feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
297
3rdparty/opencv-4.5.4/samples/dnn/tf_text_graph_mask_rcnn.py
vendored
Normal file
297
3rdparty/opencv-4.5.4/samples/dnn/tf_text_graph_mask_rcnn.py
vendored
Normal file
@ -0,0 +1,297 @@
|
||||
import argparse
|
||||
import numpy as np
|
||||
from tf_text_graph_common import *
|
||||
|
||||
parser = argparse.ArgumentParser(description='Run this script to get a text graph of '
|
||||
'Mask-RCNN model from TensorFlow Object Detection API. '
|
||||
'Then pass it with .pb file to cv::dnn::readNetFromTensorflow function.')
|
||||
parser.add_argument('--input', required=True, help='Path to frozen TensorFlow graph.')
|
||||
parser.add_argument('--output', required=True, help='Path to output text graph.')
|
||||
parser.add_argument('--config', required=True, help='Path to a *.config file is used for training.')
|
||||
args = parser.parse_args()
|
||||
|
||||
scopesToKeep = ('FirstStageFeatureExtractor', 'Conv',
|
||||
'FirstStageBoxPredictor/BoxEncodingPredictor',
|
||||
'FirstStageBoxPredictor/ClassPredictor',
|
||||
'CropAndResize',
|
||||
'MaxPool2D',
|
||||
'SecondStageFeatureExtractor',
|
||||
'SecondStageBoxPredictor',
|
||||
'Preprocessor/sub',
|
||||
'Preprocessor/mul',
|
||||
'image_tensor')
|
||||
|
||||
scopesToIgnore = ('FirstStageFeatureExtractor/Assert',
|
||||
'FirstStageFeatureExtractor/Shape',
|
||||
'FirstStageFeatureExtractor/strided_slice',
|
||||
'FirstStageFeatureExtractor/GreaterEqual',
|
||||
'FirstStageFeatureExtractor/LogicalAnd',
|
||||
'Conv/required_space_to_batch_paddings')
|
||||
|
||||
# Load a config file.
|
||||
config = readTextMessage(args.config)
|
||||
config = config['model'][0]['faster_rcnn'][0]
|
||||
num_classes = int(config['num_classes'][0])
|
||||
|
||||
grid_anchor_generator = config['first_stage_anchor_generator'][0]['grid_anchor_generator'][0]
|
||||
scales = [float(s) for s in grid_anchor_generator['scales']]
|
||||
aspect_ratios = [float(ar) for ar in grid_anchor_generator['aspect_ratios']]
|
||||
width_stride = float(grid_anchor_generator['width_stride'][0])
|
||||
height_stride = float(grid_anchor_generator['height_stride'][0])
|
||||
features_stride = float(config['feature_extractor'][0]['first_stage_features_stride'][0])
|
||||
first_stage_nms_iou_threshold = float(config['first_stage_nms_iou_threshold'][0])
|
||||
first_stage_max_proposals = int(config['first_stage_max_proposals'][0])
|
||||
|
||||
print('Number of classes: %d' % num_classes)
|
||||
print('Scales: %s' % str(scales))
|
||||
print('Aspect ratios: %s' % str(aspect_ratios))
|
||||
print('Width stride: %f' % width_stride)
|
||||
print('Height stride: %f' % height_stride)
|
||||
print('Features stride: %f' % features_stride)
|
||||
|
||||
# Read the graph.
|
||||
writeTextGraph(args.input, args.output, ['num_detections', 'detection_scores', 'detection_boxes', 'detection_classes', 'detection_masks'])
|
||||
graph_def = parseTextGraph(args.output)
|
||||
|
||||
removeIdentity(graph_def)
|
||||
|
||||
nodesToKeep = []
|
||||
def to_remove(name, op):
|
||||
if name in nodesToKeep:
|
||||
return False
|
||||
return op == 'Const' or name.startswith(scopesToIgnore) or not name.startswith(scopesToKeep) or \
|
||||
(name.startswith('CropAndResize') and op != 'CropAndResize')
|
||||
|
||||
# Fuse atrous convolutions (with dilations).
|
||||
nodesMap = {node.name: node for node in graph_def.node}
|
||||
for node in reversed(graph_def.node):
|
||||
if node.op == 'BatchToSpaceND':
|
||||
del node.input[2]
|
||||
conv = nodesMap[node.input[0]]
|
||||
spaceToBatchND = nodesMap[conv.input[0]]
|
||||
|
||||
paddingsNode = NodeDef()
|
||||
paddingsNode.name = conv.name + '/paddings'
|
||||
paddingsNode.op = 'Const'
|
||||
paddingsNode.addAttr('value', [2, 2, 2, 2])
|
||||
graph_def.node.insert(graph_def.node.index(spaceToBatchND), paddingsNode)
|
||||
nodesToKeep.append(paddingsNode.name)
|
||||
|
||||
spaceToBatchND.input[2] = paddingsNode.name
|
||||
|
||||
removeUnusedNodesAndAttrs(to_remove, graph_def)
|
||||
|
||||
|
||||
# Connect input node to the first layer
|
||||
assert(graph_def.node[0].op == 'Placeholder')
|
||||
graph_def.node[1].input.insert(0, graph_def.node[0].name)
|
||||
|
||||
# Temporarily remove top nodes.
|
||||
topNodes = []
|
||||
numCropAndResize = 0
|
||||
while True:
|
||||
node = graph_def.node.pop()
|
||||
topNodes.append(node)
|
||||
if node.op == 'CropAndResize':
|
||||
numCropAndResize += 1
|
||||
if numCropAndResize == 2:
|
||||
break
|
||||
|
||||
addReshape('FirstStageBoxPredictor/ClassPredictor/BiasAdd',
|
||||
'FirstStageBoxPredictor/ClassPredictor/reshape_1', [0, -1, 2], graph_def)
|
||||
|
||||
addSoftMax('FirstStageBoxPredictor/ClassPredictor/reshape_1',
|
||||
'FirstStageBoxPredictor/ClassPredictor/softmax', graph_def) # Compare with Reshape_4
|
||||
|
||||
addFlatten('FirstStageBoxPredictor/ClassPredictor/softmax',
|
||||
'FirstStageBoxPredictor/ClassPredictor/softmax/flatten', graph_def)
|
||||
|
||||
# Compare with FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd
|
||||
addFlatten('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd',
|
||||
'FirstStageBoxPredictor/BoxEncodingPredictor/flatten', graph_def)
|
||||
|
||||
proposals = NodeDef()
|
||||
proposals.name = 'proposals' # Compare with ClipToWindow/Gather/Gather (NOTE: normalized)
|
||||
proposals.op = 'PriorBox'
|
||||
proposals.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/BiasAdd')
|
||||
proposals.input.append(graph_def.node[0].name) # image_tensor
|
||||
|
||||
proposals.addAttr('flip', False)
|
||||
proposals.addAttr('clip', True)
|
||||
proposals.addAttr('step', features_stride)
|
||||
proposals.addAttr('offset', 0.0)
|
||||
proposals.addAttr('variance', [0.1, 0.1, 0.2, 0.2])
|
||||
|
||||
widths = []
|
||||
heights = []
|
||||
for a in aspect_ratios:
|
||||
for s in scales:
|
||||
ar = np.sqrt(a)
|
||||
heights.append((height_stride**2) * s / ar)
|
||||
widths.append((width_stride**2) * s * ar)
|
||||
|
||||
proposals.addAttr('width', widths)
|
||||
proposals.addAttr('height', heights)
|
||||
|
||||
graph_def.node.extend([proposals])
|
||||
|
||||
# Compare with Reshape_5
|
||||
detectionOut = NodeDef()
|
||||
detectionOut.name = 'detection_out'
|
||||
detectionOut.op = 'DetectionOutput'
|
||||
|
||||
detectionOut.input.append('FirstStageBoxPredictor/BoxEncodingPredictor/flatten')
|
||||
detectionOut.input.append('FirstStageBoxPredictor/ClassPredictor/softmax/flatten')
|
||||
detectionOut.input.append('proposals')
|
||||
|
||||
detectionOut.addAttr('num_classes', 2)
|
||||
detectionOut.addAttr('share_location', True)
|
||||
detectionOut.addAttr('background_label_id', 0)
|
||||
detectionOut.addAttr('nms_threshold', first_stage_nms_iou_threshold)
|
||||
detectionOut.addAttr('top_k', 6000)
|
||||
detectionOut.addAttr('code_type', "CENTER_SIZE")
|
||||
detectionOut.addAttr('keep_top_k', first_stage_max_proposals)
|
||||
detectionOut.addAttr('clip', True)
|
||||
|
||||
graph_def.node.extend([detectionOut])
|
||||
|
||||
# Save as text.
|
||||
cropAndResizeNodesNames = []
|
||||
for node in reversed(topNodes):
|
||||
if node.op != 'CropAndResize':
|
||||
graph_def.node.extend([node])
|
||||
topNodes.pop()
|
||||
else:
|
||||
cropAndResizeNodesNames.append(node.name)
|
||||
if numCropAndResize == 1:
|
||||
break
|
||||
else:
|
||||
graph_def.node.extend([node])
|
||||
topNodes.pop()
|
||||
numCropAndResize -= 1
|
||||
|
||||
addSoftMax('SecondStageBoxPredictor/Reshape_1', 'SecondStageBoxPredictor/Reshape_1/softmax', graph_def)
|
||||
|
||||
addSlice('SecondStageBoxPredictor/Reshape_1/softmax',
|
||||
'SecondStageBoxPredictor/Reshape_1/slice',
|
||||
[0, 0, 1], [-1, -1, -1], graph_def)
|
||||
|
||||
addReshape('SecondStageBoxPredictor/Reshape_1/slice',
|
||||
'SecondStageBoxPredictor/Reshape_1/Reshape', [1, -1], graph_def)
|
||||
|
||||
# Replace Flatten subgraph onto a single node.
|
||||
for i in reversed(range(len(graph_def.node))):
|
||||
if graph_def.node[i].op == 'CropAndResize':
|
||||
graph_def.node[i].input.insert(1, 'detection_out')
|
||||
|
||||
if graph_def.node[i].name == 'SecondStageBoxPredictor/Reshape':
|
||||
addConstNode('SecondStageBoxPredictor/Reshape/shape2', [1, -1, 4], graph_def)
|
||||
|
||||
graph_def.node[i].input.pop()
|
||||
graph_def.node[i].input.append('SecondStageBoxPredictor/Reshape/shape2')
|
||||
|
||||
if graph_def.node[i].name in ['SecondStageBoxPredictor/Flatten/flatten/Shape',
|
||||
'SecondStageBoxPredictor/Flatten/flatten/strided_slice',
|
||||
'SecondStageBoxPredictor/Flatten/flatten/Reshape/shape',
|
||||
'SecondStageBoxPredictor/Flatten_1/flatten/Shape',
|
||||
'SecondStageBoxPredictor/Flatten_1/flatten/strided_slice',
|
||||
'SecondStageBoxPredictor/Flatten_1/flatten/Reshape/shape']:
|
||||
del graph_def.node[i]
|
||||
|
||||
for node in graph_def.node:
|
||||
if node.name == 'SecondStageBoxPredictor/Flatten/flatten/Reshape' or \
|
||||
node.name == 'SecondStageBoxPredictor/Flatten_1/flatten/Reshape':
|
||||
node.op = 'Flatten'
|
||||
node.input.pop()
|
||||
|
||||
if node.name in ['FirstStageBoxPredictor/BoxEncodingPredictor/Conv2D',
|
||||
'SecondStageBoxPredictor/BoxEncodingPredictor/MatMul']:
|
||||
node.addAttr('loc_pred_transposed', True)
|
||||
|
||||
if node.name.startswith('MaxPool2D'):
|
||||
assert(node.op == 'MaxPool')
|
||||
assert(len(cropAndResizeNodesNames) == 2)
|
||||
node.input = [cropAndResizeNodesNames[0]]
|
||||
del cropAndResizeNodesNames[0]
|
||||
|
||||
################################################################################
|
||||
### Postprocessing
|
||||
################################################################################
|
||||
addSlice('detection_out', 'detection_out/slice', [0, 0, 0, 3], [-1, -1, -1, 4], graph_def)
|
||||
|
||||
variance = NodeDef()
|
||||
variance.name = 'proposals/variance'
|
||||
variance.op = 'Const'
|
||||
variance.addAttr('value', [0.1, 0.1, 0.2, 0.2])
|
||||
graph_def.node.extend([variance])
|
||||
|
||||
varianceEncoder = NodeDef()
|
||||
varianceEncoder.name = 'variance_encoded'
|
||||
varianceEncoder.op = 'Mul'
|
||||
varianceEncoder.input.append('SecondStageBoxPredictor/Reshape')
|
||||
varianceEncoder.input.append(variance.name)
|
||||
varianceEncoder.addAttr('axis', 2)
|
||||
graph_def.node.extend([varianceEncoder])
|
||||
|
||||
addReshape('detection_out/slice', 'detection_out/slice/reshape', [1, 1, -1], graph_def)
|
||||
addFlatten('variance_encoded', 'variance_encoded/flatten', graph_def)
|
||||
|
||||
detectionOut = NodeDef()
|
||||
detectionOut.name = 'detection_out_final'
|
||||
detectionOut.op = 'DetectionOutput'
|
||||
|
||||
detectionOut.input.append('variance_encoded/flatten')
|
||||
detectionOut.input.append('SecondStageBoxPredictor/Reshape_1/Reshape')
|
||||
detectionOut.input.append('detection_out/slice/reshape')
|
||||
|
||||
detectionOut.addAttr('num_classes', num_classes)
|
||||
detectionOut.addAttr('share_location', False)
|
||||
detectionOut.addAttr('background_label_id', num_classes + 1)
|
||||
detectionOut.addAttr('nms_threshold', 0.6)
|
||||
detectionOut.addAttr('code_type', "CENTER_SIZE")
|
||||
detectionOut.addAttr('keep_top_k',100)
|
||||
detectionOut.addAttr('clip', True)
|
||||
detectionOut.addAttr('variance_encoded_in_target', True)
|
||||
detectionOut.addAttr('confidence_threshold', 0.3)
|
||||
detectionOut.addAttr('group_by_classes', False)
|
||||
graph_def.node.extend([detectionOut])
|
||||
|
||||
for node in reversed(topNodes):
|
||||
graph_def.node.extend([node])
|
||||
|
||||
if node.name.startswith('MaxPool2D'):
|
||||
assert(node.op == 'MaxPool')
|
||||
assert(len(cropAndResizeNodesNames) == 1)
|
||||
node.input = [cropAndResizeNodesNames[0]]
|
||||
|
||||
for i in reversed(range(len(graph_def.node))):
|
||||
if graph_def.node[i].op == 'CropAndResize':
|
||||
graph_def.node[i].input.insert(1, 'detection_out_final')
|
||||
break
|
||||
|
||||
graph_def.node[-1].name = 'detection_masks'
|
||||
graph_def.node[-1].op = 'Sigmoid'
|
||||
graph_def.node[-1].input.pop()
|
||||
|
||||
def getUnconnectedNodes():
|
||||
unconnected = [node.name for node in graph_def.node]
|
||||
for node in graph_def.node:
|
||||
for inp in node.input:
|
||||
if inp in unconnected:
|
||||
unconnected.remove(inp)
|
||||
return unconnected
|
||||
|
||||
while True:
|
||||
unconnectedNodes = getUnconnectedNodes()
|
||||
unconnectedNodes.remove(graph_def.node[-1].name)
|
||||
if not unconnectedNodes:
|
||||
break
|
||||
|
||||
for name in unconnectedNodes:
|
||||
for i in range(len(graph_def.node)):
|
||||
if graph_def.node[i].name == name:
|
||||
del graph_def.node[i]
|
||||
break
|
||||
|
||||
# Save as text.
|
||||
graph_def.save(args.output)
|
Reference in New Issue
Block a user