feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake
1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试 2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程 3.重整权利声明文件,重整代码工程,确保最小化侵权风险 Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
95
3rdparty/opencv-4.5.4/samples/gpu/multi.cpp
vendored
Normal file
95
3rdparty/opencv-4.5.4/samples/gpu/multi.cpp
vendored
Normal file
@ -0,0 +1,95 @@
|
||||
/* This sample demonstrates the way you can perform independent tasks
|
||||
on the different GPUs */
|
||||
|
||||
// Disable some warnings which are caused with CUDA headers
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4201 4408 4100)
|
||||
#endif
|
||||
|
||||
#include <iostream>
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/cudaarithm.hpp"
|
||||
|
||||
#if !defined(HAVE_CUDA)
|
||||
|
||||
int main()
|
||||
{
|
||||
std::cout << "CUDA support is required (OpenCV CMake parameter 'WITH_CUDA' must be true)." << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::cuda;
|
||||
|
||||
struct Worker : public cv::ParallelLoopBody
|
||||
{
|
||||
void operator()(const Range& r) const CV_OVERRIDE
|
||||
{
|
||||
for (int i = r.start; i < r.end; ++i) { this->operator()(i); }
|
||||
}
|
||||
void operator()(int device_id) const;
|
||||
};
|
||||
|
||||
int main()
|
||||
{
|
||||
int num_devices = getCudaEnabledDeviceCount();
|
||||
if (num_devices < 2)
|
||||
{
|
||||
std::cout << "Two or more GPUs are required\n";
|
||||
return -1;
|
||||
}
|
||||
for (int i = 0; i < num_devices; ++i)
|
||||
{
|
||||
cv::cuda::printShortCudaDeviceInfo(i);
|
||||
|
||||
DeviceInfo dev_info(i);
|
||||
if (!dev_info.isCompatible())
|
||||
{
|
||||
std::cout << "CUDA module isn't built for GPU #" << i << " ("
|
||||
<< dev_info.name() << ", CC " << dev_info.majorVersion()
|
||||
<< dev_info.minorVersion() << "\n";
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
// Execute calculation in two threads using two GPUs
|
||||
cv::Range devices(0, 2);
|
||||
cv::parallel_for_(devices, Worker(), devices.size());
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
void Worker::operator()(int device_id) const
|
||||
{
|
||||
setDevice(device_id);
|
||||
|
||||
Mat src(1000, 1000, CV_32F);
|
||||
Mat dst;
|
||||
|
||||
RNG rng(0);
|
||||
rng.fill(src, RNG::UNIFORM, 0, 1);
|
||||
|
||||
// CPU works
|
||||
cv::transpose(src, dst);
|
||||
|
||||
// GPU works
|
||||
GpuMat d_src(src);
|
||||
GpuMat d_dst;
|
||||
cuda::transpose(d_src, d_dst);
|
||||
|
||||
// Check results
|
||||
bool passed = cv::norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
|
||||
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
|
||||
<< (passed ? "passed" : "FAILED") << endl;
|
||||
|
||||
// Deallocate data here, otherwise deallocation will be performed
|
||||
// after context is extracted from the stack
|
||||
d_src.release();
|
||||
d_dst.release();
|
||||
}
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user