argc, argv, params);
parser.about( "This program shows how to use background subtraction methods provided by "
" OpenCV. You can process both videos and images.\n" );
if (parser.has("help"))
{
//print help information
parser.printMessage();
}
//! [create]
//create Background Subtractor objects
Ptr<BackgroundSubtractor> pBackSub;
if (parser.get<String>("algo") == "MOG2")
pBackSub = createBackgroundSubtractorMOG2();
else
pBackSub = createBackgroundSubtractorKNN();
//! [create]
//! [capture]
VideoCapture capture( samples::findFile( parser.get<String>("input") ) );
if (!capture.isOpened()){
//error in opening the video input
cerr << "Unable to open: " << parser.get<String>("input") << endl;
return 0;
}
//! [capture]
Mat frame, fgMask;
while (true) {
capture >> frame;
if (frame.empty())
break;
//! [apply]
//update the background model
pBackSub->apply(frame, fgMask);
//! [apply]
//! [display_frame_number]
//get the frame number and write it on the current frame
rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
cv::Scalar(255,255,255), -1);
stringstream ss;
ss << capture.get(CAP_PROP_POS_FRAMES);
string frameNumberString = ss.str();
putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
//! [display_frame_number]
//! [show]
//show the current frame and the fg masks
imshow("Frame", frame);
imshow("FG Mask", fgMask);
//! [show]
//get the input from the keyboard
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
break;
}
return 0;
}

View File

@ -0,0 +1,86 @@
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
const string about =
"This sample demonstrates the camshift algorithm.\n"
"The example file can be downloaded from:\n"
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
const string keys =
"{ h help | | print this help message }"
"{ @image |<none>| path to image file }";
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string filename = parser.get<string>("@image");
if (!parser.check())
{
parser.printErrors();
return 0;
}
VideoCapture capture(filename);
if (!capture.isOpened()){
//error in opening the video input
cerr << "Unable to open file!" << endl;
return 0;
}
Mat frame, roi, hsv_roi, mask;
// take first frame of the video
capture >> frame;
// setup initial location of window
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
// set up the ROI for tracking
roi = frame(track_window);
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);
float range_[] = {0, 180};
const float* range[] = {range_};
Mat roi_hist;
int histSize[] = {180};
int channels[] = {0};
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
while(true){
Mat hsv, dst;
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, hsv, COLOR_BGR2HSV);
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
// apply camshift to get the new location
RotatedRect rot_rect = CamShift(dst, track_window, term_crit);
// Draw it on image
Point2f points[4];
rot_rect.points(points);
for (int i = 0; i < 4; i++)
line(frame, points[i], points[(i+1)%4], 255, 2);
imshow("img2", frame);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
break;
}
}

View File

@ -0,0 +1,83 @@
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
const string about =
"This sample demonstrates the meanshift algorithm.\n"
"The example file can be downloaded from:\n"
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
const string keys =
"{ h help | | print this help message }"
"{ @image |<none>| path to image file }";
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string filename = parser.get<string>("@image");
if (!parser.check())
{
parser.printErrors();
return 0;
}
VideoCapture capture(filename);
if (!capture.isOpened()){
//error in opening the video input
cerr << "Unable to open file!" << endl;
return 0;
}
Mat frame, roi, hsv_roi, mask;
// take first frame of the video
capture >> frame;
// setup initial location of window
Rect track_window(300, 200, 100, 50); // simply hardcoded the values
// set up the ROI for tracking
roi = frame(track_window);
cvtColor(roi, hsv_roi, COLOR_BGR2HSV);
inRange(hsv_roi, Scalar(0, 60, 32), Scalar(180, 255, 255), mask);
float range_[] = {0, 180};
const float* range[] = {range_};
Mat roi_hist;
int histSize[] = {180};
int channels[] = {0};
calcHist(&hsv_roi, 1, channels, mask, roi_hist, 1, histSize, range);
normalize(roi_hist, roi_hist, 0, 255, NORM_MINMAX);
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
TermCriteria term_crit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1);
while(true){
Mat hsv, dst;
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, hsv, COLOR_BGR2HSV);
calcBackProject(&hsv, 1, channels, roi_hist, dst, range);
// apply meanshift to get the new location
meanShift(dst, track_window, term_crit);
// Draw it on image
rectangle(frame, track_window, 255, 2);
imshow("img2", frame);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
break;
}
}

View File

@ -0,0 +1,101 @@
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
int main(int argc, char **argv)
{
const string about =
"This sample demonstrates Lucas-Kanade Optical Flow calculation.\n"
"The example file can be downloaded from:\n"
" https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4";
const string keys =
"{ h help | | print this help message }"
"{ @image | vtest.avi | path to image file }";
CommandLineParser parser(argc, argv, keys);
parser.about(about);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
string filename = samples::findFile(parser.get<string>("@image"));
if (!parser.check())
{
parser.printErrors();
return 0;
}
VideoCapture capture(filename);
if (!capture.isOpened()){
//error in opening the video input
cerr << "Unable to open file!" << endl;
return 0;
}
// Create some random colors
vector<Scalar> colors;
RNG rng;
for(int i = 0; i < 100; i++)
{
int r = rng.uniform(0, 256);
int g = rng.uniform(0, 256);
int b = rng.uniform(0, 256);
colors.push_back(Scalar(r,g,b));
}
Mat old_frame, old_gray;
vector<Point2f> p0, p1;
// Take first frame and find corners in it
capture >> old_frame;
cvtColor(old_frame, old_gray, COLOR_BGR2GRAY);
goodFeaturesToTrack(old_gray, p0, 100, 0.3, 7, Mat(), 7, false, 0.04);
// Create a mask image for drawing purposes
Mat mask = Mat::zeros(old_frame.size(), old_frame.type());
while(true){
Mat frame, frame_gray;
capture >> frame;
if (frame.empty())
break;
cvtColor(frame, frame_gray, COLOR_BGR2GRAY);
// calculate optical flow
vector<uchar> status;
vector<float> err;
TermCriteria criteria = TermCriteria((TermCriteria::COUNT) + (TermCriteria::EPS), 10, 0.03);
calcOpticalFlowPyrLK(old_gray, frame_gray, p0, p1, status, err, Size(15,15), 2, criteria);
vector<Point2f> good_new;
for(uint i = 0; i < p0.size(); i++)
{
// Select good points
if(status[i] == 1) {
good_new.push_back(p1[i]);
// draw the tracks
line(mask,p1[i], p0[i], colors[i], 2);
circle(frame, p1[i], 5, colors[i], -1);
}
}
Mat img;
add(frame, mask, img);
imshow("Frame", img);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
break;
// Now update the previous frame and previous points
old_gray = frame_gray.clone();
p0 = good_new;
}
}

View File

@ -0,0 +1,59 @@
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/videoio.hpp>
#include <opencv2/video.hpp>
using namespace cv;
using namespace std;
int main()
{
VideoCapture capture(samples::findFile("vtest.avi"));
if (!capture.isOpened()){
//error in opening the video input
cerr << "Unable to open file!" << endl;
return 0;
}
Mat frame1, prvs;
capture >> frame1;
cvtColor(frame1, prvs, COLOR_BGR2GRAY);
while(true){
Mat frame2, next;
capture >> frame2;
if (frame2.empty())
break;
cvtColor(frame2, next, COLOR_BGR2GRAY);
Mat flow(prvs.size(), CV_32FC2);
calcOpticalFlowFarneback(prvs, next, flow, 0.5, 3, 15, 3, 5, 1.2, 0);
// visualization
Mat flow_parts[2];
split(flow, flow_parts);
Mat magnitude, angle, magn_norm;
cartToPolar(flow_parts[0], flow_parts[1], magnitude, angle, true);
normalize(magnitude, magn_norm, 0.0f, 1.0f, NORM_MINMAX);
angle *= ((1.f / 360.f) * (180.f / 255.f));
//build hsv image
Mat _hsv[3], hsv, hsv8, bgr;
_hsv[0] = angle;
_hsv[1] = Mat::ones(angle.size(), CV_32F);
_hsv[2] = magn_norm;
merge(_hsv, 3, hsv);
hsv.convertTo(hsv8, CV_8U, 255.0);
cvtColor(hsv8, bgr, COLOR_HSV2BGR);
imshow("frame2", bgr);
int keyboard = waitKey(30);
if (keyboard == 'q' || keyboard == 27)
break;
prvs = next;
}
}