feat: 切换后端至PaddleOCR-NCNN,切换工程为CMake

1.项目后端整体迁移至PaddleOCR-NCNN算法,已通过基本的兼容性测试
2.工程改为使用CMake组织,后续为了更好地兼容第三方库,不再提供QMake工程
3.重整权利声明文件,重整代码工程,确保最小化侵权风险

Log: 切换后端至PaddleOCR-NCNN,切换工程为CMake
Change-Id: I4d5d2c5d37505a4a24b389b1a4c5d12f17bfa38c
This commit is contained in:
wangzhengyang
2022-05-10 09:54:44 +08:00
parent ecdd171c6f
commit 718c41634f
10018 changed files with 3593797 additions and 186748 deletions

View File

@ -0,0 +1,49 @@
<project name="SimpleSample" basedir="." default="rebuild-run">
<property name="src.dir" value="src"/>
<property name="lib.dir" value="${ocvJarDir}"/>
<path id="classpath">
<fileset dir="${lib.dir}" includes="**/*.jar"/>
</path>
<property name="build.dir" value="build"/>
<property name="classes.dir" value="${build.dir}/classes"/>
<property name="jar.dir" value="${build.dir}/jar"/>
<property name="main-class" value="${ant.project.name}"/>
<target name="clean">
<delete dir="${build.dir}"/>
</target>
<target name="compile">
<mkdir dir="${classes.dir}"/>
<javac includeantruntime="false" srcdir="${src.dir}" destdir="${classes.dir}" classpathref="classpath"/>
</target>
<target name="jar" depends="compile">
<mkdir dir="${jar.dir}"/>
<jar destfile="${jar.dir}/${ant.project.name}.jar" basedir="${classes.dir}">
<manifest>
<attribute name="Main-Class" value="${main-class}"/>
</manifest>
</jar>
</target>
<target name="run" depends="jar">
<java fork="true" classname="${main-class}">
<sysproperty key="java.library.path" path="${ocvLibDir}"/>
<classpath>
<path refid="classpath"/>
<path location="${jar.dir}/${ant.project.name}.jar"/>
</classpath>
</java>
</target>
<target name="rebuild" depends="clean,jar"/>
<target name="rebuild-run" depends="clean,run"/>
</project>

View File

@ -0,0 +1,21 @@
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.CvType;
import org.opencv.core.Scalar;
class SimpleSample {
static{ System.loadLibrary(Core.NATIVE_LIBRARY_NAME); }
public static void main(String[] args) {
System.out.println("Welcome to OpenCV " + Core.VERSION);
Mat m = new Mat(5, 10, CvType.CV_8UC1, new Scalar(0));
System.out.println("OpenCV Mat: " + m);
Mat mr1 = m.row(1);
mr1.setTo(new Scalar(1));
Mat mc5 = m.col(5);
mc5.setTo(new Scalar(5));
System.out.println("OpenCV Mat data:\n" + m.dump());
}
}

View File

@ -0,0 +1,14 @@
(defproject simple-sample "0.1.0-SNAPSHOT"
:pom-addition [:developers [:developer {:id "magomimmo"}
[:name "Mimmo Cosenza"]
[:url "https://github.com/magomimmoo"]]]
:description "A simple project to start REPLing with OpenCV"
:url "http://example.com/FIXME"
:license {:name "Apache 2.0 License"
:url "https://www.apache.org/licenses/LICENSE-2.0"}
:dependencies [[org.clojure/clojure "1.5.1"]
[opencv/opencv "2.4.7"]
[opencv/opencv-native "2.4.7"]]
:main simple-sample.core
:injections [(clojure.lang.RT/loadLibrary org.opencv.core.Core/NATIVE_LIBRARY_NAME)])

View File

@ -0,0 +1,16 @@
;;; to run this code from the terminal: "$ lein run". It will save a
;;; blurred image version of resources/images/lena.png as
;;; resources/images/blurred.png
(ns simple-sample.core
(:import [org.opencv.core Point Rect Mat CvType Size Scalar]
org.opencv.imgcodecs.Imgcodecs
org.opencv.imgproc.Imgproc))
(defn -main [& args]
(let [lena (Imgcodecs/imread "resources/images/lena.png")
blurred (Mat. 512 512 CvType/CV_8UC3)]
(print "Blurring...")
(Imgproc/GaussianBlur lena blurred (Size. 5 5) 3 3)
(Imgcodecs/imwrite "resources/images/blurred.png" blurred)
(println "done!")))

View File

@ -0,0 +1,7 @@
(ns simple-sample.core-test
(:require [clojure.test :refer :all]
[simple-sample.core :refer :all]))
(deftest a-test
(testing "FIXME, I fail."
(is (= 0 1))))

View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<classpath>
<classpathentry kind="src" path="src"/>
<classpathentry kind="con" path="org.eclipse.jdt.launching.JRE_CONTAINER/org.eclipse.jdt.internal.debug.ui.launcher.StandardVMType/JavaSE-1.7"/>
<classpathentry kind="con" path="org.eclipse.jdt.USER_LIBRARY/opencv-2.4.4"/>
<classpathentry kind="output" path="bin"/>
</classpath>

View File

@ -0,0 +1,17 @@
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>HelloCV</name>
<comment></comment>
<projects>
</projects>
<buildSpec>
<buildCommand>
<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.jdt.core.javanature</nature>
</natures>
</projectDescription>

View File

@ -0,0 +1,11 @@
eclipse.preferences.version=1
org.eclipse.jdt.core.compiler.codegen.inlineJsrBytecode=enabled
org.eclipse.jdt.core.compiler.codegen.targetPlatform=1.7
org.eclipse.jdt.core.compiler.codegen.unusedLocal=preserve
org.eclipse.jdt.core.compiler.compliance=1.7
org.eclipse.jdt.core.compiler.debug.lineNumber=generate
org.eclipse.jdt.core.compiler.debug.localVariable=generate
org.eclipse.jdt.core.compiler.debug.sourceFile=generate
org.eclipse.jdt.core.compiler.problem.assertIdentifier=error
org.eclipse.jdt.core.compiler.problem.enumIdentifier=error
org.eclipse.jdt.core.compiler.source=1.7

View File

@ -0,0 +1,14 @@
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
public class Main {
public static void main(String[] args) {
System.out.println("Welcome to OpenCV " + Core.VERSION);
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Mat m = Mat.eye(3, 3, CvType.CV_8UC1);
System.out.println("m = " + m.dump());
}
}

View File

@ -0,0 +1,23 @@
import org.opencv.core.Core;
class opencv_version {
static { System.loadLibrary(Core.NATIVE_LIBRARY_NAME); }
public static void main(String[] args) {
if ((1==args.length) && (0==args[0].compareTo("--build"))) {
System.out.println(Core.getBuildInformation());
} else
if ((1==args.length) && (0==args[0].compareTo("--help"))) {
System.out.println("\t--build\n\t\tprint complete build info");
System.out.println("\t--help\n\t\tprint this help");
} else {
System.out.println("Welcome to OpenCV " + Core.VERSION);
}
}
}

View File

@ -0,0 +1,13 @@
A demo of the Java wrapper for OpenCV with two examples:
1) feature detection and matching and
2) face detection.
The examples are coded in Scala and Java.
Anyone familiar with Java should be able to read the Scala examples.
Please feel free to contribute code examples in Scala or Java, or any JVM language.
To run the examples:
1) Install OpenCV and copy the OpenCV jar to lib/.
This jar must match the native libraries installed in your system.
If this isn't the case, you may get a java.lang.UnsatisfiedLinkError at runtime.
2) Go to the root directory and type "sbt/sbt run".
This should generate images in your current directory.

View File

@ -0,0 +1,22 @@
import sbt._
import Keys._
object OpenCVJavaDemoBuild extends Build {
def scalaSettings = Seq(
scalaVersion := "2.10.0",
scalacOptions ++= Seq(
"-optimize",
"-unchecked",
"-deprecation"
)
)
def buildSettings =
Project.defaultSettings ++
scalaSettings
lazy val root = {
val settings = buildSettings ++ Seq(name := "OpenCVJavaDemo")
Project(id = "OpenCVJavaDemo", base = file("."), settings = settings)
}
}

View File

@ -0,0 +1 @@
addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "4.0.0")

View File

@ -0,0 +1 @@
java -Xms512M -Xmx1536M -Xss1M -XX:+CMSClassUnloadingEnabled -XX:MaxPermSize=384M -jar `dirname $0`/sbt-launch.jar "$@"

Binary file not shown.

View File

@ -0,0 +1,45 @@
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
/*
* Detects faces in an image, draws boxes around them, and writes the results
* to "faceDetection.png".
*/
public class DetectFaceDemo {
public void run() {
System.out.println("\nRunning DetectFaceDemo");
// Create a face detector from the cascade file in the resources
// directory.
CascadeClassifier faceDetector = new CascadeClassifier(getClass()
.getResource("/lbpcascade_frontalface.xml").getPath());
Mat image = Imgcodecs.imread(getClass().getResource(
"/AverageMaleFace.jpg").getPath());
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect();
faceDetector.detectMultiScale(image, faceDetections);
System.out.println(String.format("Detected %s faces",
faceDetections.toArray().length));
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray()) {
Imgproc.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x
+ rect.width, rect.y + rect.height), new Scalar(0, 255, 0));
}
// Save the visualized detection.
String filename = "faceDetection.png";
System.out.println(String.format("Writing %s", filename));
Imgcodecs.imwrite(filename, image);
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 272 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 278 KiB

View File

@ -0,0 +1,23 @@
/*
* The main runner for the Java demos.
* Demos whose name begins with "Scala" are written in the Scala language,
* demonstrating the generic nature of the interface.
* The other demos are in Java.
* Currently, all demos are run, sequentially.
*
* You're invited to submit your own examples, in any JVM language of
* your choosing so long as you can get them to build.
*/
import org.opencv.core.Core
object Main extends App {
// We must load the native library before using any OpenCV functions.
// You must load this library _exactly once_ per Java invocation.
// If you load it more than once, you will get a java.lang.UnsatisfiedLinkError.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME)
ScalaCorrespondenceMatchingDemo.run()
ScalaDetectFaceDemo.run()
new DetectFaceDemo().run()
}

View File

@ -0,0 +1,69 @@
import org.opencv.imgcodecs.Imgcodecs
import org.opencv.features2d.DescriptorExtractor
import org.opencv.features2d.Features2d
import org.opencv.core.MatOfKeyPoint
import org.opencv.core.Mat
import org.opencv.features2d.FeatureDetector
import org.opencv.features2d.DescriptorMatcher
import org.opencv.core.MatOfDMatch
import reflect._
/*
* Finds corresponding points between a pair of images using local descriptors.
* The correspondences are visualized in the image "scalaCorrespondences.png",
* which is written to disk.
*/
object ScalaCorrespondenceMatchingDemo {
def run() {
println(s"\nRunning ${classTag[this.type].toString.replace("$", "")}")
// Detects keypoints and extracts descriptors in a given image of type Mat.
def detectAndExtract(mat: Mat) = {
// A special container class for KeyPoint.
val keyPoints = new MatOfKeyPoint
// We're using the ORB detector.
val detector = FeatureDetector.create(FeatureDetector.ORB)
detector.detect(mat, keyPoints)
println(s"There were ${keyPoints.toArray.size} KeyPoints detected")
// Let's just use the best KeyPoints.
val sorted = keyPoints.toArray.sortBy(_.response).reverse.take(50)
// There isn't a constructor that takes Array[KeyPoint], so we unpack
// the array and use the constructor that can take any number of
// arguments.
val bestKeyPoints: MatOfKeyPoint = new MatOfKeyPoint(sorted: _*)
// We're using the ORB descriptor.
val extractor = DescriptorExtractor.create(DescriptorExtractor.ORB)
val descriptors = new Mat
extractor.compute(mat, bestKeyPoints, descriptors)
println(s"${descriptors.rows} descriptors were extracted, each with dimension ${descriptors.cols}")
(bestKeyPoints, descriptors)
}
// Load the images from the |resources| directory.
val leftImage = Imgcodecs.imread(getClass.getResource("/img1.png").getPath)
val rightImage = Imgcodecs.imread(getClass.getResource("/img2.png").getPath)
// Detect KeyPoints and extract descriptors.
val (leftKeyPoints, leftDescriptors) = detectAndExtract(leftImage)
val (rightKeyPoints, rightDescriptors) = detectAndExtract(rightImage)
// Match the descriptors.
val matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE)
// A special container class for DMatch.
val dmatches = new MatOfDMatch
// The backticks are because "match" is a keyword in Scala.
matcher.`match`(leftDescriptors, rightDescriptors, dmatches)
// Visualize the matches and save the visualization.
val correspondenceImage = new Mat
Features2d.drawMatches(leftImage, leftKeyPoints, rightImage, rightKeyPoints, dmatches, correspondenceImage)
val filename = "scalaCorrespondences.png"
println(s"Writing ${filename}")
assert(Imgcodecs.imwrite(filename, correspondenceImage))
}
}

View File

@ -0,0 +1,44 @@
import org.opencv.core.Core
import org.opencv.core.MatOfRect
import org.opencv.core.Point
import org.opencv.core.Scalar
import org.opencv.imgcodecs.Imgcodecs
import org.opencv.imgproc.Imgproc
import org.opencv.objdetect.CascadeClassifier
import reflect._
/*
* Detects faces in an image, draws boxes around them, and writes the results
* to "scalaFaceDetection.png".
*/
object ScalaDetectFaceDemo {
def run() {
println(s"\nRunning ${classTag[this.type].toString.replace("$", "")}")
// Create a face detector from the cascade file in the resources directory.
val faceDetector = new CascadeClassifier(getClass.getResource("/lbpcascade_frontalface.xml").getPath)
val image = Imgcodecs.imread(getClass.getResource("/AverageMaleFace.jpg").getPath)
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
val faceDetections = new MatOfRect
faceDetector.detectMultiScale(image, faceDetections)
println(s"Detected ${faceDetections.toArray.size} faces")
// Draw a bounding box around each face.
for (rect <- faceDetections.toArray) {
Imgproc.rectangle(
image,
new Point(rect.x, rect.y),
new Point(rect.x + rect.width,
rect.y + rect.height),
new Scalar(0, 255, 0))
}
// Save the visualized detection.
val filename = "scalaFaceDetection.png"
println(s"Writing ${filename}")
assert(Imgcodecs.imwrite(filename, image))
}
}

View File

@ -0,0 +1,39 @@
# ----------------------------------------------------------------------------
# CMake file for Java tutorials compilation.
#
# ----------------------------------------------------------------------------
if(NOT ANT_EXECUTABLE OR NOT TARGET opencv_java)
return()
endif()
project(compile_java_tutorials)
set(curdir "${CMAKE_CURRENT_SOURCE_DIR}")
set(opencv_tutorial_java_bin_dir "${CMAKE_CURRENT_BINARY_DIR}/.compiled")
set(TUTORIALS_DIRS "")
file(GLOB children RELATIVE ${curdir} ${curdir}/*/*)
foreach(child ${children})
if(IS_DIRECTORY ${curdir}/${child})
file(GLOB contains_java_files "${child}/*.java")
if(contains_java_files)
list(APPEND TUTORIALS_DIRS ${child})
endif()
endif()
endforeach()
add_custom_target("${PROJECT_NAME}"
DEPENDS opencv_java
)
foreach(TUTORIAL_DIR ${TUTORIALS_DIRS})
get_filename_component(TUTORIAL_NAME ${TUTORIAL_DIR} NAME_WE)
add_custom_command(TARGET "${PROJECT_NAME}"
COMMAND ${ANT_EXECUTABLE} -q
-DocvJarDir="${OpenCV_BINARY_DIR}/bin"
-DsrcDir="${TUTORIAL_DIR}"
-DdstDir="${opencv_tutorial_java_bin_dir}/${TUTORIAL_NAME}"
WORKING_DIRECTORY "${curdir}"
COMMENT "Compile the tutorial: ${TUTORIAL_NAME}"
)
endforeach()

View File

@ -0,0 +1,173 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.Arrays;
import java.util.List;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CalcBackProject1 {
private Mat hue;
private Mat histImg = new Mat();
private JFrame frame;
private JLabel imgLabel;
private JLabel backprojLabel;
private JLabel histImgLabel;
private static final int MAX_SLIDER = 180;
private int bins = 25;
public CalcBackProject1(String[] args) {
//! [Read the image]
if (args.length != 1) {
System.err.println("You must supply one argument that corresponds to the path to the image.");
System.exit(0);
}
Mat src = Imgcodecs.imread(args[0]);
if (src.empty()) {
System.err.println("Empty image: " + args[0]);
System.exit(0);
}
//! [Read the image]
//! [Transform it to HSV]
Mat hsv = new Mat();
Imgproc.cvtColor(src, hsv, Imgproc.COLOR_BGR2HSV);
//! [Transform it to HSV]
//! [Use only the Hue value]
hue = new Mat(hsv.size(), hsv.depth());
Core.mixChannels(Arrays.asList(hsv), Arrays.asList(hue), new MatOfInt(0, 0));
//! [Use only the Hue value]
// Create and set up the window.
frame = new JFrame("Back Projection 1 demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
//! [Show the image]
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
//! [Show the image]
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
//! [Create Trackbar to enter the number of bins]
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("* Hue bins: "));
JSlider slider = new JSlider(0, MAX_SLIDER, bins);
slider.setMajorTickSpacing(25);
slider.setMinorTickSpacing(5);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
bins = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
//! [Create Trackbar to enter the number of bins]
JPanel imgPanel = new JPanel();
imgLabel = new JLabel(new ImageIcon(img));
imgPanel.add(imgLabel);
backprojLabel = new JLabel();
imgPanel.add(backprojLabel);
histImgLabel = new JLabel();
imgPanel.add(histImgLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
//! [initialize]
int histSize = Math.max(bins, 2);
float[] hueRange = {0, 180};
//! [initialize]
//! [Get the Histogram and normalize it]
Mat hist = new Mat();
List<Mat> hueList = Arrays.asList(hue);
Imgproc.calcHist(hueList, new MatOfInt(0), new Mat(), hist, new MatOfInt(histSize), new MatOfFloat(hueRange), false);
Core.normalize(hist, hist, 0, 255, Core.NORM_MINMAX);
//! [Get the Histogram and normalize it]
//! [Get Backprojection]
Mat backproj = new Mat();
Imgproc.calcBackProject(hueList, new MatOfInt(0), hist, backproj, new MatOfFloat(hueRange), 1);
//! [Get Backprojection]
//! [Draw the backproj]
Image backprojImg = HighGui.toBufferedImage(backproj);
backprojLabel.setIcon(new ImageIcon(backprojImg));
//! [Draw the backproj]
//! [Draw the histogram]
int w = 400, h = 400;
int binW = (int) Math.round((double) w / histSize);
histImg = Mat.zeros(h, w, CvType.CV_8UC3);
float[] histData = new float[(int) (hist.total() * hist.channels())];
hist.get(0, 0, histData);
for (int i = 0; i < bins; i++) {
Imgproc.rectangle(histImg, new Point(i * binW, h),
new Point((i + 1) * binW, h - Math.round(histData[i] * h / 255.0)), new Scalar(0, 0, 255), Imgproc.FILLED);
}
Image histImage = HighGui.toBufferedImage(histImg);
histImgLabel.setIcon(new ImageIcon(histImage));
//! [Draw the histogram]
frame.repaint();
frame.pack();
}
}
public class CalcBackProjectDemo1 {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CalcBackProject1(args);
}
});
}
}

View File

@ -0,0 +1,189 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.util.Arrays;
import java.util.List;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Point;
import org.opencv.core.Range;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CalcBackProject2 {
private Mat src;
private Mat hsv = new Mat();
private Mat mask = new Mat();
private JFrame frame;
private JLabel imgLabel;
private JLabel backprojLabel;
private JLabel maskImgLabel;
private static final int MAX_SLIDER = 255;
private int low = 20;
private int up = 20;
public CalcBackProject2(String[] args) {
/// Read the image
if (args.length != 1) {
System.err.println("You must supply one argument that corresponds to the path to the image.");
System.exit(0);
}
src = Imgcodecs.imread(args[0]);
if (src.empty()) {
System.err.println("Empty image: " + args[0]);
System.exit(0);
}
/// Transform it to HSV
Imgproc.cvtColor(src, hsv, Imgproc.COLOR_BGR2HSV);
// Create and set up the window.
frame = new JFrame("Back Projection 2 demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
/// Set Trackbars for floodfill thresholds
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Low thresh"));
JSlider slider = new JSlider(0, MAX_SLIDER, low);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
low = source.getValue();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
sliderPanel.add(new JLabel("High thresh"));
slider = new JSlider(0, MAX_SLIDER, up);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
up = source.getValue();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
imgLabel = new JLabel(new ImageIcon(img));
/// Set a Mouse Callback
imgLabel.addMouseListener(new MouseAdapter() {
@Override
public void mousePressed(MouseEvent e) {
update(e.getX(), e.getY());
}
});
imgPanel.add(imgLabel);
maskImgLabel = new JLabel();
imgPanel.add(maskImgLabel);
backprojLabel = new JLabel();
imgPanel.add(backprojLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update(int x, int y) {
// Fill and get the mask
Point seed = new Point(x, y);
int newMaskVal = 255;
Scalar newVal = new Scalar(120, 120, 120);
int connectivity = 8;
int flags = connectivity + (newMaskVal << 8) + Imgproc.FLOODFILL_FIXED_RANGE + Imgproc.FLOODFILL_MASK_ONLY;
Mat mask2 = Mat.zeros(src.rows() + 2, src.cols() + 2, CvType.CV_8U);
Imgproc.floodFill(src, mask2, seed, newVal, new Rect(), new Scalar(low, low, low), new Scalar(up, up, up), flags);
mask = mask2.submat(new Range(1, mask2.rows() - 1), new Range(1, mask2.cols() - 1));
Image maskImg = HighGui.toBufferedImage(mask);
maskImgLabel.setIcon(new ImageIcon(maskImg));
int hBins = 30, sBins = 32;
int[] histSize = { hBins, sBins };
float[] ranges = { 0, 180, 0, 256 };
int[] channels = { 0, 1 };
/// Get the Histogram and normalize it
Mat hist = new Mat();
List<Mat> hsvList = Arrays.asList(hsv);
Imgproc.calcHist(hsvList, new MatOfInt(channels), mask, hist, new MatOfInt(histSize), new MatOfFloat(ranges), false );
Core.normalize(hist, hist, 0, 255, Core.NORM_MINMAX);
/// Get Backprojection
Mat backproj = new Mat();
Imgproc.calcBackProject(hsvList, new MatOfInt(channels), hist, backproj, new MatOfFloat(ranges), 1);
Image backprojImg = HighGui.toBufferedImage(backproj);
backprojLabel.setIcon(new ImageIcon(backprojImg));
frame.repaint();
frame.pack();
}
}
public class CalcBackProjectDemo2 {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CalcBackProject2(args);
}
});
}
}

View File

@ -0,0 +1,99 @@
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CalcHist {
public void run(String[] args) {
//! [Load image]
String filename = args.length > 0 ? args[0] : "../data/lena.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
//! [Load image]
//! [Separate the image in 3 places ( B, G and R )]
List<Mat> bgrPlanes = new ArrayList<>();
Core.split(src, bgrPlanes);
//! [Separate the image in 3 places ( B, G and R )]
//! [Establish the number of bins]
int histSize = 256;
//! [Establish the number of bins]
//! [Set the ranges ( for B,G,R) )]
float[] range = {0, 256}; //the upper boundary is exclusive
MatOfFloat histRange = new MatOfFloat(range);
//! [Set the ranges ( for B,G,R) )]
//! [Set histogram param]
boolean accumulate = false;
//! [Set histogram param]
//! [Compute the histograms]
Mat bHist = new Mat(), gHist = new Mat(), rHist = new Mat();
Imgproc.calcHist(bgrPlanes, new MatOfInt(0), new Mat(), bHist, new MatOfInt(histSize), histRange, accumulate);
Imgproc.calcHist(bgrPlanes, new MatOfInt(1), new Mat(), gHist, new MatOfInt(histSize), histRange, accumulate);
Imgproc.calcHist(bgrPlanes, new MatOfInt(2), new Mat(), rHist, new MatOfInt(histSize), histRange, accumulate);
//! [Compute the histograms]
//! [Draw the histograms for B, G and R]
int histW = 512, histH = 400;
int binW = (int) Math.round((double) histW / histSize);
Mat histImage = new Mat( histH, histW, CvType.CV_8UC3, new Scalar( 0,0,0) );
//! [Draw the histograms for B, G and R]
//! [Normalize the result to ( 0, histImage.rows )]
Core.normalize(bHist, bHist, 0, histImage.rows(), Core.NORM_MINMAX);
Core.normalize(gHist, gHist, 0, histImage.rows(), Core.NORM_MINMAX);
Core.normalize(rHist, rHist, 0, histImage.rows(), Core.NORM_MINMAX);
//! [Normalize the result to ( 0, histImage.rows )]
//! [Draw for each channel]
float[] bHistData = new float[(int) (bHist.total() * bHist.channels())];
bHist.get(0, 0, bHistData);
float[] gHistData = new float[(int) (gHist.total() * gHist.channels())];
gHist.get(0, 0, gHistData);
float[] rHistData = new float[(int) (rHist.total() * rHist.channels())];
rHist.get(0, 0, rHistData);
for( int i = 1; i < histSize; i++ ) {
Imgproc.line(histImage, new Point(binW * (i - 1), histH - Math.round(bHistData[i - 1])),
new Point(binW * (i), histH - Math.round(bHistData[i])), new Scalar(255, 0, 0), 2);
Imgproc.line(histImage, new Point(binW * (i - 1), histH - Math.round(gHistData[i - 1])),
new Point(binW * (i), histH - Math.round(gHistData[i])), new Scalar(0, 255, 0), 2);
Imgproc.line(histImage, new Point(binW * (i - 1), histH - Math.round(rHistData[i - 1])),
new Point(binW * (i), histH - Math.round(rHistData[i])), new Scalar(0, 0, 255), 2);
}
//! [Draw for each channel]
//! [Display]
HighGui.imshow( "Source image", src );
HighGui.imshow( "calcHist Demo", histImage );
HighGui.waitKey(0);
//! [Display]
System.exit(0);
}
}
public class CalcHistDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new CalcHist().run(args);
}
}

View File

@ -0,0 +1,91 @@
import java.util.Arrays;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfFloat;
import org.opencv.core.MatOfInt;
import org.opencv.core.Range;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CompareHist {
public void run(String[] args) {
//! [Load three images with different environment settings]
if (args.length != 3) {
System.err.println("You must supply 3 arguments that correspond to the paths to 3 images.");
System.exit(0);
}
Mat srcBase = Imgcodecs.imread(args[0]);
Mat srcTest1 = Imgcodecs.imread(args[1]);
Mat srcTest2 = Imgcodecs.imread(args[2]);
if (srcBase.empty() || srcTest1.empty() || srcTest2.empty()) {
System.err.println("Cannot read the images");
System.exit(0);
}
//! [Load three images with different environment settings]
//! [Convert to HSV]
Mat hsvBase = new Mat(), hsvTest1 = new Mat(), hsvTest2 = new Mat();
Imgproc.cvtColor( srcBase, hsvBase, Imgproc.COLOR_BGR2HSV );
Imgproc.cvtColor( srcTest1, hsvTest1, Imgproc.COLOR_BGR2HSV );
Imgproc.cvtColor( srcTest2, hsvTest2, Imgproc.COLOR_BGR2HSV );
//! [Convert to HSV]
//! [Convert to HSV half]
Mat hsvHalfDown = hsvBase.submat( new Range( hsvBase.rows()/2, hsvBase.rows() - 1 ), new Range( 0, hsvBase.cols() - 1 ) );
//! [Convert to HSV half]
//! [Using 50 bins for hue and 60 for saturation]
int hBins = 50, sBins = 60;
int[] histSize = { hBins, sBins };
// hue varies from 0 to 179, saturation from 0 to 255
float[] ranges = { 0, 180, 0, 256 };
// Use the 0-th and 1-st channels
int[] channels = { 0, 1 };
//! [Using 50 bins for hue and 60 for saturation]
//! [Calculate the histograms for the HSV images]
Mat histBase = new Mat(), histHalfDown = new Mat(), histTest1 = new Mat(), histTest2 = new Mat();
List<Mat> hsvBaseList = Arrays.asList(hsvBase);
Imgproc.calcHist(hsvBaseList, new MatOfInt(channels), new Mat(), histBase, new MatOfInt(histSize), new MatOfFloat(ranges), false);
Core.normalize(histBase, histBase, 0, 1, Core.NORM_MINMAX);
List<Mat> hsvHalfDownList = Arrays.asList(hsvHalfDown);
Imgproc.calcHist(hsvHalfDownList, new MatOfInt(channels), new Mat(), histHalfDown, new MatOfInt(histSize), new MatOfFloat(ranges), false);
Core.normalize(histHalfDown, histHalfDown, 0, 1, Core.NORM_MINMAX);
List<Mat> hsvTest1List = Arrays.asList(hsvTest1);
Imgproc.calcHist(hsvTest1List, new MatOfInt(channels), new Mat(), histTest1, new MatOfInt(histSize), new MatOfFloat(ranges), false);
Core.normalize(histTest1, histTest1, 0, 1, Core.NORM_MINMAX);
List<Mat> hsvTest2List = Arrays.asList(hsvTest2);
Imgproc.calcHist(hsvTest2List, new MatOfInt(channels), new Mat(), histTest2, new MatOfInt(histSize), new MatOfFloat(ranges), false);
Core.normalize(histTest2, histTest2, 0, 1, Core.NORM_MINMAX);
//! [Calculate the histograms for the HSV images]
//! [Apply the histogram comparison methods]
for( int compareMethod = 0; compareMethod < 4; compareMethod++ ) {
double baseBase = Imgproc.compareHist( histBase, histBase, compareMethod );
double baseHalf = Imgproc.compareHist( histBase, histHalfDown, compareMethod );
double baseTest1 = Imgproc.compareHist( histBase, histTest1, compareMethod );
double baseTest2 = Imgproc.compareHist( histBase, histTest2, compareMethod );
System.out.println("Method " + compareMethod + " Perfect, Base-Half, Base-Test(1), Base-Test(2) : " + baseBase + " / " + baseHalf
+ " / " + baseTest1 + " / " + baseTest2);
}
//! [Apply the histogram comparison methods]
}
}
public class CompareHistDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new CompareHist().run(args);
}
}

View File

@ -0,0 +1,49 @@
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class EqualizeHist {
public void run(String[] args) {
//! [Load image]
String filename = args.length > 0 ? args[0] : "../data/lena.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
//! [Load image]
//! [Convert to grayscale]
Imgproc.cvtColor(src, src, Imgproc.COLOR_BGR2GRAY);
//! [Convert to grayscale]
//! [Apply Histogram Equalization]
Mat dst = new Mat();
Imgproc.equalizeHist( src, dst );
//! [Apply Histogram Equalization]
//! [Display results]
HighGui.imshow( "Source image", src );
HighGui.imshow( "Equalized Image", dst );
//! [Display results]
//! [Wait until user exits the program]
HighGui.waitKey(0);
//! [Wait until user exits the program]
System.exit(0);
}
}
public class EqualizeHistDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new EqualizeHist().run(args);
}
}

View File

@ -0,0 +1,186 @@
import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import java.util.*;
import java.util.List;
class GeometricDrawingRun{
private static final int W = 400;
public void run(){
//! [create_images]
/// Windows names
String atom_window = "Drawing 1: Atom";
String rook_window = "Drawing 2: Rook";
/// Create black empty images
Mat atom_image = Mat.zeros( W, W, CvType.CV_8UC3 );
Mat rook_image = Mat.zeros( W, W, CvType.CV_8UC3 );
//! [create_images]
//! [draw_atom]
/// 1. Draw a simple atom:
/// -----------------------
MyEllipse( atom_image, 90.0 );
MyEllipse( atom_image, 0.0 );
MyEllipse( atom_image, 45.0 );
MyEllipse( atom_image, -45.0 );
/// 1.b. Creating circles
MyFilledCircle( atom_image, new Point( W/2, W/2) );
//! [draw_atom]
//! [draw_rook]
/// 2. Draw a rook
/// ------------------
/// 2.a. Create a convex polygon
MyPolygon( rook_image );
//! [rectangle]
/// 2.b. Creating rectangles
Imgproc.rectangle( rook_image,
new Point( 0, 7*W/8 ),
new Point( W, W),
new Scalar( 0, 255, 255 ),
-1,
8,
0 );
//! [rectangle]
/// 2.c. Create a few lines
MyLine( rook_image, new Point( 0, 15*W/16 ), new Point( W, 15*W/16 ) );
MyLine( rook_image, new Point( W/4, 7*W/8 ), new Point( W/4, W ) );
MyLine( rook_image, new Point( W/2, 7*W/8 ), new Point( W/2, W ) );
MyLine( rook_image, new Point( 3*W/4, 7*W/8 ), new Point( 3*W/4, W ) );
//! [draw_rook]
/// 3. Display your stuff!
HighGui.imshow( atom_window, atom_image );
HighGui.moveWindow( atom_window, 0, 200 );
HighGui.imshow( rook_window, rook_image );
HighGui.moveWindow( rook_window, W, 200 );
HighGui.waitKey( 0 );
System.exit(0);
}
/// Function Declaration
/**
* @function MyEllipse
* @brief Draw a fixed-size ellipse with different angles
*/
//! [my_ellipse]
private void MyEllipse( Mat img, double angle ) {
int thickness = 2;
int lineType = 8;
int shift = 0;
Imgproc.ellipse( img,
new Point( W/2, W/2 ),
new Size( W/4, W/16 ),
angle,
0.0,
360.0,
new Scalar( 255, 0, 0 ),
thickness,
lineType,
shift );
}
//! [my_ellipse]
/**
* @function MyFilledCircle
* @brief Draw a fixed-size filled circle
*/
//! [my_filled_circle]
private void MyFilledCircle( Mat img, Point center ) {
int thickness = -1;
int lineType = 8;
int shift = 0;
Imgproc.circle( img,
center,
W/32,
new Scalar( 0, 0, 255 ),
thickness,
lineType,
shift );
}
//! [my_filled_circle]
/**
* @function MyPolygon
* @function Draw a simple concave polygon (rook)
*/
//! [my_polygon]
private void MyPolygon( Mat img ) {
int lineType = 8;
int shift = 0;
/** Create some points */
Point[] rook_points = new Point[20];
rook_points[0] = new Point( W/4, 7*W/8 );
rook_points[1] = new Point( 3*W/4, 7*W/8 );
rook_points[2] = new Point( 3*W/4, 13*W/16 );
rook_points[3] = new Point( 11*W/16, 13*W/16 );
rook_points[4] = new Point( 19*W/32, 3*W/8 );
rook_points[5] = new Point( 3*W/4, 3*W/8 );
rook_points[6] = new Point( 3*W/4, W/8 );
rook_points[7] = new Point( 26*W/40, W/8 );
rook_points[8] = new Point( 26*W/40, W/4 );
rook_points[9] = new Point( 22*W/40, W/4 );
rook_points[10] = new Point( 22*W/40, W/8 );
rook_points[11] = new Point( 18*W/40, W/8 );
rook_points[12] = new Point( 18*W/40, W/4 );
rook_points[13] = new Point( 14*W/40, W/4 );
rook_points[14] = new Point( 14*W/40, W/8 );
rook_points[15] = new Point( W/4, W/8 );
rook_points[16] = new Point( W/4, 3*W/8 );
rook_points[17] = new Point( 13*W/32, 3*W/8 );
rook_points[18] = new Point( 5*W/16, 13*W/16 );
rook_points[19] = new Point( W/4, 13*W/16 );
MatOfPoint matPt = new MatOfPoint();
matPt.fromArray(rook_points);
List<MatOfPoint> ppt = new ArrayList<MatOfPoint>();
ppt.add(matPt);
Imgproc.fillPoly(img,
ppt,
new Scalar( 255, 255, 255 ),
lineType,
shift,
new Point(0,0) );
}
//! [my_polygon]
/**
* @function MyLine
* @brief Draw a simple line
*/
//! [my_line]
private void MyLine( Mat img, Point start, Point end ) {
int thickness = 2;
int lineType = 8;
int shift = 0;
Imgproc.line( img,
start,
end,
new Scalar( 0, 0, 0 ),
thickness,
lineType,
shift );
}
//! [my_line]
}
public class BasicGeometricDrawing {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new GeometricDrawingRun().run();
}
}

View File

@ -0,0 +1,58 @@
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
class HitMissRun{
public void run() {
Mat input_image = new Mat( 8, 8, CvType.CV_8UC1 );
int row = 0, col = 0;
input_image.put(row ,col,
0, 0, 0, 0, 0, 0, 0, 0,
0, 255, 255, 255, 0, 0, 0, 255,
0, 255, 255, 255, 0, 0, 0, 0,
0, 255, 255, 255, 0, 255, 0, 0,
0, 0, 255, 0, 0, 0, 0, 0,
0, 0, 255, 0, 0, 255, 255, 0,
0, 255, 0, 255, 0, 0, 255, 0,
0, 255, 255, 255, 0, 0, 0, 0);
Mat kernel = new Mat( 3, 3, CvType.CV_16S );
kernel.put(row ,col,
0, 1, 0,
1, -1, 1,
0, 1, 0 );
Mat output_image = new Mat();
Imgproc.morphologyEx(input_image, output_image, Imgproc.MORPH_HITMISS, kernel);
int rate = 50;
Core.add(kernel, new Scalar(1), kernel);
Core.multiply(kernel, new Scalar(127), kernel);
kernel.convertTo(kernel, CvType.CV_8U);
Imgproc.resize(kernel, kernel, new Size(), rate, rate, Imgproc.INTER_NEAREST);
HighGui.imshow("kernel", kernel);
HighGui.moveWindow("kernel", 0, 0);
Imgproc.resize(input_image, input_image, new Size(), rate, rate, Imgproc.INTER_NEAREST);
HighGui.imshow("Original", input_image);
HighGui.moveWindow("Original", 0, 200);
Imgproc.resize(output_image, output_image, new Size(), rate, rate, Imgproc.INTER_NEAREST);
HighGui.imshow("Hit or Miss", output_image);
HighGui.moveWindow("Hit or Miss", 500, 200);
HighGui.waitKey(0);
System.exit(0);
}
}
public class HitMiss
{
public static void main(String[] args) {
// load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new HitMissRun().run();
}
}

View File

@ -0,0 +1,67 @@
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class PyramidsRun {
String window_name = "Pyramids Demo";
public void run(String[] args) {
/// General instructions
System.out.println("\n" +
" Zoom In-Out demo \n" +
"------------------ \n" +
" * [i] -> Zoom [i]n \n" +
" * [o] -> Zoom [o]ut \n" +
" * [ESC] -> Close program \n");
//! [load]
String filename = ((args.length > 0) ? args[0] : "../data/chicky_512.png");
// Load the image
Mat src = Imgcodecs.imread(filename);
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image!");
System.out.println("Program Arguments: [image_name -- default ../data/chicky_512.png] \n");
System.exit(-1);
}
//! [load]
//! [loop]
while (true){
//! [show_image]
HighGui.imshow( window_name, src );
//! [show_image]
char c = (char) HighGui.waitKey(0);
c = Character.toLowerCase(c);
if( c == 27 ){
break;
//![pyrup]
}else if( c == 'i'){
Imgproc.pyrUp( src, src, new Size( src.cols()*2, src.rows()*2 ) );
System.out.println( "** Zoom In: Image x 2" );
//![pyrup]
//![pyrdown]
}else if( c == 'o'){
Imgproc.pyrDown( src, src, new Size( src.cols()/2, src.rows()/2 ) );
System.out.println( "** Zoom Out: Image / 2" );
//![pyrdown]
}
}
//! [loop]
System.exit(0);
}
}
public class Pyramids {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new PyramidsRun().run(args);
}
}

View File

@ -0,0 +1,101 @@
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class SmoothingRun {
/// Global Variables
int DELAY_CAPTION = 1500;
int DELAY_BLUR = 100;
int MAX_KERNEL_LENGTH = 31;
Mat src = new Mat(), dst = new Mat();
String windowName = "Filter Demo 1";
public void run(String[] args) {
String filename = ((args.length > 0) ? args[0] : "../data/lena.jpg");
src = Imgcodecs.imread(filename, Imgcodecs.IMREAD_COLOR);
if( src.empty() ) {
System.out.println("Error opening image");
System.out.println("Usage: ./Smoothing [image_name -- default ../data/lena.jpg] \n");
System.exit(-1);
}
if( displayCaption( "Original Image" ) != 0 ) { System.exit(0); }
dst = src.clone();
if( displayDst( DELAY_CAPTION ) != 0 ) { System.exit(0); }
/// Applying Homogeneous blur
if( displayCaption( "Homogeneous Blur" ) != 0 ) { System.exit(0); }
//! [blur]
for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2) {
Imgproc.blur(src, dst, new Size(i, i), new Point(-1, -1));
displayDst(DELAY_BLUR);
}
//! [blur]
/// Applying Gaussian blur
if( displayCaption( "Gaussian Blur" ) != 0 ) { System.exit(0); }
//! [gaussianblur]
for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2) {
Imgproc.GaussianBlur(src, dst, new Size(i, i), 0, 0);
displayDst(DELAY_BLUR);
}
//! [gaussianblur]
/// Applying Median blur
if( displayCaption( "Median Blur" ) != 0 ) { System.exit(0); }
//! [medianblur]
for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2) {
Imgproc.medianBlur(src, dst, i);
displayDst(DELAY_BLUR);
}
//! [medianblur]
/// Applying Bilateral Filter
if( displayCaption( "Bilateral Blur" ) != 0 ) { System.exit(0); }
//![bilateralfilter]
for (int i = 1; i < MAX_KERNEL_LENGTH; i = i + 2) {
Imgproc.bilateralFilter(src, dst, i, i * 2, i / 2);
displayDst(DELAY_BLUR);
}
//![bilateralfilter]
/// Done
displayCaption( "Done!" );
System.exit(0);
}
int displayCaption(String caption) {
dst = Mat.zeros(src.size(), src.type());
Imgproc.putText(dst, caption,
new Point(src.cols() / 4, src.rows() / 2),
Imgproc.FONT_HERSHEY_COMPLEX, 1, new Scalar(255, 255, 255));
return displayDst(DELAY_CAPTION);
}
int displayDst(int delay) {
HighGui.imshow( windowName, dst );
int c = HighGui.waitKey( delay );
if (c >= 0) { return -1; }
return 0;
}
}
public class Smoothing {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new SmoothingRun().run(args);
}
}

View File

@ -0,0 +1,86 @@
import java.util.Scanner;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
class BasicLinearTransforms {
private byte saturate(double val) {
int iVal = (int) Math.round(val);
iVal = iVal > 255 ? 255 : (iVal < 0 ? 0 : iVal);
return (byte) iVal;
}
public void run(String[] args) {
/// Read image given by user
//! [basic-linear-transform-load]
String imagePath = args.length > 0 ? args[0] : "../data/lena.jpg";
Mat image = Imgcodecs.imread(imagePath);
if (image.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
//! [basic-linear-transform-load]
//! [basic-linear-transform-output]
Mat newImage = Mat.zeros(image.size(), image.type());
//! [basic-linear-transform-output]
//! [basic-linear-transform-parameters]
double alpha = 1.0; /*< Simple contrast control */
int beta = 0; /*< Simple brightness control */
/// Initialize values
System.out.println(" Basic Linear Transforms ");
System.out.println("-------------------------");
try (Scanner scanner = new Scanner(System.in)) {
System.out.print("* Enter the alpha value [1.0-3.0]: ");
alpha = scanner.nextDouble();
System.out.print("* Enter the beta value [0-100]: ");
beta = scanner.nextInt();
}
//! [basic-linear-transform-parameters]
/// Do the operation newImage(i,j) = alpha*image(i,j) + beta
/// Instead of these 'for' loops we could have used simply:
/// image.convertTo(newImage, -1, alpha, beta);
/// but we wanted to show you how to access the pixels :)
//! [basic-linear-transform-operation]
byte[] imageData = new byte[(int) (image.total()*image.channels())];
image.get(0, 0, imageData);
byte[] newImageData = new byte[(int) (newImage.total()*newImage.channels())];
for (int y = 0; y < image.rows(); y++) {
for (int x = 0; x < image.cols(); x++) {
for (int c = 0; c < image.channels(); c++) {
double pixelValue = imageData[(y * image.cols() + x) * image.channels() + c];
/// Java byte range is [-128, 127]
pixelValue = pixelValue < 0 ? pixelValue + 256 : pixelValue;
newImageData[(y * image.cols() + x) * image.channels() + c]
= saturate(alpha * pixelValue + beta);
}
}
}
newImage.put(0, 0, newImageData);
//! [basic-linear-transform-operation]
//! [basic-linear-transform-display]
/// Show stuff
HighGui.imshow("Original Image", image);
HighGui.imshow("New Image", newImage);
/// Wait until user press some key
HighGui.waitKey();
//! [basic-linear-transform-display]
System.exit(0);
}
}
public class BasicLinearTransformsDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new BasicLinearTransforms().run(args);
}
}

View File

@ -0,0 +1,202 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JCheckBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
class ChangingContrastBrightnessImage {
private static int MAX_VALUE_ALPHA = 500;
private static int MAX_VALUE_BETA_GAMMA = 200;
private static final String WINDOW_NAME = "Changing the contrast and brightness of an image demo";
private static final String ALPHA_NAME = "Alpha gain (contrast)";
private static final String BETA_NAME = "Beta bias (brightness)";
private static final String GAMMA_NAME = "Gamma correction";
private JFrame frame;
private Mat matImgSrc = new Mat();
private JLabel imgSrcLabel;
private JLabel imgModifLabel;
private JPanel controlPanel;
private JPanel alphaBetaPanel;
private JPanel gammaPanel;
private double alphaValue = 1.0;
private double betaValue = 0.0;
private double gammaValue = 1.0;
private JCheckBox methodCheckBox;
private JSlider sliderAlpha;
private JSlider sliderBeta;
private JSlider sliderGamma;
public ChangingContrastBrightnessImage(String[] args) {
String imagePath = args.length > 0 ? args[0] : "../data/lena.jpg";
matImgSrc = Imgcodecs.imread(imagePath);
if (matImgSrc.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
// Create and set up the window.
frame = new JFrame(WINDOW_NAME);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(matImgSrc);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
controlPanel = new JPanel();
controlPanel.setLayout(new BoxLayout(controlPanel, BoxLayout.PAGE_AXIS));
methodCheckBox = new JCheckBox("Do gamma correction");
methodCheckBox.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
JCheckBox cb = (JCheckBox) e.getSource();
if (cb.isSelected()) {
controlPanel.remove(alphaBetaPanel);
controlPanel.add(gammaPanel);
performGammaCorrection();
frame.revalidate();
frame.repaint();
frame.pack();
} else {
controlPanel.remove(gammaPanel);
controlPanel.add(alphaBetaPanel);
performLinearTransformation();
frame.revalidate();
frame.repaint();
frame.pack();
}
}
});
controlPanel.add(methodCheckBox);
alphaBetaPanel = new JPanel();
alphaBetaPanel.setLayout(new BoxLayout(alphaBetaPanel, BoxLayout.PAGE_AXIS));
alphaBetaPanel.add(new JLabel(ALPHA_NAME));
sliderAlpha = new JSlider(0, MAX_VALUE_ALPHA, 100);
sliderAlpha.setMajorTickSpacing(50);
sliderAlpha.setMinorTickSpacing(10);
sliderAlpha.setPaintTicks(true);
sliderAlpha.setPaintLabels(true);
sliderAlpha.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
alphaValue = sliderAlpha.getValue() / 100.0;
performLinearTransformation();
}
});
alphaBetaPanel.add(sliderAlpha);
alphaBetaPanel.add(new JLabel(BETA_NAME));
sliderBeta = new JSlider(0, MAX_VALUE_BETA_GAMMA, 100);
sliderBeta.setMajorTickSpacing(20);
sliderBeta.setMinorTickSpacing(5);
sliderBeta.setPaintTicks(true);
sliderBeta.setPaintLabels(true);
sliderBeta.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
betaValue = sliderBeta.getValue() - 100;
performLinearTransformation();
}
});
alphaBetaPanel.add(sliderBeta);
controlPanel.add(alphaBetaPanel);
gammaPanel = new JPanel();
gammaPanel.setLayout(new BoxLayout(gammaPanel, BoxLayout.PAGE_AXIS));
gammaPanel.add(new JLabel(GAMMA_NAME));
sliderGamma = new JSlider(0, MAX_VALUE_BETA_GAMMA, 100);
sliderGamma.setMajorTickSpacing(20);
sliderGamma.setMinorTickSpacing(5);
sliderGamma.setPaintTicks(true);
sliderGamma.setPaintLabels(true);
sliderGamma.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
gammaValue = sliderGamma.getValue() / 100.0;
performGammaCorrection();
}
});
gammaPanel.add(sliderGamma);
pane.add(controlPanel, BorderLayout.PAGE_START);
JPanel framePanel = new JPanel();
imgSrcLabel = new JLabel(new ImageIcon(img));
framePanel.add(imgSrcLabel);
imgModifLabel = new JLabel(new ImageIcon(img));
framePanel.add(imgModifLabel);
pane.add(framePanel, BorderLayout.CENTER);
}
private void performLinearTransformation() {
Mat img = new Mat();
matImgSrc.convertTo(img, -1, alphaValue, betaValue);
imgModifLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(img)));
frame.repaint();
}
private byte saturate(double val) {
int iVal = (int) Math.round(val);
iVal = iVal > 255 ? 255 : (iVal < 0 ? 0 : iVal);
return (byte) iVal;
}
private void performGammaCorrection() {
//! [changing-contrast-brightness-gamma-correction]
Mat lookUpTable = new Mat(1, 256, CvType.CV_8U);
byte[] lookUpTableData = new byte[(int) (lookUpTable.total()*lookUpTable.channels())];
for (int i = 0; i < lookUpTable.cols(); i++) {
lookUpTableData[i] = saturate(Math.pow(i / 255.0, gammaValue) * 255.0);
}
lookUpTable.put(0, 0, lookUpTableData);
Mat img = new Mat();
Core.LUT(matImgSrc, lookUpTable, img);
//! [changing-contrast-brightness-gamma-correction]
imgModifLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(img)));
frame.repaint();
}
}
public class ChangingContrastBrightnessImageDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new ChangingContrastBrightnessImage(args);
}
});
}
}

View File

@ -0,0 +1,159 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JComboBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class MorphologyDemo1 {
private static final String[] ELEMENT_TYPE = { "Rectangle", "Cross", "Ellipse" };
private static final String[] MORPH_OP = { "Erosion", "Dilatation" };
private static final int MAX_KERNEL_SIZE = 21;
private Mat matImgSrc;
private Mat matImgDst = new Mat();
private int elementType = Imgproc.CV_SHAPE_RECT;
private int kernelSize = 0;
private boolean doErosion = true;
private JFrame frame;
private JLabel imgLabel;
//! [constructor]
public MorphologyDemo1(String[] args) {
String imagePath = args.length > 0 ? args[0] : "../data/LinuxLogo.jpg";
matImgSrc = Imgcodecs.imread(imagePath);
if (matImgSrc.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
// Create and set up the window.
frame = new JFrame("Erosion and dilatation demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(matImgSrc);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
}
//! [constructor]
//! [components]
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
JComboBox<String> elementTypeBox = new JComboBox<>(ELEMENT_TYPE);
elementTypeBox.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
@SuppressWarnings("unchecked")
JComboBox<String> cb = (JComboBox<String>)e.getSource();
if (cb.getSelectedIndex() == 0) {
elementType = Imgproc.CV_SHAPE_RECT;
} else if (cb.getSelectedIndex() == 1) {
elementType = Imgproc.CV_SHAPE_CROSS;
} else if (cb.getSelectedIndex() == 2) {
elementType = Imgproc.CV_SHAPE_ELLIPSE;
}
update();
}
});
sliderPanel.add(elementTypeBox);
sliderPanel.add(new JLabel("Kernel size: 2n + 1"));
JSlider slider = new JSlider(0, MAX_KERNEL_SIZE, 0);
slider.setMajorTickSpacing(5);
slider.setMinorTickSpacing(5);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
kernelSize = source.getValue();
update();
}
});
sliderPanel.add(slider);
JComboBox<String> morphOpBox = new JComboBox<>(MORPH_OP);
morphOpBox.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
@SuppressWarnings("unchecked")
JComboBox<String> cb = (JComboBox<String>)e.getSource();
doErosion = cb.getSelectedIndex() == 0;
update();
}
});
sliderPanel.add(morphOpBox);
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
//! [components]
//! [update]
private void update() {
//! [kernel]
Mat element = Imgproc.getStructuringElement(elementType, new Size(2 * kernelSize + 1, 2 * kernelSize + 1),
new Point(kernelSize, kernelSize));
//! [kernel]
if (doErosion) {
//! [erosion]
Imgproc.erode(matImgSrc, matImgDst, element);
//! [erosion]
} else {
//! [dilation]
Imgproc.dilate(matImgSrc, matImgDst, element);
//! [dilation]
}
Image img = HighGui.toBufferedImage(matImgDst);
imgLabel.setIcon(new ImageIcon(img));
frame.repaint();
}
//! [update]
//! [main]
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new MorphologyDemo1(args);
}
});
}
//! [main]
}

View File

@ -0,0 +1,152 @@
/**
* @file Morphology_3.java
* @brief Use morphology transformations for extracting horizontal and vertical lines sample code
*/
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class Morphology_3Run {
public void run(String[] args) {
//! [load_image]
// Check number of arguments
if (args.length == 0){
System.out.println("Not enough parameters!");
System.out.println("Program Arguments: [image_path]");
System.exit(-1);
}
// Load the image
Mat src = Imgcodecs.imread(args[0]);
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image: " + args[0]);
System.exit(-1);
}
// Show source image
HighGui.imshow("src", src);
//! [load_image]
//! [gray]
// Transform source image to gray if it is not already
Mat gray = new Mat();
if (src.channels() == 3)
{
Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
}
else
{
gray = src;
}
// Show gray image
showWaitDestroy("gray" , gray);
//! [gray]
//! [bin]
// Apply adaptiveThreshold at the bitwise_not of gray
Mat bw = new Mat();
Core.bitwise_not(gray, gray);
Imgproc.adaptiveThreshold(gray, bw, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 15, -2);
// Show binary image
showWaitDestroy("binary" , bw);
//! [bin]
//! [init]
// Create the images that will use to extract the horizontal and vertical lines
Mat horizontal = bw.clone();
Mat vertical = bw.clone();
//! [init]
//! [horiz]
// Specify size on horizontal axis
int horizontal_size = horizontal.cols() / 30;
// Create structure element for extracting horizontal lines through morphology operations
Mat horizontalStructure = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(horizontal_size,1));
// Apply morphology operations
Imgproc.erode(horizontal, horizontal, horizontalStructure);
Imgproc.dilate(horizontal, horizontal, horizontalStructure);
// Show extracted horizontal lines
showWaitDestroy("horizontal" , horizontal);
//! [horiz]
//! [vert]
// Specify size on vertical axis
int vertical_size = vertical.rows() / 30;
// Create structure element for extracting vertical lines through morphology operations
Mat verticalStructure = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size( 1,vertical_size));
// Apply morphology operations
Imgproc.erode(vertical, vertical, verticalStructure);
Imgproc.dilate(vertical, vertical, verticalStructure);
// Show extracted vertical lines
showWaitDestroy("vertical", vertical);
//! [vert]
//! [smooth]
// Inverse vertical image
Core.bitwise_not(vertical, vertical);
showWaitDestroy("vertical_bit" , vertical);
// Extract edges and smooth image according to the logic
// 1. extract edges
// 2. dilate(edges)
// 3. src.copyTo(smooth)
// 4. blur smooth img
// 5. smooth.copyTo(src, edges)
// Step 1
Mat edges = new Mat();
Imgproc.adaptiveThreshold(vertical, edges, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 3, -2);
showWaitDestroy("edges", edges);
// Step 2
Mat kernel = Mat.ones(2, 2, CvType.CV_8UC1);
Imgproc.dilate(edges, edges, kernel);
showWaitDestroy("dilate", edges);
// Step 3
Mat smooth = new Mat();
vertical.copyTo(smooth);
// Step 4
Imgproc.blur(smooth, smooth, new Size(2, 2));
// Step 5
smooth.copyTo(vertical, edges);
// Show final result
showWaitDestroy("smooth - final", vertical);
//! [smooth]
System.exit(0);
}
private void showWaitDestroy(String winname, Mat img) {
HighGui.imshow(winname, img);
HighGui.moveWindow(winname, 500, 0);
HighGui.waitKey(0);
HighGui.destroyWindow(winname);
}
}
public class Morphology_3 {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new Morphology_3Run().run(args);
}
}

View File

@ -0,0 +1,143 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JComboBox;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class MorphologyDemo2 {
private static final String[] MORPH_OP = { "Opening", "Closing", "Gradient", "Top Hat", "Black Hat" };
private static final int[] MORPH_OP_TYPE = { Imgproc.MORPH_OPEN, Imgproc.MORPH_CLOSE,
Imgproc.MORPH_GRADIENT, Imgproc.MORPH_TOPHAT, Imgproc.MORPH_BLACKHAT };
private static final String[] ELEMENT_TYPE = { "Rectangle", "Cross", "Ellipse" };
private static final int MAX_KERNEL_SIZE = 21;
private Mat matImgSrc;
private Mat matImgDst = new Mat();
private int morphOpType = Imgproc.MORPH_OPEN;
private int elementType = Imgproc.CV_SHAPE_RECT;
private int kernelSize = 0;
private JFrame frame;
private JLabel imgLabel;
public MorphologyDemo2(String[] args) {
String imagePath = args.length > 0 ? args[0] : "../data/LinuxLogo.jpg";
matImgSrc = Imgcodecs.imread(imagePath);
if (matImgSrc.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
// Create and set up the window.
frame = new JFrame("Morphology Transformations demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(matImgSrc);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
JComboBox<String> morphOpBox = new JComboBox<>(MORPH_OP);
morphOpBox.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
@SuppressWarnings("unchecked")
JComboBox<String> cb = (JComboBox<String>)e.getSource();
morphOpType = MORPH_OP_TYPE[cb.getSelectedIndex()];
update();
}
});
sliderPanel.add(morphOpBox);
JComboBox<String> elementTypeBox = new JComboBox<>(ELEMENT_TYPE);
elementTypeBox.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
@SuppressWarnings("unchecked")
JComboBox<String> cb = (JComboBox<String>)e.getSource();
if (cb.getSelectedIndex() == 0) {
elementType = Imgproc.CV_SHAPE_RECT;
} else if (cb.getSelectedIndex() == 1) {
elementType = Imgproc.CV_SHAPE_CROSS;
} else if (cb.getSelectedIndex() == 2) {
elementType = Imgproc.CV_SHAPE_ELLIPSE;
}
update();
}
});
sliderPanel.add(elementTypeBox);
sliderPanel.add(new JLabel("Kernel size: 2n + 1"));
JSlider slider = new JSlider(0, MAX_KERNEL_SIZE, 0);
slider.setMajorTickSpacing(5);
slider.setMinorTickSpacing(5);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
kernelSize = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
private void update() {
Mat element = Imgproc.getStructuringElement(elementType, new Size(2 * kernelSize + 1, 2 * kernelSize + 1),
new Point(kernelSize, kernelSize));
Imgproc.morphologyEx(matImgSrc, matImgDst, morphOpType, element);
Image img = HighGui.toBufferedImage(matImgDst);
imgLabel.setIcon(new ImageIcon(img));
frame.repaint();
}
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new MorphologyDemo2(args);
}
});
}
}

View File

@ -0,0 +1,144 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class Threshold {
private static int MAX_VALUE = 255;
private static int MAX_TYPE = 4;
private static int MAX_BINARY_VALUE = 255;
private static final String WINDOW_NAME = "Threshold Demo";
private static final String TRACKBAR_TYPE = "<html><body>Type: <br> 0: Binary <br> "
+ "1: Binary Inverted <br> 2: Truncate <br> "
+ "3: To Zero <br> 4: To Zero Inverted</body></html>";
private static final String TRACKBAR_VALUE = "Value";
private int thresholdValue = 0;
private int thresholdType = 3;
private Mat src;
private Mat srcGray = new Mat();
private Mat dst = new Mat();
private JFrame frame;
private JLabel imgLabel;
public Threshold(String[] args) {
//! [load]
String imagePath = "../data/stuff.jpg";
if (args.length > 0) {
imagePath = args[0];
}
// Load an image
src = Imgcodecs.imread(imagePath);
if (src.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
// Convert the image to Gray
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
//! [load]
//! [window]
// Create and set up the window.
frame = new JFrame(WINDOW_NAME);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(srcGray);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
//! [window]
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
//! [trackbar]
sliderPanel.add(new JLabel(TRACKBAR_TYPE));
// Create Trackbar to choose type of Threshold
JSlider sliderThreshType = new JSlider(0, MAX_TYPE, thresholdType);
sliderThreshType.setMajorTickSpacing(1);
sliderThreshType.setMinorTickSpacing(1);
sliderThreshType.setPaintTicks(true);
sliderThreshType.setPaintLabels(true);
sliderPanel.add(sliderThreshType);
sliderPanel.add(new JLabel(TRACKBAR_VALUE));
// Create Trackbar to choose Threshold value
JSlider sliderThreshValue = new JSlider(0, MAX_VALUE, 0);
sliderThreshValue.setMajorTickSpacing(50);
sliderThreshValue.setMinorTickSpacing(10);
sliderThreshValue.setPaintTicks(true);
sliderThreshValue.setPaintLabels(true);
sliderPanel.add(sliderThreshValue);
//! [trackbar]
//! [on_trackbar]
sliderThreshType.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
thresholdType = source.getValue();
update();
}
});
sliderThreshValue.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
thresholdValue = source.getValue();
update();
}
});
//! [on_trackbar]
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
//! [Threshold_Demo]
private void update() {
Imgproc.threshold(srcGray, dst, thresholdValue, MAX_BINARY_VALUE, thresholdType);
Image img = HighGui.toBufferedImage(dst);
imgLabel.setIcon(new ImageIcon(img));
frame.repaint();
}
//! [Threshold_Demo]
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new Threshold(args);
}
});
}
}

View File

@ -0,0 +1,259 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.util.List;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.SwingWorker;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import org.opencv.videoio.VideoCapture;
public class ThresholdInRange {
private static int MAX_VALUE = 255;
private static int MAX_VALUE_H = 360/2;
private static final String WINDOW_NAME = "Thresholding Operations using inRange demo";
private static final String LOW_H_NAME = "Low H";
private static final String LOW_S_NAME = "Low S";
private static final String LOW_V_NAME = "Low V";
private static final String HIGH_H_NAME = "High H";
private static final String HIGH_S_NAME = "High S";
private static final String HIGH_V_NAME = "High V";
private JSlider sliderLowH;
private JSlider sliderHighH;
private JSlider sliderLowS;
private JSlider sliderHighS;
private JSlider sliderLowV;
private JSlider sliderHighV;
private VideoCapture cap;
private Mat matFrame = new Mat();
private JFrame frame;
private JLabel imgCaptureLabel;
private JLabel imgDetectionLabel;
private CaptureTask captureTask;
public ThresholdInRange(String[] args) {
int cameraDevice = 0;
if (args.length > 0) {
cameraDevice = Integer.parseInt(args[0]);
}
//! [cap]
cap = new VideoCapture(cameraDevice);
//! [cap]
if (!cap.isOpened()) {
System.err.println("Cannot open camera: " + cameraDevice);
System.exit(0);
}
if (!cap.read(matFrame)) {
System.err.println("Cannot read camera stream.");
System.exit(0);
}
//! [window]
// Create and set up the window.
frame = new JFrame(WINDOW_NAME);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.addWindowListener(new WindowAdapter() {
@Override
public void windowClosing(WindowEvent windowEvent) {
captureTask.cancel(true);
}
});
// Set up the content pane.
Image img = HighGui.toBufferedImage(matFrame);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
//! [window]
captureTask = new CaptureTask();
captureTask.execute();
}
//! [while]
private class CaptureTask extends SwingWorker<Void, Mat> {
@Override
protected Void doInBackground() {
Mat matFrame = new Mat();
while (!isCancelled()) {
if (!cap.read(matFrame)) {
break;
}
publish(matFrame.clone());
}
return null;
}
@Override
protected void process(List<Mat> frames) {
Mat frame = frames.get(frames.size() - 1);
Mat frameHSV = new Mat();
Imgproc.cvtColor(frame, frameHSV, Imgproc.COLOR_BGR2HSV);
Mat thresh = new Mat();
Core.inRange(frameHSV, new Scalar(sliderLowH.getValue(), sliderLowS.getValue(), sliderLowV.getValue()),
new Scalar(sliderHighH.getValue(), sliderHighS.getValue(), sliderHighV.getValue()), thresh);
update(frame, thresh);
}
}
//! [while]
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
//! [trackbar]
sliderPanel.add(new JLabel(LOW_H_NAME));
sliderLowH = new JSlider(0, MAX_VALUE_H, 0);
sliderLowH.setMajorTickSpacing(50);
sliderLowH.setMinorTickSpacing(10);
sliderLowH.setPaintTicks(true);
sliderLowH.setPaintLabels(true);
sliderPanel.add(sliderLowH);
sliderPanel.add(new JLabel(HIGH_H_NAME));
sliderHighH = new JSlider(0, MAX_VALUE_H, MAX_VALUE_H);
sliderHighH.setMajorTickSpacing(50);
sliderHighH.setMinorTickSpacing(10);
sliderHighH.setPaintTicks(true);
sliderHighH.setPaintLabels(true);
sliderPanel.add(sliderHighH);
sliderPanel.add(new JLabel(LOW_S_NAME));
sliderLowS = new JSlider(0, MAX_VALUE, 0);
sliderLowS.setMajorTickSpacing(50);
sliderLowS.setMinorTickSpacing(10);
sliderLowS.setPaintTicks(true);
sliderLowS.setPaintLabels(true);
sliderPanel.add(sliderLowS);
sliderPanel.add(new JLabel(HIGH_S_NAME));
sliderHighS = new JSlider(0, MAX_VALUE, MAX_VALUE);
sliderHighS.setMajorTickSpacing(50);
sliderHighS.setMinorTickSpacing(10);
sliderHighS.setPaintTicks(true);
sliderHighS.setPaintLabels(true);
sliderPanel.add(sliderHighS);
sliderPanel.add(new JLabel(LOW_V_NAME));
sliderLowV = new JSlider(0, MAX_VALUE, 0);
sliderLowV.setMajorTickSpacing(50);
sliderLowV.setMinorTickSpacing(10);
sliderLowV.setPaintTicks(true);
sliderLowV.setPaintLabels(true);
sliderPanel.add(sliderLowV);
sliderPanel.add(new JLabel(HIGH_V_NAME));
sliderHighV = new JSlider(0, MAX_VALUE, MAX_VALUE);
sliderHighV.setMajorTickSpacing(50);
sliderHighV.setMinorTickSpacing(10);
sliderHighV.setPaintTicks(true);
sliderHighV.setPaintLabels(true);
sliderPanel.add(sliderHighV);
//! [trackbar]
//! [low]
sliderLowH.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
int valH = Math.min(sliderHighH.getValue()-1, source.getValue());
sliderLowH.setValue(valH);
}
});
//! [low]
//! [high]
sliderHighH.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
int valH = Math.max(source.getValue(), sliderLowH.getValue()+1);
sliderHighH.setValue(valH);
}
});
//! [high]
sliderLowS.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
int valS = Math.min(sliderHighS.getValue()-1, source.getValue());
sliderLowS.setValue(valS);
}
});
sliderHighS.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
int valS = Math.max(source.getValue(), sliderLowS.getValue()+1);
sliderHighS.setValue(valS);
}
});
sliderLowV.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
int valV = Math.min(sliderHighV.getValue()-1, source.getValue());
sliderLowV.setValue(valV);
}
});
sliderHighV.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
int valV = Math.max(source.getValue(), sliderLowV.getValue()+1);
sliderHighV.setValue(valV);
}
});
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel framePanel = new JPanel();
imgCaptureLabel = new JLabel(new ImageIcon(img));
framePanel.add(imgCaptureLabel);
imgDetectionLabel = new JLabel(new ImageIcon(img));
framePanel.add(imgDetectionLabel);
pane.add(framePanel, BorderLayout.CENTER);
}
private void update(Mat imgCapture, Mat imgThresh) {
//! [show]
imgCaptureLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(imgCapture)));
imgDetectionLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(imgThresh)));
frame.repaint();
//! [show]
}
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new ThresholdInRange(args);
}
});
}
}

View File

@ -0,0 +1,182 @@
import java.awt.GridLayout;
import java.awt.Image;
import java.util.Hashtable;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class MatchTemplateDemoRun implements ChangeListener {
//! [declare]
/// Global Variables
Boolean use_mask = false;
Mat img = new Mat(), templ = new Mat();
Mat mask = new Mat();
int match_method;
JLabel imgDisplay = new JLabel(), resultDisplay = new JLabel();
//! [declare]
public void run(String[] args) {
if (args.length < 2) {
System.out.println("Not enough parameters");
System.out.println("Program arguments:\n<image_name> <template_name> [<mask_name>]");
System.exit(-1);
}
//! [load_image]
/// Load image and template
img = Imgcodecs.imread(args[0], Imgcodecs.IMREAD_COLOR);
templ = Imgcodecs.imread(args[1], Imgcodecs.IMREAD_COLOR);
//! [load_image]
if (args.length > 2) {
use_mask = true;
mask = Imgcodecs.imread(args[2], Imgcodecs.IMREAD_COLOR);
}
if (img.empty() || templ.empty() || (use_mask && mask.empty())) {
System.out.println("Can't read one of the images");
System.exit(-1);
}
matchingMethod();
createJFrame();
}
private void matchingMethod() {
Mat result = new Mat();
//! [copy_source]
/// Source image to display
Mat img_display = new Mat();
img.copyTo(img_display);
//! [copy_source]
//! [create_result_matrix]
/// Create the result matrix
int result_cols = img.cols() - templ.cols() + 1;
int result_rows = img.rows() - templ.rows() + 1;
result.create(result_rows, result_cols, CvType.CV_32FC1);
//! [create_result_matrix]
//! [match_template]
/// Do the Matching and Normalize
Boolean method_accepts_mask = (Imgproc.TM_SQDIFF == match_method || match_method == Imgproc.TM_CCORR_NORMED);
if (use_mask && method_accepts_mask) {
Imgproc.matchTemplate(img, templ, result, match_method, mask);
} else {
Imgproc.matchTemplate(img, templ, result, match_method);
}
//! [match_template]
//! [normalize]
Core.normalize(result, result, 0, 1, Core.NORM_MINMAX, -1, new Mat());
//! [normalize]
//! [best_match]
/// Localizing the best match with minMaxLoc
Point matchLoc;
Core.MinMaxLocResult mmr = Core.minMaxLoc(result);
//! [best_match]
//! [match_loc]
/// For SQDIFF and SQDIFF_NORMED, the best matches are lower values.
/// For all the other methods, the higher the better
if (match_method == Imgproc.TM_SQDIFF || match_method == Imgproc.TM_SQDIFF_NORMED) {
matchLoc = mmr.minLoc;
} else {
matchLoc = mmr.maxLoc;
}
//! [match_loc]
//! [imshow]
/// Show me what you got
Imgproc.rectangle(img_display, matchLoc, new Point(matchLoc.x + templ.cols(), matchLoc.y + templ.rows()),
new Scalar(0, 0, 0), 2, 8, 0);
Imgproc.rectangle(result, matchLoc, new Point(matchLoc.x + templ.cols(), matchLoc.y + templ.rows()),
new Scalar(0, 0, 0), 2, 8, 0);
Image tmpImg = HighGui.toBufferedImage(img_display);
ImageIcon icon = new ImageIcon(tmpImg);
imgDisplay.setIcon(icon);
result.convertTo(result, CvType.CV_8UC1, 255.0);
tmpImg = HighGui.toBufferedImage(result);
icon = new ImageIcon(tmpImg);
resultDisplay.setIcon(icon);
//! [imshow]
}
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
if (!source.getValueIsAdjusting()) {
match_method = source.getValue();
matchingMethod();
}
}
private void createJFrame() {
String title = "Source image; Control; Result image";
JFrame frame = new JFrame(title);
frame.setLayout(new GridLayout(2, 2));
frame.add(imgDisplay);
//! [create_trackbar]
int min = 0, max = 5;
JSlider slider = new JSlider(JSlider.VERTICAL, min, max, match_method);
//! [create_trackbar]
slider.setPaintTicks(true);
slider.setPaintLabels(true);
// Set the spacing for the minor tick mark
slider.setMinorTickSpacing(1);
// Customizing the labels
Hashtable<Integer, JLabel> labelTable = new Hashtable<>();
labelTable.put(new Integer(0), new JLabel("0 - SQDIFF"));
labelTable.put(new Integer(1), new JLabel("1 - SQDIFF NORMED"));
labelTable.put(new Integer(2), new JLabel("2 - TM CCORR"));
labelTable.put(new Integer(3), new JLabel("3 - TM CCORR NORMED"));
labelTable.put(new Integer(4), new JLabel("4 - TM COEFF"));
labelTable.put(new Integer(5), new JLabel("5 - TM COEFF NORMED : (Method)"));
slider.setLabelTable(labelTable);
slider.addChangeListener(this);
frame.add(slider);
frame.add(resultDisplay);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);
}
}
public class MatchTemplateDemo {
public static void main(String[] args) {
// load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// run code
new MatchTemplateDemoRun().run(args);
}
}

View File

@ -0,0 +1,81 @@
/**
* @file Filter2D_demo.java
* @brief Sample code that shows how to implement your own linear filters by using filter2D function
*/
import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class Filter2D_DemoRun {
public void run(String[] args) {
// Declare variables
Mat src, dst = new Mat();
Mat kernel = new Mat();
Point anchor;
double delta;
int ddepth;
int kernel_size;
String window_name = "filter2D Demo";
//! [load]
String imageName = ((args.length > 0) ? args[0] : "../data/lena.jpg");
// Load an image
src = Imgcodecs.imread(imageName, Imgcodecs.IMREAD_COLOR);
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image!");
System.out.println("Program Arguments: [image_name -- default ../data/lena.jpg] \n");
System.exit(-1);
}
//! [load]
//! [init_arguments]
// Initialize arguments for the filter
anchor = new Point( -1, -1);
delta = 0.0;
ddepth = -1;
//! [init_arguments]
// Loop - Will filter the image with different kernel sizes each 0.5 seconds
int ind = 0;
while( true )
{
//! [update_kernel]
// Update kernel size for a normalized box filter
kernel_size = 3 + 2*( ind%5 );
Mat ones = Mat.ones( kernel_size, kernel_size, CvType.CV_32F );
Core.multiply(ones, new Scalar(1/(double)(kernel_size*kernel_size)), kernel);
//! [update_kernel]
//! [apply_filter]
// Apply filter
Imgproc.filter2D(src, dst, ddepth , kernel, anchor, delta, Core.BORDER_DEFAULT );
//! [apply_filter]
HighGui.imshow( window_name, dst );
int c = HighGui.waitKey(500);
// Press 'ESC' to exit the program
if( c == 27 )
{ break; }
ind++;
}
System.exit(0);
}
}
public class Filter2D_Demo {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new Filter2D_DemoRun().run(args);
}
}

View File

@ -0,0 +1,77 @@
package sample;
/**
* @file HoughCircles.java
* @brief This program demonstrates circle finding with the Hough transform
*/
import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class HoughCirclesRun {
public void run(String[] args) {
//! [load]
String default_file = "../../../../data/smarties.png";
String filename = ((args.length > 0) ? args[0] : default_file);
// Load an image
Mat src = Imgcodecs.imread(filename, Imgcodecs.IMREAD_COLOR);
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image!");
System.out.println("Program Arguments: [image_name -- default "
+ default_file +"] \n");
System.exit(-1);
}
//! [load]
//! [convert_to_gray]
Mat gray = new Mat();
Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
//! [convert_to_gray]
//![reduce_noise]
Imgproc.medianBlur(gray, gray, 5);
//![reduce_noise]
//! [houghcircles]
Mat circles = new Mat();
Imgproc.HoughCircles(gray, circles, Imgproc.HOUGH_GRADIENT, 1.0,
(double)gray.rows()/16, // change this value to detect circles with different distances to each other
100.0, 30.0, 1, 30); // change the last two parameters
// (min_radius & max_radius) to detect larger circles
//! [houghcircles]
//! [draw]
for (int x = 0; x < circles.cols(); x++) {
double[] c = circles.get(0, x);
Point center = new Point(Math.round(c[0]), Math.round(c[1]));
// circle center
Imgproc.circle(src, center, 1, new Scalar(0,100,100), 3, 8, 0 );
// circle outline
int radius = (int) Math.round(c[2]);
Imgproc.circle(src, center, radius, new Scalar(255,0,255), 3, 8, 0 );
}
//! [draw]
//! [display]
HighGui.imshow("detected circles", src);
HighGui.waitKey();
//! [display]
System.exit(0);
}
}
public class HoughCircles {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new HoughCirclesRun().run(args);
}
}

View File

@ -0,0 +1,96 @@
/**
* @file HoughLines.java
* @brief This program demonstrates line finding with the Hough transform
*/
import org.opencv.core.*;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class HoughLinesRun {
public void run(String[] args) {
// Declare the output variables
Mat dst = new Mat(), cdst = new Mat(), cdstP;
//! [load]
String default_file = "../../../../data/sudoku.png";
String filename = ((args.length > 0) ? args[0] : default_file);
// Load an image
Mat src = Imgcodecs.imread(filename, Imgcodecs.IMREAD_GRAYSCALE);
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image!");
System.out.println("Program Arguments: [image_name -- default "
+ default_file +"] \n");
System.exit(-1);
}
//! [load]
//! [edge_detection]
// Edge detection
Imgproc.Canny(src, dst, 50, 200, 3, false);
//! [edge_detection]
// Copy edges to the images that will display the results in BGR
Imgproc.cvtColor(dst, cdst, Imgproc.COLOR_GRAY2BGR);
cdstP = cdst.clone();
//! [hough_lines]
// Standard Hough Line Transform
Mat lines = new Mat(); // will hold the results of the detection
Imgproc.HoughLines(dst, lines, 1, Math.PI/180, 150); // runs the actual detection
//! [hough_lines]
//! [draw_lines]
// Draw the lines
for (int x = 0; x < lines.rows(); x++) {
double rho = lines.get(x, 0)[0],
theta = lines.get(x, 0)[1];
double a = Math.cos(theta), b = Math.sin(theta);
double x0 = a*rho, y0 = b*rho;
Point pt1 = new Point(Math.round(x0 + 1000*(-b)), Math.round(y0 + 1000*(a)));
Point pt2 = new Point(Math.round(x0 - 1000*(-b)), Math.round(y0 - 1000*(a)));
Imgproc.line(cdst, pt1, pt2, new Scalar(0, 0, 255), 3, Imgproc.LINE_AA, 0);
}
//! [draw_lines]
//! [hough_lines_p]
// Probabilistic Line Transform
Mat linesP = new Mat(); // will hold the results of the detection
Imgproc.HoughLinesP(dst, linesP, 1, Math.PI/180, 50, 50, 10); // runs the actual detection
//! [hough_lines_p]
//! [draw_lines_p]
// Draw the lines
for (int x = 0; x < linesP.rows(); x++) {
double[] l = linesP.get(x, 0);
Imgproc.line(cdstP, new Point(l[0], l[1]), new Point(l[2], l[3]), new Scalar(0, 0, 255), 3, Imgproc.LINE_AA, 0);
}
//! [draw_lines_p]
//! [imshow]
// Show results
HighGui.imshow("Source", src);
HighGui.imshow("Detected Lines (in red) - Standard Hough Line Transform", cdst);
HighGui.imshow("Detected Lines (in red) - Probabilistic Line Transform", cdstP);
//! [imshow]
//! [exit]
// Wait and Exit
HighGui.waitKey();
System.exit(0);
//! [exit]
}
}
public class HoughLines {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new HoughLinesRun().run(args);
}
}

View File

@ -0,0 +1,73 @@
/**
* @file LaplaceDemo.java
* @brief Sample code showing how to detect edges using the Laplace operator
*/
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class LaplaceDemoRun {
public void run(String[] args) {
//! [variables]
// Declare the variables we are going to use
Mat src, src_gray = new Mat(), dst = new Mat();
int kernel_size = 3;
int scale = 1;
int delta = 0;
int ddepth = CvType.CV_16S;
String window_name = "Laplace Demo";
//! [variables]
//! [load]
String imageName = ((args.length > 0) ? args[0] : "../data/lena.jpg");
src = Imgcodecs.imread(imageName, Imgcodecs.IMREAD_COLOR); // Load an image
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image");
System.out.println("Program Arguments: [image_name -- default ../data/lena.jpg] \n");
System.exit(-1);
}
//! [load]
//! [reduce_noise]
// Reduce noise by blurring with a Gaussian filter ( kernel size = 3 )
Imgproc.GaussianBlur( src, src, new Size(3, 3), 0, 0, Core.BORDER_DEFAULT );
//! [reduce_noise]
//! [convert_to_gray]
// Convert the image to grayscale
Imgproc.cvtColor( src, src_gray, Imgproc.COLOR_RGB2GRAY );
//! [convert_to_gray]
/// Apply Laplace function
Mat abs_dst = new Mat();
//! [laplacian]
Imgproc.Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, Core.BORDER_DEFAULT );
//! [laplacian]
//! [convert]
// converting back to CV_8U
Core.convertScaleAbs( dst, abs_dst );
//! [convert]
//! [display]
HighGui.imshow( window_name, abs_dst );
HighGui.waitKey(0);
//! [display]
System.exit(0);
}
}
public class LaplaceDemo {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new LaplaceDemoRun().run(args);
}
}

View File

@ -0,0 +1,94 @@
/**
* @file CopyMakeBorder.java
* @brief Sample code that shows the functionality of copyMakeBorder
*/
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import java.util.Random;
class CopyMakeBorderRun {
public void run(String[] args) {
//! [variables]
// Declare the variables
Mat src, dst = new Mat();
int top, bottom, left, right;
int borderType = Core.BORDER_CONSTANT;
String window_name = "copyMakeBorder Demo";
Random rng;
//! [variables]
//! [load]
String imageName = ((args.length > 0) ? args[0] : "../data/lena.jpg");
// Load an image
src = Imgcodecs.imread(imageName, Imgcodecs.IMREAD_COLOR);
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image!");
System.out.println("Program Arguments: [image_name -- default ../data/lena.jpg] \n");
System.exit(-1);
}
//! [load]
// Brief how-to for this program
System.out.println("\n" +
"\t copyMakeBorder Demo: \n" +
"\t -------------------- \n" +
" ** Press 'c' to set the border to a random constant value \n" +
" ** Press 'r' to set the border to be replicated \n" +
" ** Press 'ESC' to exit the program \n");
//![create_window]
HighGui.namedWindow( window_name, HighGui.WINDOW_AUTOSIZE );
//![create_window]
//! [init_arguments]
// Initialize arguments for the filter
top = (int) (0.05*src.rows()); bottom = top;
left = (int) (0.05*src.cols()); right = left;
//! [init_arguments]
while( true ) {
//! [update_value]
rng = new Random();
Scalar value = new Scalar( rng.nextInt(256),
rng.nextInt(256), rng.nextInt(256) );
//! [update_value]
//! [copymakeborder]
Core.copyMakeBorder( src, dst, top, bottom, left, right, borderType, value);
//! [copymakeborder]
//! [display]
HighGui.imshow( window_name, dst );
//! [display]
//![check_keypress]
char c = (char) HighGui.waitKey(500);
c = Character.toLowerCase(c);
if( c == 27 )
{ break; }
else if( c == 'c' )
{ borderType = Core.BORDER_CONSTANT;}
else if( c == 'r' )
{ borderType = Core.BORDER_REPLICATE;}
//![check_keypress]
}
System.exit(0);
}
}
public class CopyMakeBorder {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new CopyMakeBorderRun().run(args);
}
}

View File

@ -0,0 +1,94 @@
/**
* @file SobelDemo.java
* @brief Sample code using Sobel and/or Scharr OpenCV functions to make a simple Edge Detector
*/
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class SobelDemoRun {
public void run(String[] args) {
//! [declare_variables]
// First we declare the variables we are going to use
Mat src, src_gray = new Mat();
Mat grad = new Mat();
String window_name = "Sobel Demo - Simple Edge Detector";
int scale = 1;
int delta = 0;
int ddepth = CvType.CV_16S;
//! [declare_variables]
//! [load]
// As usual we load our source image (src)
// Check number of arguments
if (args.length == 0){
System.out.println("Not enough parameters!");
System.out.println("Program Arguments: [image_path]");
System.exit(-1);
}
// Load the image
src = Imgcodecs.imread(args[0]);
// Check if image is loaded fine
if( src.empty() ) {
System.out.println("Error opening image: " + args[0]);
System.exit(-1);
}
//! [load]
//! [reduce_noise]
// Remove noise by blurring with a Gaussian filter ( kernel size = 3 )
Imgproc.GaussianBlur( src, src, new Size(3, 3), 0, 0, Core.BORDER_DEFAULT );
//! [reduce_noise]
//! [convert_to_gray]
// Convert the image to grayscale
Imgproc.cvtColor( src, src_gray, Imgproc.COLOR_RGB2GRAY );
//! [convert_to_gray]
//! [sobel]
/// Generate grad_x and grad_y
Mat grad_x = new Mat(), grad_y = new Mat();
Mat abs_grad_x = new Mat(), abs_grad_y = new Mat();
/// Gradient X
//Imgproc.Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, Core.BORDER_DEFAULT );
Imgproc.Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, Core.BORDER_DEFAULT );
/// Gradient Y
//Imgproc.Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, Core.BORDER_DEFAULT );
Imgproc.Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, Core.BORDER_DEFAULT );
//! [sobel]
//![convert]
// converting back to CV_8U
Core.convertScaleAbs( grad_x, abs_grad_x );
Core.convertScaleAbs( grad_y, abs_grad_y );
//![convert]
//! [add_weighted]
/// Total Gradient (approximate)
Core.addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );
//! [add_weighted]
//! [display]
HighGui.imshow( window_name, grad );
HighGui.waitKey(0);
//! [display]
System.exit(0);
}
}
public class SobelDemo {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new SobelDemoRun().run(args);
}
}

View File

@ -0,0 +1,110 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class CannyDetectorDemo {
private static final int MAX_LOW_THRESHOLD = 100;
private static final int RATIO = 3;
private static final int KERNEL_SIZE = 3;
private static final Size BLUR_SIZE = new Size(3,3);
private int lowThresh = 0;
private Mat src;
private Mat srcBlur = new Mat();
private Mat detectedEdges = new Mat();
private Mat dst = new Mat();
private JFrame frame;
private JLabel imgLabel;
public CannyDetectorDemo(String[] args) {
String imagePath = args.length > 0 ? args[0] : "../data/fruits.jpg";
src = Imgcodecs.imread(imagePath);
if (src.empty()) {
System.out.println("Empty image: " + imagePath);
System.exit(0);
}
// Create and set up the window.
frame = new JFrame("Edge Map (Canny detector demo)");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Min Threshold:"));
JSlider slider = new JSlider(0, MAX_LOW_THRESHOLD, 0);
slider.setMajorTickSpacing(10);
slider.setMinorTickSpacing(5);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
lowThresh = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
private void update() {
Imgproc.blur(src, srcBlur, BLUR_SIZE);
Imgproc.Canny(srcBlur, detectedEdges, lowThresh, lowThresh * RATIO, KERNEL_SIZE, false);
dst = new Mat(src.size(), CvType.CV_8UC3, Scalar.all(0));
src.copyTo(dst, detectedEdges);
Image img = HighGui.toBufferedImage(dst);
imgLabel.setIcon(new ImageIcon(img));
frame.repaint();
}
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CannyDetectorDemo(args);
}
});
}
}

View File

@ -0,0 +1,219 @@
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
/**
*
* @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed
* and Distance Transformation
*
*/
class ImageSegmentation {
public void run(String[] args) {
//! [load_image]
// Load the image
String filename = args.length > 0 ? args[0] : "../data/cards.png";
Mat srcOriginal = Imgcodecs.imread(filename);
if (srcOriginal.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
// Show source image
HighGui.imshow("Source Image", srcOriginal);
//! [load_image]
//! [black_bg]
// Change the background from white to black, since that will help later to
// extract
// better results during the use of Distance Transform
Mat src = srcOriginal.clone();
byte[] srcData = new byte[(int) (src.total() * src.channels())];
src.get(0, 0, srcData);
for (int i = 0; i < src.rows(); i++) {
for (int j = 0; j < src.cols(); j++) {
if (srcData[(i * src.cols() + j) * 3] == (byte) 255 && srcData[(i * src.cols() + j) * 3 + 1] == (byte) 255
&& srcData[(i * src.cols() + j) * 3 + 2] == (byte) 255) {
srcData[(i * src.cols() + j) * 3] = 0;
srcData[(i * src.cols() + j) * 3 + 1] = 0;
srcData[(i * src.cols() + j) * 3 + 2] = 0;
}
}
}
src.put(0, 0, srcData);
// Show output image
HighGui.imshow("Black Background Image", src);
//! [black_bg]
//! [sharp]
// Create a kernel that we will use to sharpen our image
Mat kernel = new Mat(3, 3, CvType.CV_32F);
// an approximation of second derivative, a quite strong kernel
float[] kernelData = new float[(int) (kernel.total() * kernel.channels())];
kernelData[0] = 1; kernelData[1] = 1; kernelData[2] = 1;
kernelData[3] = 1; kernelData[4] = -8; kernelData[5] = 1;
kernelData[6] = 1; kernelData[7] = 1; kernelData[8] = 1;
kernel.put(0, 0, kernelData);
// do the laplacian filtering as it is
// well, we need to convert everything in something more deeper then CV_8U
// because the kernel has some negative values,
// and we can expect in general to have a Laplacian image with negative values
// BUT a 8bits unsigned int (the one we are working with) can contain values
// from 0 to 255
// so the possible negative number will be truncated
Mat imgLaplacian = new Mat();
Imgproc.filter2D(src, imgLaplacian, CvType.CV_32F, kernel);
Mat sharp = new Mat();
src.convertTo(sharp, CvType.CV_32F);
Mat imgResult = new Mat();
Core.subtract(sharp, imgLaplacian, imgResult);
// convert back to 8bits gray scale
imgResult.convertTo(imgResult, CvType.CV_8UC3);
imgLaplacian.convertTo(imgLaplacian, CvType.CV_8UC3);
// imshow( "Laplace Filtered Image", imgLaplacian );
HighGui.imshow("New Sharped Image", imgResult);
//! [sharp]
//! [bin]
// Create binary image from source image
Mat bw = new Mat();
Imgproc.cvtColor(imgResult, bw, Imgproc.COLOR_BGR2GRAY);
Imgproc.threshold(bw, bw, 40, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
HighGui.imshow("Binary Image", bw);
//! [bin]
//! [dist]
// Perform the distance transform algorithm
Mat dist = new Mat();
Imgproc.distanceTransform(bw, dist, Imgproc.DIST_L2, 3);
// Normalize the distance image for range = {0.0, 1.0}
// so we can visualize and threshold it
Core.normalize(dist, dist, 0.0, 1.0, Core.NORM_MINMAX);
Mat distDisplayScaled = new Mat();
Core.multiply(dist, new Scalar(255), distDisplayScaled);
Mat distDisplay = new Mat();
distDisplayScaled.convertTo(distDisplay, CvType.CV_8U);
HighGui.imshow("Distance Transform Image", distDisplay);
//! [dist]
//! [peaks]
// Threshold to obtain the peaks
// This will be the markers for the foreground objects
Imgproc.threshold(dist, dist, 0.4, 1.0, Imgproc.THRESH_BINARY);
// Dilate a bit the dist image
Mat kernel1 = Mat.ones(3, 3, CvType.CV_8U);
Imgproc.dilate(dist, dist, kernel1);
Mat distDisplay2 = new Mat();
dist.convertTo(distDisplay2, CvType.CV_8U);
Core.multiply(distDisplay2, new Scalar(255), distDisplay2);
HighGui.imshow("Peaks", distDisplay2);
//! [peaks]
//! [seeds]
// Create the CV_8U version of the distance image
// It is needed for findContours()
Mat dist_8u = new Mat();
dist.convertTo(dist_8u, CvType.CV_8U);
// Find total markers
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(dist_8u, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
// Create the marker image for the watershed algorithm
Mat markers = Mat.zeros(dist.size(), CvType.CV_32S);
// Draw the foreground markers
for (int i = 0; i < contours.size(); i++) {
Imgproc.drawContours(markers, contours, i, new Scalar(i + 1), -1);
}
// Draw the background marker
Mat markersScaled = new Mat();
markers.convertTo(markersScaled, CvType.CV_32F);
Core.normalize(markersScaled, markersScaled, 0.0, 255.0, Core.NORM_MINMAX);
Imgproc.circle(markersScaled, new Point(5, 5), 3, new Scalar(255, 255, 255), -1);
Mat markersDisplay = new Mat();
markersScaled.convertTo(markersDisplay, CvType.CV_8U);
HighGui.imshow("Markers", markersDisplay);
Imgproc.circle(markers, new Point(5, 5), 3, new Scalar(255, 255, 255), -1);
//! [seeds]
//! [watershed]
// Perform the watershed algorithm
Imgproc.watershed(imgResult, markers);
Mat mark = Mat.zeros(markers.size(), CvType.CV_8U);
markers.convertTo(mark, CvType.CV_8UC1);
Core.bitwise_not(mark, mark);
// imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
// image looks like at that point
// Generate random colors
Random rng = new Random(12345);
List<Scalar> colors = new ArrayList<>(contours.size());
for (int i = 0; i < contours.size(); i++) {
int b = rng.nextInt(256);
int g = rng.nextInt(256);
int r = rng.nextInt(256);
colors.add(new Scalar(b, g, r));
}
// Create the result image
Mat dst = Mat.zeros(markers.size(), CvType.CV_8UC3);
byte[] dstData = new byte[(int) (dst.total() * dst.channels())];
dst.get(0, 0, dstData);
// Fill labeled objects with random colors
int[] markersData = new int[(int) (markers.total() * markers.channels())];
markers.get(0, 0, markersData);
for (int i = 0; i < markers.rows(); i++) {
for (int j = 0; j < markers.cols(); j++) {
int index = markersData[i * markers.cols() + j];
if (index > 0 && index <= contours.size()) {
dstData[(i * dst.cols() + j) * 3 + 0] = (byte) colors.get(index - 1).val[0];
dstData[(i * dst.cols() + j) * 3 + 1] = (byte) colors.get(index - 1).val[1];
dstData[(i * dst.cols() + j) * 3 + 2] = (byte) colors.get(index - 1).val[2];
} else {
dstData[(i * dst.cols() + j) * 3 + 0] = 0;
dstData[(i * dst.cols() + j) * 3 + 1] = 0;
dstData[(i * dst.cols() + j) * 3 + 2] = 0;
}
}
}
dst.put(0, 0, dstData);
// Visualize the final image
HighGui.imshow("Final Result", dst);
//! [watershed]
HighGui.waitKey();
System.exit(0);
}
}
public class ImageSegmentationDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new ImageSegmentation().run(args);
}
}

View File

@ -0,0 +1,98 @@
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class Remap {
private Mat mapX = new Mat();
private Mat mapY = new Mat();
private Mat dst = new Mat();
private int ind = 0;
//! [Update]
private void updateMap() {
float buffX[] = new float[(int) (mapX.total() * mapX.channels())];
mapX.get(0, 0, buffX);
float buffY[] = new float[(int) (mapY.total() * mapY.channels())];
mapY.get(0, 0, buffY);
for (int i = 0; i < mapX.rows(); i++) {
for (int j = 0; j < mapX.cols(); j++) {
switch (ind) {
case 0:
if( j > mapX.cols()*0.25 && j < mapX.cols()*0.75 && i > mapX.rows()*0.25 && i < mapX.rows()*0.75 ) {
buffX[i*mapX.cols() + j] = 2*( j - mapX.cols()*0.25f ) + 0.5f;
buffY[i*mapY.cols() + j] = 2*( i - mapX.rows()*0.25f ) + 0.5f;
} else {
buffX[i*mapX.cols() + j] = 0;
buffY[i*mapY.cols() + j] = 0;
}
break;
case 1:
buffX[i*mapX.cols() + j] = j;
buffY[i*mapY.cols() + j] = mapY.rows() - i;
break;
case 2:
buffX[i*mapX.cols() + j] = mapY.cols() - j;
buffY[i*mapY.cols() + j] = i;
break;
case 3:
buffX[i*mapX.cols() + j] = mapY.cols() - j;
buffY[i*mapY.cols() + j] = mapY.rows() - i;
break;
default:
break;
}
}
}
mapX.put(0, 0, buffX);
mapY.put(0, 0, buffY);
ind = (ind+1) % 4;
}
//! [Update]
public void run(String[] args) {
String filename = args.length > 0 ? args[0] : "../data/chicky_512.png";
//! [Load]
Mat src = Imgcodecs.imread(filename, Imgcodecs.IMREAD_COLOR);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
//! [Load]
//! [Create]
mapX = new Mat(src.size(), CvType.CV_32F);
mapY = new Mat(src.size(), CvType.CV_32F);
//! [Create]
//! [Window]
final String winname = "Remap demo";
HighGui.namedWindow(winname, HighGui.WINDOW_AUTOSIZE);
//! [Window]
//! [Loop]
for (;;) {
updateMap();
Imgproc.remap(src, dst, mapX, mapY, Imgproc.INTER_LINEAR);
HighGui.imshow(winname, dst);
if (HighGui.waitKey(1000) == 27) {
break;
}
}
//! [Loop]
System.exit(0);
}
}
public class RemapDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new Remap().run(args);
}
}

View File

@ -0,0 +1,80 @@
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class GeometricTransforms {
public void run(String[] args) {
//! [Load the image]
String filename = args.length > 0 ? args[0] : "../data/lena.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
//! [Load the image]
//! [Set your 3 points to calculate the Affine Transform]
Point[] srcTri = new Point[3];
srcTri[0] = new Point( 0, 0 );
srcTri[1] = new Point( src.cols() - 1, 0 );
srcTri[2] = new Point( 0, src.rows() - 1 );
Point[] dstTri = new Point[3];
dstTri[0] = new Point( 0, src.rows()*0.33 );
dstTri[1] = new Point( src.cols()*0.85, src.rows()*0.25 );
dstTri[2] = new Point( src.cols()*0.15, src.rows()*0.7 );
//! [Set your 3 points to calculate the Affine Transform]
//! [Get the Affine Transform]
Mat warpMat = Imgproc.getAffineTransform( new MatOfPoint2f(srcTri), new MatOfPoint2f(dstTri) );
//! [Get the Affine Transform]
//! [Apply the Affine Transform just found to the src image]
Mat warpDst = Mat.zeros( src.rows(), src.cols(), src.type() );
Imgproc.warpAffine( src, warpDst, warpMat, warpDst.size() );
//! [Apply the Affine Transform just found to the src image]
/** Rotating the image after Warp */
//! [Compute a rotation matrix with respect to the center of the image]
Point center = new Point(warpDst.cols() / 2, warpDst.rows() / 2);
double angle = -50.0;
double scale = 0.6;
//! [Compute a rotation matrix with respect to the center of the image]
//! [Get the rotation matrix with the specifications above]
Mat rotMat = Imgproc.getRotationMatrix2D( center, angle, scale );
//! [Get the rotation matrix with the specifications above]
//! [Rotate the warped image]
Mat warpRotateDst = new Mat();
Imgproc.warpAffine( warpDst, warpRotateDst, rotMat, warpDst.size() );
//! [Rotate the warped image]
//! [Show what you got]
HighGui.imshow( "Source image", src );
HighGui.imshow( "Warp", warpDst );
HighGui.imshow( "Warp + Rotate", warpRotateDst );
//! [Show what you got]
//! [Wait until user exits the program]
HighGui.waitKey(0);
//! [Wait until user exits the program]
System.exit(0);
}
}
public class GeometricTransformsDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new GeometricTransforms().run(args);
}
}

View File

@ -0,0 +1,179 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class GeneralContours1 {
private Mat srcGray = new Mat();
private JFrame frame;
private JLabel imgSrcLabel;
private JLabel imgContoursLabel;
private static final int MAX_THRESHOLD = 255;
private int threshold = 100;
private Random rng = new Random(12345);
public GeneralContours1(String[] args) {
//! [setup]
/// Load source image
String filename = args.length > 0 ? args[0] : "../data/stuff.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
/// Convert image to gray and blur it
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
Imgproc.blur(srcGray, srcGray, new Size(3, 3));
//! [setup]
//! [createWindow]
// Create and set up the window.
frame = new JFrame("Creating Bounding boxes and circles for contours demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
//! [createWindow]
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
//! [trackbar]
sliderPanel.add(new JLabel("Canny threshold: "));
JSlider slider = new JSlider(0, MAX_THRESHOLD, threshold);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
threshold = source.getValue();
update();
}
});
//! [trackbar]
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
imgSrcLabel = new JLabel(new ImageIcon(img));
imgPanel.add(imgSrcLabel);
Mat blackImg = Mat.zeros(srcGray.size(), CvType.CV_8U);
imgContoursLabel = new JLabel(new ImageIcon(HighGui.toBufferedImage(blackImg)));
imgPanel.add(imgContoursLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
//! [Canny]
/// Detect edges using Canny
Mat cannyOutput = new Mat();
Imgproc.Canny(srcGray, cannyOutput, threshold, threshold * 2);
//! [Canny]
//! [findContours]
/// Find contours
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(cannyOutput, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
//! [findContours]
//! [allthework]
/// Approximate contours to polygons + get bounding rects and circles
MatOfPoint2f[] contoursPoly = new MatOfPoint2f[contours.size()];
Rect[] boundRect = new Rect[contours.size()];
Point[] centers = new Point[contours.size()];
float[][] radius = new float[contours.size()][1];
for (int i = 0; i < contours.size(); i++) {
contoursPoly[i] = new MatOfPoint2f();
Imgproc.approxPolyDP(new MatOfPoint2f(contours.get(i).toArray()), contoursPoly[i], 3, true);
boundRect[i] = Imgproc.boundingRect(new MatOfPoint(contoursPoly[i].toArray()));
centers[i] = new Point();
Imgproc.minEnclosingCircle(contoursPoly[i], centers[i], radius[i]);
}
//! [allthework]
//! [zeroMat]
Mat drawing = Mat.zeros(cannyOutput.size(), CvType.CV_8UC3);
//! [zeroMat]
//! [forContour]
/// Draw polygonal contour + bonding rects + circles
List<MatOfPoint> contoursPolyList = new ArrayList<>(contoursPoly.length);
for (MatOfPoint2f poly : contoursPoly) {
contoursPolyList.add(new MatOfPoint(poly.toArray()));
}
for (int i = 0; i < contours.size(); i++) {
Scalar color = new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256));
Imgproc.drawContours(drawing, contoursPolyList, i, color);
Imgproc.rectangle(drawing, boundRect[i].tl(), boundRect[i].br(), color, 2);
Imgproc.circle(drawing, centers[i], (int) radius[i][0], color, 2);
}
//! [forContour]
//! [showDrawings]
/// Show in a window
imgContoursLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(drawing)));
frame.repaint();
//! [showDrawings]
}
}
public class GeneralContoursDemo1 {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new GeneralContours1(args);
}
});
}
}

View File

@ -0,0 +1,176 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.RotatedRect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class GeneralContours2 {
private Mat srcGray = new Mat();
private JFrame frame;
private JLabel imgSrcLabel;
private JLabel imgContoursLabel;
private static final int MAX_THRESHOLD = 255;
private int threshold = 100;
private Random rng = new Random(12345);
public GeneralContours2(String[] args) {
//! [setup]
/// Load source image
String filename = args.length > 0 ? args[0] : "../data/stuff.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
/// Convert image to gray and blur it
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
Imgproc.blur(srcGray, srcGray, new Size(3, 3));
//! [setup]
//! [createWindow]
// Create and set up the window.
frame = new JFrame("Creating Bounding rotated boxes and ellipses for contours demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
//! [createWindow]
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
//! [trackbar]
sliderPanel.add(new JLabel("Canny threshold: "));
JSlider slider = new JSlider(0, MAX_THRESHOLD, threshold);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
threshold = source.getValue();
update();
}
});
//! [trackbar]
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
imgSrcLabel = new JLabel(new ImageIcon(img));
imgPanel.add(imgSrcLabel);
Mat blackImg = Mat.zeros(srcGray.size(), CvType.CV_8U);
imgContoursLabel = new JLabel(new ImageIcon(HighGui.toBufferedImage(blackImg)));
imgPanel.add(imgContoursLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
//! [Canny]
/// Detect edges using Canny
Mat cannyOutput = new Mat();
Imgproc.Canny(srcGray, cannyOutput, threshold, threshold * 2);
//! [Canny]
//! [findContours]
/// Find contours
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(cannyOutput, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
//! [findContours]
/// Find the rotated rectangles and ellipses for each contour
RotatedRect[] minRect = new RotatedRect[contours.size()];
RotatedRect[] minEllipse = new RotatedRect[contours.size()];
for (int i = 0; i < contours.size(); i++) {
minRect[i] = Imgproc.minAreaRect(new MatOfPoint2f(contours.get(i).toArray()));
minEllipse[i] = new RotatedRect();
if (contours.get(i).rows() > 5) {
minEllipse[i] = Imgproc.fitEllipse(new MatOfPoint2f(contours.get(i).toArray()));
}
}
//! [zeroMat]
/// Draw contours + rotated rects + ellipses
Mat drawing = Mat.zeros(cannyOutput.size(), CvType.CV_8UC3);
//! [zeroMat]
//! [forContour]
for (int i = 0; i < contours.size(); i++) {
Scalar color = new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256));
// contour
Imgproc.drawContours(drawing, contours, i, color);
// ellipse
Imgproc.ellipse(drawing, minEllipse[i], color, 2);
// rotated rectangle
Point[] rectPoints = new Point[4];
minRect[i].points(rectPoints);
for (int j = 0; j < 4; j++) {
Imgproc.line(drawing, rectPoints[j], rectPoints[(j+1) % 4], color);
}
}
//! [forContour]
//! [showDrawings]
/// Show in a window
imgContoursLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(drawing)));
frame.repaint();
//! [showDrawings]
}
}
public class GeneralContoursDemo2 {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new GeneralContours2(args);
}
});
}
}

View File

@ -0,0 +1,137 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class FindContours {
private Mat srcGray = new Mat();
private JFrame frame;
private JLabel imgSrcLabel;
private JLabel imgContoursLabel;
private static final int MAX_THRESHOLD = 255;
private int threshold = 100;
private Random rng = new Random(12345);
public FindContours(String[] args) {
/// Load source image
String filename = args.length > 0 ? args[0] : "../data/HappyFish.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
/// Convert image to gray and blur it
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
Imgproc.blur(srcGray, srcGray, new Size(3, 3));
// Create and set up the window.
frame = new JFrame("Finding contours in your image demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Canny threshold: "));
JSlider slider = new JSlider(0, MAX_THRESHOLD, threshold);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
threshold = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
imgSrcLabel = new JLabel(new ImageIcon(img));
imgPanel.add(imgSrcLabel);
Mat blackImg = Mat.zeros(srcGray.size(), CvType.CV_8U);
imgContoursLabel = new JLabel(new ImageIcon(HighGui.toBufferedImage(blackImg)));
imgPanel.add(imgContoursLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
/// Detect edges using Canny
Mat cannyOutput = new Mat();
Imgproc.Canny(srcGray, cannyOutput, threshold, threshold * 2);
/// Find contours
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(cannyOutput, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
/// Draw contours
Mat drawing = Mat.zeros(cannyOutput.size(), CvType.CV_8UC3);
for (int i = 0; i < contours.size(); i++) {
Scalar color = new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256));
Imgproc.drawContours(drawing, contours, i, color, 2, Imgproc.LINE_8, hierarchy, 0, new Point());
}
imgContoursLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(drawing)));
frame.repaint();
}
}
public class FindContoursDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new FindContours(args);
}
});
}
}

View File

@ -0,0 +1,154 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfInt;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class Hull {
private Mat srcGray = new Mat();
private JFrame frame;
private JLabel imgSrcLabel;
private JLabel imgContoursLabel;
private static final int MAX_THRESHOLD = 255;
private int threshold = 100;
private Random rng = new Random(12345);
public Hull(String[] args) {
/// Load source image
String filename = args.length > 0 ? args[0] : "../data/stuff.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
/// Convert image to gray and blur it
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
Imgproc.blur(srcGray, srcGray, new Size(3, 3));
// Create and set up the window.
frame = new JFrame("Convex Hull demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Canny threshold: "));
JSlider slider = new JSlider(0, MAX_THRESHOLD, threshold);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
threshold = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
imgSrcLabel = new JLabel(new ImageIcon(img));
imgPanel.add(imgSrcLabel);
Mat blackImg = Mat.zeros(srcGray.size(), CvType.CV_8U);
imgContoursLabel = new JLabel(new ImageIcon(HighGui.toBufferedImage(blackImg)));
imgPanel.add(imgContoursLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
/// Detect edges using Canny
Mat cannyOutput = new Mat();
Imgproc.Canny(srcGray, cannyOutput, threshold, threshold * 2);
/// Find contours
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(cannyOutput, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
/// Find the convex hull object for each contour
List<MatOfPoint> hullList = new ArrayList<>();
for (MatOfPoint contour : contours) {
MatOfInt hull = new MatOfInt();
Imgproc.convexHull(contour, hull);
Point[] contourArray = contour.toArray();
Point[] hullPoints = new Point[hull.rows()];
List<Integer> hullContourIdxList = hull.toList();
for (int i = 0; i < hullContourIdxList.size(); i++) {
hullPoints[i] = contourArray[hullContourIdxList.get(i)];
}
hullList.add(new MatOfPoint(hullPoints));
}
/// Draw contours + hull results
Mat drawing = Mat.zeros(cannyOutput.size(), CvType.CV_8UC3);
for (int i = 0; i < contours.size(); i++) {
Scalar color = new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256));
Imgproc.drawContours(drawing, contours, i, color);
Imgproc.drawContours(drawing, hullList, i, color );
}
imgContoursLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(drawing)));
frame.repaint();
}
}
public class HullDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new Hull(args);
}
});
}
}

View File

@ -0,0 +1,178 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.imgproc.Moments;
class MomentsClass {
private Mat srcGray = new Mat();
private JFrame frame;
private JLabel imgSrcLabel;
private JLabel imgContoursLabel;
private static final int MAX_THRESHOLD = 255;
private int threshold = 100;
private Random rng = new Random(12345);
public MomentsClass(String[] args) {
//! [setup]
/// Load source image
String filename = args.length > 0 ? args[0] : "../data/stuff.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
/// Convert image to gray and blur it
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
Imgproc.blur(srcGray, srcGray, new Size(3, 3));
//! [setup]
//! [createWindow]
// Create and set up the window.
frame = new JFrame("Image Moments demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
//! [createWindow]
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
//! [trackbar]
sliderPanel.add(new JLabel("Canny threshold: "));
JSlider slider = new JSlider(0, MAX_THRESHOLD, threshold);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
threshold = source.getValue();
update();
}
});
//! [trackbar]
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
imgSrcLabel = new JLabel(new ImageIcon(img));
imgPanel.add(imgSrcLabel);
Mat blackImg = Mat.zeros(srcGray.size(), CvType.CV_8U);
imgContoursLabel = new JLabel(new ImageIcon(HighGui.toBufferedImage(blackImg)));
imgPanel.add(imgContoursLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
//! [Canny]
/// Detect edges using Canny
Mat cannyOutput = new Mat();
Imgproc.Canny(srcGray, cannyOutput, threshold, threshold * 2);
//! [Canny]
//! [findContours]
/// Find contours
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(cannyOutput, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
//! [findContours]
/// Get the moments
List<Moments> mu = new ArrayList<>(contours.size());
for (int i = 0; i < contours.size(); i++) {
mu.add(Imgproc.moments(contours.get(i)));
}
/// Get the mass centers
List<Point> mc = new ArrayList<>(contours.size());
for (int i = 0; i < contours.size(); i++) {
//add 1e-5 to avoid division by zero
mc.add(new Point(mu.get(i).m10 / (mu.get(i).m00 + 1e-5), mu.get(i).m01 / (mu.get(i).m00 + 1e-5)));
}
//! [zeroMat]
/// Draw contours
Mat drawing = Mat.zeros(cannyOutput.size(), CvType.CV_8UC3);
//! [zeroMat]
//! [forContour]
for (int i = 0; i < contours.size(); i++) {
Scalar color = new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256));
Imgproc.drawContours(drawing, contours, i, color, 2);
Imgproc.circle(drawing, mc.get(i), 4, color, -1);
}
//! [forContour]
//! [showDrawings]
/// Show in a window
imgContoursLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(drawing)));
frame.repaint();
//! [showDrawings]
/// Calculate the area with the moments 00 and compare with the result of the OpenCV function
System.out.println("\t Info: Area and Contour Length \n");
for (int i = 0; i < contours.size(); i++) {
System.out.format(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f\n", i,
mu.get(i).m00, Imgproc.contourArea(contours.get(i)),
Imgproc.arcLength(new MatOfPoint2f(contours.get(i).toArray()), true));
}
}
}
public class MomentsDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new MomentsClass(args);
}
});
}
}

View File

@ -0,0 +1,94 @@
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
class PointPolygonTest {
public void run() {
/// Create an image
int r = 100;
Mat src = Mat.zeros(new Size(4 * r, 4 * r), CvType.CV_8U);
/// Create a sequence of points to make a contour
List<Point> vert = new ArrayList<>(6);
vert.add(new Point(3 * r / 2, 1.34 * r));
vert.add(new Point(1 * r, 2 * r));
vert.add(new Point(3 * r / 2, 2.866 * r));
vert.add(new Point(5 * r / 2, 2.866 * r));
vert.add(new Point(3 * r, 2 * r));
vert.add(new Point(5 * r / 2, 1.34 * r));
/// Draw it in src
for (int i = 0; i < 6; i++) {
Imgproc.line(src, vert.get(i), vert.get((i + 1) % 6), new Scalar(255), 3);
}
/// Get the contours
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(src, contours, hierarchy, Imgproc.RETR_TREE, Imgproc.CHAIN_APPROX_SIMPLE);
/// Calculate the distances to the contour
Mat rawDist = new Mat(src.size(), CvType.CV_32F);
float[] rawDistData = new float[(int) (rawDist.total() * rawDist.channels())];
for (int i = 0; i < src.rows(); i++) {
for (int j = 0; j < src.cols(); j++) {
rawDistData[i * src.cols() + j] = (float) Imgproc
.pointPolygonTest(new MatOfPoint2f(contours.get(0).toArray()), new Point(j, i), true);
}
}
rawDist.put(0, 0, rawDistData);
MinMaxLocResult res = Core.minMaxLoc(rawDist);
double minVal = Math.abs(res.minVal);
double maxVal = Math.abs(res.maxVal);
/// Depicting the distances graphically
Mat drawing = Mat.zeros(src.size(), CvType.CV_8UC3);
byte[] drawingData = new byte[(int) (drawing.total() * drawing.channels())];
for (int i = 0; i < src.rows(); i++) {
for (int j = 0; j < src.cols(); j++) {
if (rawDistData[i * src.cols() + j] < 0) {
drawingData[(i * src.cols() + j) * 3] =
(byte) (255 - Math.abs(rawDistData[i * src.cols() + j]) * 255 / minVal);
} else if (rawDistData[i * src.cols() + j] > 0) {
drawingData[(i * src.cols() + j) * 3 + 2] =
(byte) (255 - rawDistData[i * src.cols() + j] * 255 / maxVal);
} else {
drawingData[(i * src.cols() + j) * 3] = (byte) 255;
drawingData[(i * src.cols() + j) * 3 + 1] = (byte) 255;
drawingData[(i * src.cols() + j) * 3 + 2] = (byte) 255;
}
}
}
drawing.put(0, 0, drawingData);
Imgproc.circle(drawing, res.maxLoc, (int)res.maxVal, new Scalar(255, 255, 255), 2, 8, 0);
/// Show your results
HighGui.imshow("Source", src);
HighGui.imshow("Distance and inscribed circle", drawing);
HighGui.waitKey();
System.exit(0);
}
}
public class PointPolygonTestDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new PointPolygonTest().run();
}
}

View File

@ -0,0 +1,158 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.core.TermCriteria;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CornerSubPix {
private Mat src = new Mat();
private Mat srcGray = new Mat();
private JFrame frame;
private JLabel imgLabel;
private static final int MAX_CORNERS = 25;
private int maxCorners = 10;
private Random rng = new Random(12345);
public CornerSubPix(String[] args) {
/// Load source image and convert it to gray
String filename = args.length > 0 ? args[0] : "../data/pic3.png";
src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
// Create and set up the window.
frame = new JFrame("Shi-Tomasi corner detector demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Max corners:"));
JSlider slider = new JSlider(0, MAX_CORNERS, maxCorners);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
maxCorners = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
private void update() {
/// Parameters for Shi-Tomasi algorithm
maxCorners = Math.max(maxCorners, 1);
MatOfPoint corners = new MatOfPoint();
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3, gradientSize = 3;
boolean useHarrisDetector = false;
double k = 0.04;
/// Copy the source image
Mat copy = src.clone();
/// Apply corner detection
Imgproc.goodFeaturesToTrack(srcGray, corners, maxCorners, qualityLevel, minDistance, new Mat(),
blockSize, gradientSize, useHarrisDetector, k);
/// Draw corners detected
System.out.println("** Number of corners detected: " + corners.rows());
int[] cornersData = new int[(int) (corners.total() * corners.channels())];
corners.get(0, 0, cornersData);
int radius = 4;
Mat matCorners = new Mat(corners.rows(), 2, CvType.CV_32F);
float[] matCornersData = new float[(int) (matCorners.total() * matCorners.channels())];
matCorners.get(0, 0, matCornersData);
for (int i = 0; i < corners.rows(); i++) {
Imgproc.circle(copy, new Point(cornersData[i * 2], cornersData[i * 2 + 1]), radius,
new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256)), Imgproc.FILLED);
matCornersData[i * 2] = cornersData[i * 2];
matCornersData[i * 2 + 1] = cornersData[i * 2 + 1];
}
matCorners.put(0, 0, matCornersData);
imgLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(copy)));
frame.repaint();
/// Set the needed parameters to find the refined corners
Size winSize = new Size(5, 5);
Size zeroZone = new Size(-1, -1);
TermCriteria criteria = new TermCriteria(TermCriteria.EPS + TermCriteria.COUNT, 40, 0.001);
/// Calculate the refined corner locations
Imgproc.cornerSubPix(srcGray, matCorners, winSize, zeroZone, criteria);
/// Write them down
matCorners.get(0, 0, matCornersData);
for (int i = 0; i < corners.rows(); i++) {
System.out.println(
" -- Refined Corner [" + i + "] (" + matCornersData[i * 2] + "," + matCornersData[i * 2 + 1] + ")");
}
}
}
public class CornerSubPixDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CornerSubPix(args);
}
});
}
}

View File

@ -0,0 +1,190 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CornerDetector {
private Mat src = new Mat();
private Mat srcGray = new Mat();
private Mat harrisDst = new Mat();
private Mat shiTomasiDst = new Mat();
private Mat harrisCopy = new Mat();
private Mat shiTomasiCopy = new Mat();
private Mat Mc = new Mat();
private JFrame frame;
private JLabel harrisImgLabel;
private JLabel shiTomasiImgLabel;
private static final int MAX_QUALITY_LEVEL = 100;
private int qualityLevel = 50;
private double harrisMinVal;
private double harrisMaxVal;
private double shiTomasiMinVal;
private double shiTomasiMaxVal;
private Random rng = new Random(12345);
public CornerDetector(String[] args) {
/// Load source image and convert it to gray
String filename = args.length > 0 ? args[0] : "../data/building.jpg";
src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
// Create and set up the window.
frame = new JFrame("Creating your own corner detector demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
/// Set some parameters
int blockSize = 3, apertureSize = 3;
/// My Harris matrix -- Using cornerEigenValsAndVecs
Imgproc.cornerEigenValsAndVecs(srcGray, harrisDst, blockSize, apertureSize);
/* calculate Mc */
Mc = Mat.zeros(srcGray.size(), CvType.CV_32F);
float[] harrisData = new float[(int) (harrisDst.total() * harrisDst.channels())];
harrisDst.get(0, 0, harrisData);
float[] McData = new float[(int) (Mc.total() * Mc.channels())];
Mc.get(0, 0, McData);
for( int i = 0; i < srcGray.rows(); i++ ) {
for( int j = 0; j < srcGray.cols(); j++ ) {
float lambda1 = harrisData[(i*srcGray.cols() + j) * 6];
float lambda2 = harrisData[(i*srcGray.cols() + j) * 6 + 1];
McData[i*srcGray.cols()+j] = (float) (lambda1*lambda2 - 0.04f*Math.pow( ( lambda1 + lambda2 ), 2 ));
}
}
Mc.put(0, 0, McData);
MinMaxLocResult res = Core.minMaxLoc(Mc);
harrisMinVal = res.minVal;
harrisMaxVal = res.maxVal;
/// My Shi-Tomasi -- Using cornerMinEigenVal
Imgproc.cornerMinEigenVal(srcGray, shiTomasiDst, blockSize, apertureSize);
res = Core.minMaxLoc(shiTomasiDst);
shiTomasiMinVal = res.minVal;
shiTomasiMaxVal = res.maxVal;
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Max corners:"));
JSlider slider = new JSlider(0, MAX_QUALITY_LEVEL, qualityLevel);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
qualityLevel = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
harrisImgLabel = new JLabel(new ImageIcon(img));
shiTomasiImgLabel = new JLabel(new ImageIcon(img));
imgPanel.add(harrisImgLabel);
imgPanel.add(shiTomasiImgLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
int qualityLevelVal = Math.max(qualityLevel, 1);
//Harris
harrisCopy = src.clone();
float[] McData = new float[(int) (Mc.total() * Mc.channels())];
Mc.get(0, 0, McData);
for (int i = 0; i < srcGray.rows(); i++) {
for (int j = 0; j < srcGray.cols(); j++) {
if (McData[i * srcGray.cols() + j] > harrisMinVal
+ (harrisMaxVal - harrisMinVal) * qualityLevelVal / MAX_QUALITY_LEVEL) {
Imgproc.circle(harrisCopy, new Point(j, i), 4,
new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256)), Imgproc.FILLED);
}
}
}
//Shi-Tomasi
shiTomasiCopy = src.clone();
float[] shiTomasiData = new float[(int) (shiTomasiDst.total() * shiTomasiDst.channels())];
shiTomasiDst.get(0, 0, shiTomasiData);
for (int i = 0; i < srcGray.rows(); i++) {
for (int j = 0; j < srcGray.cols(); j++) {
if (shiTomasiData[i * srcGray.cols() + j] > shiTomasiMinVal
+ (shiTomasiMaxVal - shiTomasiMinVal) * qualityLevelVal / MAX_QUALITY_LEVEL) {
Imgproc.circle(shiTomasiCopy, new Point(j, i), 4,
new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256)), Imgproc.FILLED);
}
}
}
harrisImgLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(harrisCopy)));
shiTomasiImgLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(shiTomasiCopy)));
frame.repaint();
}
}
public class CornerDetectorDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CornerDetector(args);
}
});
}
}

View File

@ -0,0 +1,134 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import java.util.Random;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class GoodFeaturesToTrack {
private Mat src = new Mat();
private Mat srcGray = new Mat();
private JFrame frame;
private JLabel imgLabel;
private static final int MAX_THRESHOLD = 100;
private int maxCorners = 23;
private Random rng = new Random(12345);
public GoodFeaturesToTrack(String[] args) {
/// Load source image and convert it to gray
String filename = args.length > 0 ? args[0] : "../data/pic3.png";
src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
// Create and set up the window.
frame = new JFrame("Shi-Tomasi corner detector demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Max corners:"));
JSlider slider = new JSlider(0, MAX_THRESHOLD, maxCorners);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
maxCorners = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
private void update() {
/// Parameters for Shi-Tomasi algorithm
maxCorners = Math.max(maxCorners, 1);
MatOfPoint corners = new MatOfPoint();
double qualityLevel = 0.01;
double minDistance = 10;
int blockSize = 3, gradientSize = 3;
boolean useHarrisDetector = false;
double k = 0.04;
/// Copy the source image
Mat copy = src.clone();
/// Apply corner detection
Imgproc.goodFeaturesToTrack(srcGray, corners, maxCorners, qualityLevel, minDistance, new Mat(),
blockSize, gradientSize, useHarrisDetector, k);
/// Draw corners detected
System.out.println("** Number of corners detected: " + corners.rows());
int[] cornersData = new int[(int) (corners.total() * corners.channels())];
corners.get(0, 0, cornersData);
int radius = 4;
for (int i = 0; i < corners.rows(); i++) {
Imgproc.circle(copy, new Point(cornersData[i * 2], cornersData[i * 2 + 1]), radius,
new Scalar(rng.nextInt(256), rng.nextInt(256), rng.nextInt(256)), Imgproc.FILLED);
}
imgLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(copy)));
frame.repaint();
}
}
public class GoodFeaturesToTrackDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new GoodFeaturesToTrack(args);
}
});
}
}

View File

@ -0,0 +1,142 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class CornerHarris {
private Mat srcGray = new Mat();
private Mat dst = new Mat();
private Mat dstNorm = new Mat();
private Mat dstNormScaled = new Mat();
private JFrame frame;
private JLabel imgLabel;
private JLabel cornerLabel;
private static final int MAX_THRESHOLD = 255;
private int threshold = 200;
public CornerHarris(String[] args) {
/// Load source image and convert it to gray
String filename = args.length > 0 ? args[0] : "../data/building.jpg";
Mat src = Imgcodecs.imread(filename);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
Imgproc.cvtColor(src, srcGray, Imgproc.COLOR_BGR2GRAY);
// Create and set up the window.
frame = new JFrame("Harris corner detector demo");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(src);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
update();
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
sliderPanel.add(new JLabel("Threshold: "));
JSlider slider = new JSlider(0, MAX_THRESHOLD, threshold);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(10);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
threshold = source.getValue();
update();
}
});
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
JPanel imgPanel = new JPanel();
imgLabel = new JLabel(new ImageIcon(img));
imgPanel.add(imgLabel);
Mat blackImg = Mat.zeros(srcGray.size(), CvType.CV_8U);
cornerLabel = new JLabel(new ImageIcon(HighGui.toBufferedImage(blackImg)));
imgPanel.add(cornerLabel);
pane.add(imgPanel, BorderLayout.CENTER);
}
private void update() {
dst = Mat.zeros(srcGray.size(), CvType.CV_32F);
/// Detector parameters
int blockSize = 2;
int apertureSize = 3;
double k = 0.04;
/// Detecting corners
Imgproc.cornerHarris(srcGray, dst, blockSize, apertureSize, k);
/// Normalizing
Core.normalize(dst, dstNorm, 0, 255, Core.NORM_MINMAX);
Core.convertScaleAbs(dstNorm, dstNormScaled);
/// Drawing a circle around corners
float[] dstNormData = new float[(int) (dstNorm.total() * dstNorm.channels())];
dstNorm.get(0, 0, dstNormData);
for (int i = 0; i < dstNorm.rows(); i++) {
for (int j = 0; j < dstNorm.cols(); j++) {
if ((int) dstNormData[i * dstNorm.cols() + j] > threshold) {
Imgproc.circle(dstNormScaled, new Point(j, i), 5, new Scalar(0), 2, 8, 0);
}
}
}
cornerLabel.setIcon(new ImageIcon(HighGui.toBufferedImage(dstNormScaled)));
frame.repaint();
}
}
public class CornerHarrisDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new CornerHarris(args);
}
});
}
}

View File

@ -0,0 +1,13 @@
<project default="compile">
<property name="lib.dir" value="${ocvJarDir}"/>
<path id="classpath">
<fileset dir="${lib.dir}" includes="**/*.jar"/>
</path>
<target name="compile">
<mkdir dir="${dstDir}"/>
<javac includeantruntime="false" srcdir="${srcDir}" destdir="${dstDir}" classpathref="classpath"/>
</target>
</project>

View File

@ -0,0 +1,51 @@
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import java.util.Locale;
import java.util.Scanner;
class AddingImagesRun{
public void run() {
double alpha = 0.5; double beta; double input;
Mat src1, src2, dst = new Mat();
System.out.println(" Simple Linear Blender ");
System.out.println("-----------------------");
System.out.println("* Enter alpha [0.0-1.0]: ");
Scanner scan = new Scanner( System.in ).useLocale(Locale.US);
input = scan.nextDouble();
if( input >= 0.0 && input <= 1.0 )
alpha = input;
//! [load]
src1 = Imgcodecs.imread("../../images/LinuxLogo.jpg");
src2 = Imgcodecs.imread("../../images/WindowsLogo.jpg");
//! [load]
if( src1.empty() == true ){ System.out.println("Error loading src1"); return;}
if( src2.empty() == true ){ System.out.println("Error loading src2"); return;}
//! [blend_images]
beta = ( 1.0 - alpha );
Core.addWeighted( src1, alpha, src2, beta, 0.0, dst);
//! [blend_images]
//![display]
HighGui.imshow("Linear Blend", dst);
HighGui.waitKey(0);
//![display]
System.exit(0);
}
}
public class AddingImages {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new AddingImagesRun().run();
}
}

View File

@ -0,0 +1,109 @@
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import java.util.List;
import java.util.*;
class DiscreteFourierTransformRun{
private void help() {
System.out.println("" +
"This program demonstrated the use of the discrete Fourier transform (DFT). \n" +
"The dft of an image is taken and it's power spectrum is displayed.\n" +
"Usage:\n" +
"./DiscreteFourierTransform [image_name -- default ../data/lena.jpg]");
}
public void run(String[] args){
help();
String filename = ((args.length > 0) ? args[0] : "../data/lena.jpg");
Mat I = Imgcodecs.imread(filename, Imgcodecs.IMREAD_GRAYSCALE);
if( I.empty() ) {
System.out.println("Error opening image");
System.exit(-1);
}
//! [expand]
Mat padded = new Mat(); //expand input image to optimal size
int m = Core.getOptimalDFTSize( I.rows() );
int n = Core.getOptimalDFTSize( I.cols() ); // on the border add zero values
Core.copyMakeBorder(I, padded, 0, m - I.rows(), 0, n - I.cols(), Core.BORDER_CONSTANT, Scalar.all(0));
//! [expand]
//! [complex_and_real]
List<Mat> planes = new ArrayList<Mat>();
padded.convertTo(padded, CvType.CV_32F);
planes.add(padded);
planes.add(Mat.zeros(padded.size(), CvType.CV_32F));
Mat complexI = new Mat();
Core.merge(planes, complexI); // Add to the expanded another plane with zeros
//! [complex_and_real]
//! [dft]
Core.dft(complexI, complexI); // this way the result may fit in the source matrix
//! [dft]
// compute the magnitude and switch to logarithmic scale
// => log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
//! [magnitude]
Core.split(complexI, planes); // planes.get(0) = Re(DFT(I)
// planes.get(1) = Im(DFT(I))
Core.magnitude(planes.get(0), planes.get(1), planes.get(0));// planes.get(0) = magnitude
Mat magI = planes.get(0);
//! [magnitude]
//! [log]
Mat matOfOnes = Mat.ones(magI.size(), magI.type());
Core.add(matOfOnes, magI, magI); // switch to logarithmic scale
Core.log(magI, magI);
//! [log]
//! [crop_rearrange]
// crop the spectrum, if it has an odd number of rows or columns
magI = magI.submat(new Rect(0, 0, magI.cols() & -2, magI.rows() & -2));
// rearrange the quadrants of Fourier image so that the origin is at the image center
int cx = magI.cols()/2;
int cy = magI.rows()/2;
Mat q0 = new Mat(magI, new Rect(0, 0, cx, cy)); // Top-Left - Create a ROI per quadrant
Mat q1 = new Mat(magI, new Rect(cx, 0, cx, cy)); // Top-Right
Mat q2 = new Mat(magI, new Rect(0, cy, cx, cy)); // Bottom-Left
Mat q3 = new Mat(magI, new Rect(cx, cy, cx, cy)); // Bottom-Right
Mat tmp = new Mat(); // swap quadrants (Top-Left with Bottom-Right)
q0.copyTo(tmp);
q3.copyTo(q0);
tmp.copyTo(q3);
q1.copyTo(tmp); // swap quadrant (Top-Right with Bottom-Left)
q2.copyTo(q1);
tmp.copyTo(q2);
//! [crop_rearrange]
magI.convertTo(magI, CvType.CV_8UC1);
//! [normalize]
Core.normalize(magI, magI, 0, 255, Core.NORM_MINMAX, CvType.CV_8UC1); // Transform the matrix with float values
// into a viewable image form (float between
// values 0 and 255).
//! [normalize]
HighGui.imshow("Input Image" , I ); // Show the result
HighGui.imshow("Spectrum Magnitude", magI);
HighGui.waitKey();
System.exit(0);
}
}
public class DiscreteFourierTransform {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new DiscreteFourierTransformRun().run(args);
}
}

View File

@ -0,0 +1,120 @@
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class MatMaskOperationsRun {
public void run(String[] args) {
String filename = "../data/lena.jpg";
int img_codec = Imgcodecs.IMREAD_COLOR;
if (args.length != 0) {
filename = args[0];
if (args.length >= 2 && args[1].equals("G"))
img_codec = Imgcodecs.IMREAD_GRAYSCALE;
}
Mat src = Imgcodecs.imread(filename, img_codec);
if (src.empty()) {
System.out.println("Can't open image [" + filename + "]");
System.out.println("Program Arguments: [image_path -- default ../data/lena.jpg] [G -- grayscale]");
System.exit(-1);
}
HighGui.namedWindow("Input", HighGui.WINDOW_AUTOSIZE);
HighGui.namedWindow("Output", HighGui.WINDOW_AUTOSIZE);
HighGui.imshow( "Input", src );
double t = System.currentTimeMillis();
Mat dst0 = sharpen(src, new Mat());
t = ((double) System.currentTimeMillis() - t) / 1000;
System.out.println("Hand written function time passed in seconds: " + t);
HighGui.imshow( "Output", dst0 );
HighGui.moveWindow("Output", 400, 400);
HighGui.waitKey();
//![kern]
Mat kern = new Mat(3, 3, CvType.CV_8S);
int row = 0, col = 0;
kern.put(row, col, 0, -1, 0, -1, 5, -1, 0, -1, 0);
//![kern]
t = System.currentTimeMillis();
Mat dst1 = new Mat();
//![filter2D]
Imgproc.filter2D(src, dst1, src.depth(), kern);
//![filter2D]
t = ((double) System.currentTimeMillis() - t) / 1000;
System.out.println("Built-in filter2D time passed in seconds: " + t);
HighGui.imshow( "Output", dst1 );
HighGui.waitKey();
System.exit(0);
}
//! [basic_method]
public static double saturate(double x) {
return x > 255.0 ? 255.0 : (x < 0.0 ? 0.0 : x);
}
public Mat sharpen(Mat myImage, Mat Result) {
//! [8_bit]
myImage.convertTo(myImage, CvType.CV_8U);
//! [8_bit]
//! [create_channels]
int nChannels = myImage.channels();
Result.create(myImage.size(), myImage.type());
//! [create_channels]
//! [basic_method_loop]
for (int j = 1; j < myImage.rows() - 1; ++j) {
for (int i = 1; i < myImage.cols() - 1; ++i) {
double sum[] = new double[nChannels];
for (int k = 0; k < nChannels; ++k) {
double top = -myImage.get(j - 1, i)[k];
double bottom = -myImage.get(j + 1, i)[k];
double center = (5 * myImage.get(j, i)[k]);
double left = -myImage.get(j, i - 1)[k];
double right = -myImage.get(j, i + 1)[k];
sum[k] = saturate(top + bottom + center + left + right);
}
Result.put(j, i, sum);
}
}
//! [basic_method_loop]
//! [borders]
Result.row(0).setTo(new Scalar(0));
Result.row(Result.rows() - 1).setTo(new Scalar(0));
Result.col(0).setTo(new Scalar(0));
Result.col(Result.cols() - 1).setTo(new Scalar(0));
//! [borders]
return Result;
}
//! [basic_method]
}
public class MatMaskOperations {
public static void main(String[] args) {
// Load the native library.
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new MatMaskOperationsRun().run(args);
}
}

View File

@ -0,0 +1,130 @@
import java.util.Arrays;
import org.opencv.core.Core;
import org.opencv.core.Core.MinMaxLocResult;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
public class MatOperations {
@SuppressWarnings("unused")
public static void main(String[] args) {
/* Snippet code for Operations with images tutorial (not intended to be run) */
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
String filename = "";
// Input/Output
{
//! [Load an image from a file]
Mat img = Imgcodecs.imread(filename);
//! [Load an image from a file]
}
{
//! [Load an image from a file in grayscale]
Mat img = Imgcodecs.imread(filename, Imgcodecs.IMREAD_GRAYSCALE);
//! [Load an image from a file in grayscale]
}
{
Mat img = new Mat(4, 4, CvType.CV_8U);
//! [Save image]
Imgcodecs.imwrite(filename, img);
//! [Save image]
}
// Accessing pixel intensity values
{
Mat img = new Mat(4, 4, CvType.CV_8U);
int y = 0, x = 0;
{
//! [Pixel access 1]
byte[] imgData = new byte[(int) (img.total() * img.channels())];
img.get(0, 0, imgData);
byte intensity = imgData[y * img.cols() + x];
//! [Pixel access 1]
}
{
//! [Pixel access 5]
byte[] imgData = new byte[(int) (img.total() * img.channels())];
imgData[y * img.cols() + x] = (byte) 128;
img.put(0, 0, imgData);
//! [Pixel access 5]
}
}
// Memory management and reference counting
{
//! [Reference counting 2]
Mat img = Imgcodecs.imread("image.jpg");
Mat img1 = img.clone();
//! [Reference counting 2]
}
{
//! [Reference counting 3]
Mat img = Imgcodecs.imread("image.jpg");
Mat sobelx = new Mat();
Imgproc.Sobel(img, sobelx, CvType.CV_32F, 1, 0);
//! [Reference counting 3]
}
// Primitive operations
{
Mat img = new Mat(400, 400, CvType.CV_8UC3);
{
//! [Set image to black]
byte[] imgData = new byte[(int) (img.total() * img.channels())];
Arrays.fill(imgData, (byte) 0);
img.put(0, 0, imgData);
//! [Set image to black]
}
{
//! [Select ROI]
Rect r = new Rect(10, 10, 100, 100);
Mat smallImg = img.submat(r);
//! [Select ROI]
}
}
{
//! [BGR to Gray]
Mat img = Imgcodecs.imread("image.jpg"); // loading a 8UC3 image
Mat grey = new Mat();
Imgproc.cvtColor(img, grey, Imgproc.COLOR_BGR2GRAY);
//! [BGR to Gray]
}
{
Mat dst = new Mat(), src = new Mat();
//! [Convert to CV_32F]
src.convertTo(dst, CvType.CV_32F);
//! [Convert to CV_32F]
}
// Visualizing images
{
//! [imshow 1]
Mat img = Imgcodecs.imread("image.jpg");
HighGui.namedWindow("image", HighGui.WINDOW_AUTOSIZE);
HighGui.imshow("image", img);
HighGui.waitKey();
//! [imshow 1]
}
{
//! [imshow 2]
Mat img = Imgcodecs.imread("image.jpg");
Mat grey = new Mat();
Imgproc.cvtColor(img, grey, Imgproc.COLOR_BGR2GRAY);
Mat sobelx = new Mat();
Imgproc.Sobel(grey, sobelx, CvType.CV_32F, 1, 0);
MinMaxLocResult res = Core.minMaxLoc(sobelx); // find minimum and maximum intensities
Mat draw = new Mat();
double maxVal = res.maxVal, minVal = res.minVal;
sobelx.convertTo(draw, CvType.CV_8U, 255.0 / (maxVal - minVal), -minVal * 255.0 / (maxVal - minVal));
HighGui.namedWindow("image", HighGui.WINDOW_AUTOSIZE);
HighGui.imshow("image", draw);
HighGui.waitKey();
//! [imshow 2]
}
System.exit(0);
}
}

View File

@ -0,0 +1,89 @@
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.*;
import org.opencv.core.Range;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class PanoramaStitchingRotatingCameraRun {
void basicPanoramaStitching (String[] args) {
String img1path = args[0], img2path = args[1];
Mat img1 = new Mat(), img2 = new Mat();
img1 = Imgcodecs.imread(img1path);
img2 = Imgcodecs.imread(img2path);
//! [camera-pose-from-Blender-at-location-1]
Mat c1Mo = new Mat( 4, 4, CvType.CV_64FC1 );
c1Mo.put(0 ,0 ,0.9659258723258972, 0.2588190734386444, 0.0, 1.5529145002365112,
0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443,
-0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654,
0, 0, 0, 1 );
//! [camera-pose-from-Blender-at-location-1]
//! [camera-pose-from-Blender-at-location-2]
Mat c2Mo = new Mat( 4, 4, CvType.CV_64FC1 );
c2Mo.put(0, 0, 0.9659258723258972, -0.2588190734386444, 0.0, -1.5529145002365112,
-0.08852133899927139, -0.3303661346435547, -0.9396926164627075, -0.10281121730804443,
0.24321036040782928, 0.9076734185218811, -0.342020183801651, 6.130080699920654,
0, 0, 0, 1);
//! [camera-pose-from-Blender-at-location-2]
//! [camera-intrinsics-from-Blender]
Mat cameraMatrix = new Mat(3, 3, CvType.CV_64FC1);
cameraMatrix.put(0, 0, 700.0, 0.0, 320.0, 0.0, 700.0, 240.0, 0, 0, 1 );
//! [camera-intrinsics-from-Blender]
//! [extract-rotation]
Range rowRange = new Range(0,3);
Range colRange = new Range(0,3);
//! [extract-rotation]
//! [compute-rotation-displacement]
//c1Mo * oMc2
Mat R1 = new Mat(c1Mo, rowRange, colRange);
Mat R2 = new Mat(c2Mo, rowRange, colRange);
Mat R_2to1 = new Mat();
Core.gemm(R1, R2.t(), 1, new Mat(), 0, R_2to1 );
//! [compute-rotation-displacement]
//! [compute-homography]
Mat tmp = new Mat(), H = new Mat();
Core.gemm(cameraMatrix, R_2to1, 1, new Mat(), 0, tmp);
Core.gemm(tmp, cameraMatrix.inv(), 1, new Mat(), 0, H);
Scalar s = new Scalar(H.get(2, 2)[0]);
Core.divide(H, s, H);
System.out.println(H.dump());
//! [compute-homography]
//! [stitch]
Mat img_stitch = new Mat();
Imgproc.warpPerspective(img2, img_stitch, H, new Size(img2.cols()*2, img2.rows()) );
Mat half = new Mat();
half = new Mat(img_stitch, new Rect(0, 0, img1.cols(), img1.rows()));
img1.copyTo(half);
//! [stitch]
Mat img_compare = new Mat();
Mat img_space = Mat.zeros(new Size(50, img1.rows()), CvType.CV_8UC3);
List<Mat>list = new ArrayList<>();
list.add(img1);
list.add(img_space);
list.add(img2);
Core.hconcat(list, img_compare);
HighGui.imshow("Compare Images", img_compare);
HighGui.imshow("Panorama Stitching", img_stitch);
HighGui.waitKey(0);
System.exit(0);
}
}
public class PanoramaStitchingRotatingCamera {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new PanoramaStitchingRotatingCameraRun().basicPanoramaStitching(args);
}
}

View File

@ -0,0 +1,89 @@
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
import org.opencv.core.*;
import org.opencv.calib3d.Calib3d;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
class PerspectiveCorrectionRun {
void perspectiveCorrection (String[] args) {
String img1Path = args[0], img2Path = args[1];
Mat img1 = Imgcodecs.imread(img1Path);
Mat img2 = Imgcodecs.imread(img2Path);
//! [find-corners]
MatOfPoint2f corners1 = new MatOfPoint2f(), corners2 = new MatOfPoint2f();
boolean found1 = Calib3d.findChessboardCorners(img1, new Size(9, 6), corners1 );
boolean found2 = Calib3d.findChessboardCorners(img2, new Size(9, 6), corners2 );
//! [find-corners]
if (!found1 || !found2) {
System.out.println("Error, cannot find the chessboard corners in both images.");
System.exit(-1);
}
//! [estimate-homography]
Mat H = new Mat();
H = Calib3d.findHomography(corners1, corners2);
System.out.println(H.dump());
//! [estimate-homography]
//! [warp-chessboard]
Mat img1_warp = new Mat();
Imgproc.warpPerspective(img1, img1_warp, H, img1.size());
//! [warp-chessboard]
Mat img_draw_warp = new Mat();
List<Mat> list1 = new ArrayList<>(), list2 = new ArrayList<>() ;
list1.add(img2);
list1.add(img1_warp);
Core.hconcat(list1, img_draw_warp);
HighGui.imshow("Desired chessboard view / Warped source chessboard view", img_draw_warp);
//! [compute-transformed-corners]
Mat img_draw_matches = new Mat();
list2.add(img1);
list2.add(img2);
Core.hconcat(list2, img_draw_matches);
Point []corners1Arr = corners1.toArray();
for (int i = 0 ; i < corners1Arr.length; i++) {
Mat pt1 = new Mat(3, 1, CvType.CV_64FC1), pt2 = new Mat();
pt1.put(0, 0, corners1Arr[i].x, corners1Arr[i].y, 1 );
Core.gemm(H, pt1, 1, new Mat(), 0, pt2);
double[] data = pt2.get(2, 0);
Core.divide(pt2, new Scalar(data[0]), pt2);
double[] data1 =pt2.get(0, 0);
double[] data2 = pt2.get(1, 0);
Point end = new Point((int)(img1.cols()+ data1[0]), (int)data2[0]);
Imgproc.line(img_draw_matches, corners1Arr[i], end, RandomColor(), 2);
}
HighGui.imshow("Draw matches", img_draw_matches);
HighGui.waitKey(0);
//! [compute-transformed-corners]
System.exit(0);
}
Scalar RandomColor () {
Random rng = new Random();
int r = rng.nextInt(256);
int g = rng.nextInt(256);
int b = rng.nextInt(256);
return new Scalar(r, g, b);
}
}
public class PerspectiveCorrection {
public static void main (String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new PerspectiveCorrectionRun().perspectiveCorrection(args);
}
}

View File

@ -0,0 +1,163 @@
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.ParserConfigurationException;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.DMatch;
import org.opencv.core.KeyPoint;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Scalar;
import org.opencv.features2d.AKAZE;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.Features2d;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.w3c.dom.Document;
import org.xml.sax.SAXException;
class AKAZEMatch {
public void run(String[] args) {
//! [load]
String filename1 = args.length > 2 ? args[0] : "../data/graf1.png";
String filename2 = args.length > 2 ? args[1] : "../data/graf3.png";
String filename3 = args.length > 2 ? args[2] : "../data/H1to3p.xml";
Mat img1 = Imgcodecs.imread(filename1, Imgcodecs.IMREAD_GRAYSCALE);
Mat img2 = Imgcodecs.imread(filename2, Imgcodecs.IMREAD_GRAYSCALE);
if (img1.empty() || img2.empty()) {
System.err.println("Cannot read images!");
System.exit(0);
}
File file = new File(filename3);
DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
DocumentBuilder documentBuilder;
Document document;
Mat homography = new Mat(3, 3, CvType.CV_64F);
double[] homographyData = new double[(int) (homography.total()*homography.channels())];
try {
documentBuilder = documentBuilderFactory.newDocumentBuilder();
document = documentBuilder.parse(file);
String homographyStr = document.getElementsByTagName("data").item(0).getTextContent();
String[] splited = homographyStr.split("\\s+");
int idx = 0;
for (String s : splited) {
if (!s.isEmpty()) {
homographyData[idx] = Double.parseDouble(s);
idx++;
}
}
} catch (ParserConfigurationException e) {
e.printStackTrace();
System.exit(0);
} catch (SAXException e) {
e.printStackTrace();
System.exit(0);
} catch (IOException e) {
e.printStackTrace();
System.exit(0);
}
homography.put(0, 0, homographyData);
//! [load]
//! [AKAZE]
AKAZE akaze = AKAZE.create();
MatOfKeyPoint kpts1 = new MatOfKeyPoint(), kpts2 = new MatOfKeyPoint();
Mat desc1 = new Mat(), desc2 = new Mat();
akaze.detectAndCompute(img1, new Mat(), kpts1, desc1);
akaze.detectAndCompute(img2, new Mat(), kpts2, desc2);
//! [AKAZE]
//! [2-nn matching]
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
List<MatOfDMatch> knnMatches = new ArrayList<>();
matcher.knnMatch(desc1, desc2, knnMatches, 2);
//! [2-nn matching]
//! [ratio test filtering]
float ratioThreshold = 0.8f; // Nearest neighbor matching ratio
List<KeyPoint> listOfMatched1 = new ArrayList<>();
List<KeyPoint> listOfMatched2 = new ArrayList<>();
List<KeyPoint> listOfKeypoints1 = kpts1.toList();
List<KeyPoint> listOfKeypoints2 = kpts2.toList();
for (int i = 0; i < knnMatches.size(); i++) {
DMatch[] matches = knnMatches.get(i).toArray();
float dist1 = matches[0].distance;
float dist2 = matches[1].distance;
if (dist1 < ratioThreshold * dist2) {
listOfMatched1.add(listOfKeypoints1.get(matches[0].queryIdx));
listOfMatched2.add(listOfKeypoints2.get(matches[0].trainIdx));
}
}
//! [ratio test filtering]
//! [homography check]
double inlierThreshold = 2.5; // Distance threshold to identify inliers with homography check
List<KeyPoint> listOfInliers1 = new ArrayList<>();
List<KeyPoint> listOfInliers2 = new ArrayList<>();
List<DMatch> listOfGoodMatches = new ArrayList<>();
for (int i = 0; i < listOfMatched1.size(); i++) {
Mat col = new Mat(3, 1, CvType.CV_64F);
double[] colData = new double[(int) (col.total() * col.channels())];
colData[0] = listOfMatched1.get(i).pt.x;
colData[1] = listOfMatched1.get(i).pt.y;
colData[2] = 1.0;
col.put(0, 0, colData);
Mat colRes = new Mat();
Core.gemm(homography, col, 1.0, new Mat(), 0.0, colRes);
colRes.get(0, 0, colData);
Core.multiply(colRes, new Scalar(1.0 / colData[2]), col);
col.get(0, 0, colData);
double dist = Math.sqrt(Math.pow(colData[0] - listOfMatched2.get(i).pt.x, 2) +
Math.pow(colData[1] - listOfMatched2.get(i).pt.y, 2));
if (dist < inlierThreshold) {
listOfGoodMatches.add(new DMatch(listOfInliers1.size(), listOfInliers2.size(), 0));
listOfInliers1.add(listOfMatched1.get(i));
listOfInliers2.add(listOfMatched2.get(i));
}
}
//! [homography check]
//! [draw final matches]
Mat res = new Mat();
MatOfKeyPoint inliers1 = new MatOfKeyPoint(listOfInliers1.toArray(new KeyPoint[listOfInliers1.size()]));
MatOfKeyPoint inliers2 = new MatOfKeyPoint(listOfInliers2.toArray(new KeyPoint[listOfInliers2.size()]));
MatOfDMatch goodMatches = new MatOfDMatch(listOfGoodMatches.toArray(new DMatch[listOfGoodMatches.size()]));
Features2d.drawMatches(img1, inliers1, img2, inliers2, goodMatches, res);
Imgcodecs.imwrite("akaze_result.png", res);
double inlierRatio = listOfInliers1.size() / (double) listOfMatched1.size();
System.out.println("A-KAZE Matching Results");
System.out.println("*******************************");
System.out.println("# Keypoints 1: \t" + listOfKeypoints1.size());
System.out.println("# Keypoints 2: \t" + listOfKeypoints2.size());
System.out.println("# Matches: \t" + listOfMatched1.size());
System.out.println("# Inliers: \t" + listOfInliers1.size());
System.out.println("# Inliers Ratio: \t" + inlierRatio);
HighGui.imshow("result", res);
HighGui.waitKey();
//! [draw final matches]
System.exit(0);
}
}
public class AKAZEMatchDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new AKAZEMatch().run(args);
}
}

View File

@ -0,0 +1,56 @@
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.Features2d;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.xfeatures2d.SURF;
class SURFMatching {
public void run(String[] args) {
String filename1 = args.length > 1 ? args[0] : "../data/box.png";
String filename2 = args.length > 1 ? args[1] : "../data/box_in_scene.png";
Mat img1 = Imgcodecs.imread(filename1, Imgcodecs.IMREAD_GRAYSCALE);
Mat img2 = Imgcodecs.imread(filename2, Imgcodecs.IMREAD_GRAYSCALE);
if (img1.empty() || img2.empty()) {
System.err.println("Cannot read images!");
System.exit(0);
}
//-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
double hessianThreshold = 400;
int nOctaves = 4, nOctaveLayers = 3;
boolean extended = false, upright = false;
SURF detector = SURF.create(hessianThreshold, nOctaves, nOctaveLayers, extended, upright);
MatOfKeyPoint keypoints1 = new MatOfKeyPoint(), keypoints2 = new MatOfKeyPoint();
Mat descriptors1 = new Mat(), descriptors2 = new Mat();
detector.detectAndCompute(img1, new Mat(), keypoints1, descriptors1);
detector.detectAndCompute(img2, new Mat(), keypoints2, descriptors2);
//-- Step 2: Matching descriptor vectors with a brute force matcher
// Since SURF is a floating-point descriptor NORM_L2 is used
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE);
MatOfDMatch matches = new MatOfDMatch();
matcher.match(descriptors1, descriptors2, matches);
//-- Draw matches
Mat imgMatches = new Mat();
Features2d.drawMatches(img1, keypoints1, img2, keypoints2, matches, imgMatches);
HighGui.imshow("Matches", imgMatches);
HighGui.waitKey(0);
System.exit(0);
}
}
public class SURFMatchingDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new SURFMatching().run(args);
}
}

View File

@ -0,0 +1,44 @@
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.features2d.Features2d;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.xfeatures2d.SURF;
class SURFDetection {
public void run(String[] args) {
String filename = args.length > 0 ? args[0] : "../data/box.png";
Mat src = Imgcodecs.imread(filename, Imgcodecs.IMREAD_GRAYSCALE);
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
//-- Step 1: Detect the keypoints using SURF Detector
double hessianThreshold = 400;
int nOctaves = 4, nOctaveLayers = 3;
boolean extended = false, upright = false;
SURF detector = SURF.create(hessianThreshold, nOctaves, nOctaveLayers, extended, upright);
MatOfKeyPoint keypoints = new MatOfKeyPoint();
detector.detect(src, keypoints);
//-- Draw keypoints
Features2d.drawKeypoints(src, keypoints, src);
//-- Show detected (drawn) keypoints
HighGui.imshow("SURF Keypoints", src);
HighGui.waitKey(0);
System.exit(0);
}
}
public class SURFDetectionDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new SURFDetection().run(args);
}
}

View File

@ -0,0 +1,78 @@
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.DMatch;
import org.opencv.core.Mat;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.Scalar;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.Features2d;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.xfeatures2d.SURF;
class SURFFLANNMatching {
public void run(String[] args) {
String filename1 = args.length > 1 ? args[0] : "../data/box.png";
String filename2 = args.length > 1 ? args[1] : "../data/box_in_scene.png";
Mat img1 = Imgcodecs.imread(filename1, Imgcodecs.IMREAD_GRAYSCALE);
Mat img2 = Imgcodecs.imread(filename2, Imgcodecs.IMREAD_GRAYSCALE);
if (img1.empty() || img2.empty()) {
System.err.println("Cannot read images!");
System.exit(0);
}
//-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
double hessianThreshold = 400;
int nOctaves = 4, nOctaveLayers = 3;
boolean extended = false, upright = false;
SURF detector = SURF.create(hessianThreshold, nOctaves, nOctaveLayers, extended, upright);
MatOfKeyPoint keypoints1 = new MatOfKeyPoint(), keypoints2 = new MatOfKeyPoint();
Mat descriptors1 = new Mat(), descriptors2 = new Mat();
detector.detectAndCompute(img1, new Mat(), keypoints1, descriptors1);
detector.detectAndCompute(img2, new Mat(), keypoints2, descriptors2);
//-- Step 2: Matching descriptor vectors with a FLANN based matcher
// Since SURF is a floating-point descriptor NORM_L2 is used
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.FLANNBASED);
List<MatOfDMatch> knnMatches = new ArrayList<>();
matcher.knnMatch(descriptors1, descriptors2, knnMatches, 2);
//-- Filter matches using the Lowe's ratio test
float ratioThresh = 0.7f;
List<DMatch> listOfGoodMatches = new ArrayList<>();
for (int i = 0; i < knnMatches.size(); i++) {
if (knnMatches.get(i).rows() > 1) {
DMatch[] matches = knnMatches.get(i).toArray();
if (matches[0].distance < ratioThresh * matches[1].distance) {
listOfGoodMatches.add(matches[0]);
}
}
}
MatOfDMatch goodMatches = new MatOfDMatch();
goodMatches.fromList(listOfGoodMatches);
//-- Draw matches
Mat imgMatches = new Mat();
Features2d.drawMatches(img1, keypoints1, img2, keypoints2, goodMatches, imgMatches, Scalar.all(-1),
Scalar.all(-1), new MatOfByte(), Features2d.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS);
//-- Show detected matches
HighGui.imshow("Good Matches", imgMatches);
HighGui.waitKey(0);
System.exit(0);
}
}
public class SURFFLANNMatchingDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new SURFFLANNMatching().run(args);
}
}

View File

@ -0,0 +1,130 @@
import java.util.ArrayList;
import java.util.List;
import org.opencv.calib3d.Calib3d;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.DMatch;
import org.opencv.core.KeyPoint;
import org.opencv.core.Mat;
import org.opencv.core.MatOfByte;
import org.opencv.core.MatOfDMatch;
import org.opencv.core.MatOfKeyPoint;
import org.opencv.core.MatOfPoint2f;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.features2d.DescriptorMatcher;
import org.opencv.features2d.Features2d;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.xfeatures2d.SURF;
class SURFFLANNMatchingHomography {
public void run(String[] args) {
String filenameObject = args.length > 1 ? args[0] : "../data/box.png";
String filenameScene = args.length > 1 ? args[1] : "../data/box_in_scene.png";
Mat imgObject = Imgcodecs.imread(filenameObject, Imgcodecs.IMREAD_GRAYSCALE);
Mat imgScene = Imgcodecs.imread(filenameScene, Imgcodecs.IMREAD_GRAYSCALE);
if (imgObject.empty() || imgScene.empty()) {
System.err.println("Cannot read images!");
System.exit(0);
}
//-- Step 1: Detect the keypoints using SURF Detector, compute the descriptors
double hessianThreshold = 400;
int nOctaves = 4, nOctaveLayers = 3;
boolean extended = false, upright = false;
SURF detector = SURF.create(hessianThreshold, nOctaves, nOctaveLayers, extended, upright);
MatOfKeyPoint keypointsObject = new MatOfKeyPoint(), keypointsScene = new MatOfKeyPoint();
Mat descriptorsObject = new Mat(), descriptorsScene = new Mat();
detector.detectAndCompute(imgObject, new Mat(), keypointsObject, descriptorsObject);
detector.detectAndCompute(imgScene, new Mat(), keypointsScene, descriptorsScene);
//-- Step 2: Matching descriptor vectors with a FLANN based matcher
// Since SURF is a floating-point descriptor NORM_L2 is used
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.FLANNBASED);
List<MatOfDMatch> knnMatches = new ArrayList<>();
matcher.knnMatch(descriptorsObject, descriptorsScene, knnMatches, 2);
//-- Filter matches using the Lowe's ratio test
float ratioThresh = 0.75f;
List<DMatch> listOfGoodMatches = new ArrayList<>();
for (int i = 0; i < knnMatches.size(); i++) {
if (knnMatches.get(i).rows() > 1) {
DMatch[] matches = knnMatches.get(i).toArray();
if (matches[0].distance < ratioThresh * matches[1].distance) {
listOfGoodMatches.add(matches[0]);
}
}
}
MatOfDMatch goodMatches = new MatOfDMatch();
goodMatches.fromList(listOfGoodMatches);
//-- Draw matches
Mat imgMatches = new Mat();
Features2d.drawMatches(imgObject, keypointsObject, imgScene, keypointsScene, goodMatches, imgMatches, Scalar.all(-1),
Scalar.all(-1), new MatOfByte(), Features2d.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
List<Point> obj = new ArrayList<>();
List<Point> scene = new ArrayList<>();
List<KeyPoint> listOfKeypointsObject = keypointsObject.toList();
List<KeyPoint> listOfKeypointsScene = keypointsScene.toList();
for (int i = 0; i < listOfGoodMatches.size(); i++) {
//-- Get the keypoints from the good matches
obj.add(listOfKeypointsObject.get(listOfGoodMatches.get(i).queryIdx).pt);
scene.add(listOfKeypointsScene.get(listOfGoodMatches.get(i).trainIdx).pt);
}
MatOfPoint2f objMat = new MatOfPoint2f(), sceneMat = new MatOfPoint2f();
objMat.fromList(obj);
sceneMat.fromList(scene);
double ransacReprojThreshold = 3.0;
Mat H = Calib3d.findHomography( objMat, sceneMat, Calib3d.RANSAC, ransacReprojThreshold );
//-- Get the corners from the image_1 ( the object to be "detected" )
Mat objCorners = new Mat(4, 1, CvType.CV_32FC2), sceneCorners = new Mat();
float[] objCornersData = new float[(int) (objCorners.total() * objCorners.channels())];
objCorners.get(0, 0, objCornersData);
objCornersData[0] = 0;
objCornersData[1] = 0;
objCornersData[2] = imgObject.cols();
objCornersData[3] = 0;
objCornersData[4] = imgObject.cols();
objCornersData[5] = imgObject.rows();
objCornersData[6] = 0;
objCornersData[7] = imgObject.rows();
objCorners.put(0, 0, objCornersData);
Core.perspectiveTransform(objCorners, sceneCorners, H);
float[] sceneCornersData = new float[(int) (sceneCorners.total() * sceneCorners.channels())];
sceneCorners.get(0, 0, sceneCornersData);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
Imgproc.line(imgMatches, new Point(sceneCornersData[0] + imgObject.cols(), sceneCornersData[1]),
new Point(sceneCornersData[2] + imgObject.cols(), sceneCornersData[3]), new Scalar(0, 255, 0), 4);
Imgproc.line(imgMatches, new Point(sceneCornersData[2] + imgObject.cols(), sceneCornersData[3]),
new Point(sceneCornersData[4] + imgObject.cols(), sceneCornersData[5]), new Scalar(0, 255, 0), 4);
Imgproc.line(imgMatches, new Point(sceneCornersData[4] + imgObject.cols(), sceneCornersData[5]),
new Point(sceneCornersData[6] + imgObject.cols(), sceneCornersData[7]), new Scalar(0, 255, 0), 4);
Imgproc.line(imgMatches, new Point(sceneCornersData[6] + imgObject.cols(), sceneCornersData[7]),
new Point(sceneCornersData[0] + imgObject.cols(), sceneCornersData[1]), new Scalar(0, 255, 0), 4);
//-- Show detected matches
HighGui.imshow("Good Matches & Object detection", imgMatches);
HighGui.waitKey(0);
System.exit(0);
}
}
public class SURFFLANNMatchingHomographyDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new SURFFLANNMatchingHomography().run(args);
}
}

View File

@ -0,0 +1,119 @@
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Image;
import javax.swing.BoxLayout;
import javax.swing.ImageIcon;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JSlider;
import javax.swing.event.ChangeEvent;
import javax.swing.event.ChangeListener;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
public class AddingImagesTrackbar {
private static final int ALPHA_SLIDER_MAX = 100;
private int alphaVal = 0;
private Mat matImgSrc1;
private Mat matImgSrc2;
private Mat matImgDst = new Mat();
private JFrame frame;
private JLabel imgLabel;
public AddingImagesTrackbar(String[] args) {
//! [load]
String imagePath1 = "../data/LinuxLogo.jpg";
String imagePath2 = "../data/WindowsLogo.jpg";
if (args.length > 1) {
imagePath1 = args[0];
imagePath2 = args[1];
}
matImgSrc1 = Imgcodecs.imread(imagePath1);
matImgSrc2 = Imgcodecs.imread(imagePath2);
//! [load]
if (matImgSrc1.empty()) {
System.out.println("Empty image: " + imagePath1);
System.exit(0);
}
if (matImgSrc2.empty()) {
System.out.println("Empty image: " + imagePath2);
System.exit(0);
}
//! [window]
// Create and set up the window.
frame = new JFrame("Linear Blend");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Set up the content pane.
Image img = HighGui.toBufferedImage(matImgSrc2);
addComponentsToPane(frame.getContentPane(), img);
// Use the content pane's default BorderLayout. No need for
// setLayout(new BorderLayout());
// Display the window.
frame.pack();
frame.setVisible(true);
//! [window]
}
private void addComponentsToPane(Container pane, Image img) {
if (!(pane.getLayout() instanceof BorderLayout)) {
pane.add(new JLabel("Container doesn't use BorderLayout!"));
return;
}
JPanel sliderPanel = new JPanel();
sliderPanel.setLayout(new BoxLayout(sliderPanel, BoxLayout.PAGE_AXIS));
//! [create_trackbar]
sliderPanel.add(new JLabel(String.format("Alpha x %d", ALPHA_SLIDER_MAX)));
JSlider slider = new JSlider(0, ALPHA_SLIDER_MAX, 0);
slider.setMajorTickSpacing(20);
slider.setMinorTickSpacing(5);
slider.setPaintTicks(true);
slider.setPaintLabels(true);
//! [create_trackbar]
//! [on_trackbar]
slider.addChangeListener(new ChangeListener() {
@Override
public void stateChanged(ChangeEvent e) {
JSlider source = (JSlider) e.getSource();
alphaVal = source.getValue();
update();
}
});
//! [on_trackbar]
sliderPanel.add(slider);
pane.add(sliderPanel, BorderLayout.PAGE_START);
imgLabel = new JLabel(new ImageIcon(img));
pane.add(imgLabel, BorderLayout.CENTER);
}
private void update() {
double alpha = alphaVal / (double) ALPHA_SLIDER_MAX;
double beta = 1.0 - alpha;
Core.addWeighted(matImgSrc1, alpha, matImgSrc2, beta, 0, matImgDst);
Image img = HighGui.toBufferedImage(matImgDst);
imgLabel.setIcon(new ImageIcon(img));
frame.repaint();
}
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Schedule a job for the event dispatch thread:
// creating and showing this application's GUI.
javax.swing.SwingUtilities.invokeLater(new Runnable() {
@Override
public void run() {
new AddingImagesTrackbar(args);
}
});
}
}

View File

@ -0,0 +1,9 @@
public class Documentation {
public static void main (String[] args) {
//! [hello_world]
System.out.println ("Hello World!");
//! [hello_world]
}
}

View File

@ -0,0 +1,144 @@
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.MatOfPoint;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
//This program demonstrates how to use OpenCV PCA to extract the orientation of an object.
class IntroductionToPCA {
private void drawAxis(Mat img, Point p_, Point q_, Scalar colour, float scale) {
Point p = new Point(p_.x, p_.y);
Point q = new Point(q_.x, q_.y);
//! [visualization1]
double angle = Math.atan2(p.y - q.y, p.x - q.x); // angle in radians
double hypotenuse = Math.sqrt((p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));
// Here we lengthen the arrow by a factor of scale
q.x = (int) (p.x - scale * hypotenuse * Math.cos(angle));
q.y = (int) (p.y - scale * hypotenuse * Math.sin(angle));
Imgproc.line(img, p, q, colour, 1, Imgproc.LINE_AA, 0);
// create the arrow hooks
p.x = (int) (q.x + 9 * Math.cos(angle + Math.PI / 4));
p.y = (int) (q.y + 9 * Math.sin(angle + Math.PI / 4));
Imgproc.line(img, p, q, colour, 1, Imgproc.LINE_AA, 0);
p.x = (int) (q.x + 9 * Math.cos(angle - Math.PI / 4));
p.y = (int) (q.y + 9 * Math.sin(angle - Math.PI / 4));
Imgproc.line(img, p, q, colour, 1, Imgproc.LINE_AA, 0);
//! [visualization1]
}
private double getOrientation(MatOfPoint ptsMat, Mat img) {
List<Point> pts = ptsMat.toList();
//! [pca]
// Construct a buffer used by the pca analysis
int sz = pts.size();
Mat dataPts = new Mat(sz, 2, CvType.CV_64F);
double[] dataPtsData = new double[(int) (dataPts.total() * dataPts.channels())];
for (int i = 0; i < dataPts.rows(); i++) {
dataPtsData[i * dataPts.cols()] = pts.get(i).x;
dataPtsData[i * dataPts.cols() + 1] = pts.get(i).y;
}
dataPts.put(0, 0, dataPtsData);
// Perform PCA analysis
Mat mean = new Mat();
Mat eigenvectors = new Mat();
Mat eigenvalues = new Mat();
Core.PCACompute2(dataPts, mean, eigenvectors, eigenvalues);
double[] meanData = new double[(int) (mean.total() * mean.channels())];
mean.get(0, 0, meanData);
// Store the center of the object
Point cntr = new Point(meanData[0], meanData[1]);
// Store the eigenvalues and eigenvectors
double[] eigenvectorsData = new double[(int) (eigenvectors.total() * eigenvectors.channels())];
double[] eigenvaluesData = new double[(int) (eigenvalues.total() * eigenvalues.channels())];
eigenvectors.get(0, 0, eigenvectorsData);
eigenvalues.get(0, 0, eigenvaluesData);
//! [pca]
//! [visualization]
// Draw the principal components
Imgproc.circle(img, cntr, 3, new Scalar(255, 0, 255), 2);
Point p1 = new Point(cntr.x + 0.02 * eigenvectorsData[0] * eigenvaluesData[0],
cntr.y + 0.02 * eigenvectorsData[1] * eigenvaluesData[0]);
Point p2 = new Point(cntr.x - 0.02 * eigenvectorsData[2] * eigenvaluesData[1],
cntr.y - 0.02 * eigenvectorsData[3] * eigenvaluesData[1]);
drawAxis(img, cntr, p1, new Scalar(0, 255, 0), 1);
drawAxis(img, cntr, p2, new Scalar(255, 255, 0), 5);
double angle = Math.atan2(eigenvectorsData[1], eigenvectorsData[0]); // orientation in radians
//! [visualization]
return angle;
}
public void run(String[] args) {
//! [pre-process]
// Load image
String filename = args.length > 0 ? args[0] : "../data/pca_test1.jpg";
Mat src = Imgcodecs.imread(filename);
// Check if image is loaded successfully
if (src.empty()) {
System.err.println("Cannot read image: " + filename);
System.exit(0);
}
Mat srcOriginal = src.clone();
HighGui.imshow("src", srcOriginal);
// Convert image to grayscale
Mat gray = new Mat();
Imgproc.cvtColor(src, gray, Imgproc.COLOR_BGR2GRAY);
// Convert image to binary
Mat bw = new Mat();
Imgproc.threshold(gray, bw, 50, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
//! [pre-process]
//! [contours]
// Find all the contours in the thresholded image
List<MatOfPoint> contours = new ArrayList<>();
Mat hierarchy = new Mat();
Imgproc.findContours(bw, contours, hierarchy, Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_NONE);
for (int i = 0; i < contours.size(); i++) {
// Calculate the area of each contour
double area = Imgproc.contourArea(contours.get(i));
// Ignore contours that are too small or too large
if (area < 1e2 || 1e5 < area)
continue;
// Draw each contour only for visualisation purposes
Imgproc.drawContours(src, contours, i, new Scalar(0, 0, 255), 2);
// Find the orientation of each shape
getOrientation(contours.get(i), src);
}
//! [contours]
HighGui.imshow("output", src);
HighGui.waitKey();
System.exit(0);
}
}
public class IntroductionToPCADemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new IntroductionToPCA().run(args);
}
}

View File

@ -0,0 +1,99 @@
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.TermCriteria;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.ml.Ml;
import org.opencv.ml.SVM;
public class IntroductionToSVMDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// Set up training data
//! [setup1]
int[] labels = { 1, -1, -1, -1 };
float[] trainingData = { 501, 10, 255, 10, 501, 255, 10, 501 };
//! [setup1]
//! [setup2]
Mat trainingDataMat = new Mat(4, 2, CvType.CV_32FC1);
trainingDataMat.put(0, 0, trainingData);
Mat labelsMat = new Mat(4, 1, CvType.CV_32SC1);
labelsMat.put(0, 0, labels);
//! [setup2]
// Train the SVM
//! [init]
SVM svm = SVM.create();
svm.setType(SVM.C_SVC);
svm.setKernel(SVM.LINEAR);
svm.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER, 100, 1e-6));
//! [init]
//! [train]
svm.train(trainingDataMat, Ml.ROW_SAMPLE, labelsMat);
//! [train]
// Data for visual representation
int width = 512, height = 512;
Mat image = Mat.zeros(height, width, CvType.CV_8UC3);
// Show the decision regions given by the SVM
//! [show]
byte[] imageData = new byte[(int) (image.total() * image.channels())];
Mat sampleMat = new Mat(1, 2, CvType.CV_32F);
float[] sampleMatData = new float[(int) (sampleMat.total() * sampleMat.channels())];
for (int i = 0; i < image.rows(); i++) {
for (int j = 0; j < image.cols(); j++) {
sampleMatData[0] = j;
sampleMatData[1] = i;
sampleMat.put(0, 0, sampleMatData);
float response = svm.predict(sampleMat);
if (response == 1) {
imageData[(i * image.cols() + j) * image.channels()] = 0;
imageData[(i * image.cols() + j) * image.channels() + 1] = (byte) 255;
imageData[(i * image.cols() + j) * image.channels() + 2] = 0;
} else if (response == -1) {
imageData[(i * image.cols() + j) * image.channels()] = (byte) 255;
imageData[(i * image.cols() + j) * image.channels() + 1] = 0;
imageData[(i * image.cols() + j) * image.channels() + 2] = 0;
}
}
}
image.put(0, 0, imageData);
//! [show]
// Show the training data
//! [show_data]
int thickness = -1;
int lineType = Imgproc.LINE_8;
Imgproc.circle(image, new Point(501, 10), 5, new Scalar(0, 0, 0), thickness, lineType, 0);
Imgproc.circle(image, new Point(255, 10), 5, new Scalar(255, 255, 255), thickness, lineType, 0);
Imgproc.circle(image, new Point(501, 255), 5, new Scalar(255, 255, 255), thickness, lineType, 0);
Imgproc.circle(image, new Point(10, 501), 5, new Scalar(255, 255, 255), thickness, lineType, 0);
//! [show_data]
// Show support vectors
//! [show_vectors]
thickness = 2;
Mat sv = svm.getUncompressedSupportVectors();
float[] svData = new float[(int) (sv.total() * sv.channels())];
sv.get(0, 0, svData);
for (int i = 0; i < sv.rows(); ++i) {
Imgproc.circle(image, new Point(svData[i * sv.cols()], svData[i * sv.cols() + 1]), 6,
new Scalar(128, 128, 128), thickness, lineType, 0);
}
//! [show_vectors]
Imgcodecs.imwrite("result.png", image); // save the image
HighGui.imshow("SVM Simple Example", image); // show it to the user
HighGui.waitKey();
System.exit(0);
}
}

View File

@ -0,0 +1,186 @@
import java.util.Random;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.core.TermCriteria;
import org.opencv.highgui.HighGui;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.imgproc.Imgproc;
import org.opencv.ml.Ml;
import org.opencv.ml.SVM;
public class NonLinearSVMsDemo {
public static final int NTRAINING_SAMPLES = 100;
public static final float FRAC_LINEAR_SEP = 0.9f;
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
System.out.println("\n--------------------------------------------------------------------------");
System.out.println("This program shows Support Vector Machines for Non-Linearly Separable Data. ");
System.out.println("--------------------------------------------------------------------------\n");
// Data for visual representation
int width = 512, height = 512;
Mat I = Mat.zeros(height, width, CvType.CV_8UC3);
// --------------------- 1. Set up training data randomly---------------------------------------
Mat trainData = new Mat(2 * NTRAINING_SAMPLES, 2, CvType.CV_32F);
Mat labels = new Mat(2 * NTRAINING_SAMPLES, 1, CvType.CV_32S);
Random rng = new Random(100); // Random value generation class
// Set up the linearly separable part of the training data
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
//! [setup1]
// Generate random points for the class 1
Mat trainClass = trainData.rowRange(0, nLinearSamples);
// The x coordinate of the points is in [0, 0.4)
Mat c = trainClass.colRange(0, 1);
float[] cData = new float[(int) (c.total() * c.channels())];
double[] cDataDbl = rng.doubles(cData.length, 0, 0.4f * width).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0, height).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
// Generate random points for the class 2
trainClass = trainData.rowRange(2 * NTRAINING_SAMPLES - nLinearSamples, 2 * NTRAINING_SAMPLES);
// The x coordinate of the points is in [0.6, 1]
c = trainClass.colRange(0, 1);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0.6 * width, width).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0, height).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
//! [setup1]
// ------------------ Set up the non-linearly separable part of the training data ---------------
//! [setup2]
// Generate random points for the classes 1 and 2
trainClass = trainData.rowRange(nLinearSamples, 2 * NTRAINING_SAMPLES - nLinearSamples);
// The x coordinate of the points is in [0.4, 0.6)
c = trainClass.colRange(0, 1);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0.4 * width, 0.6 * width).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1, 2);
cData = new float[(int) (c.total() * c.channels())];
cDataDbl = rng.doubles(cData.length, 0, height).toArray();
for (int i = 0; i < cData.length; i++) {
cData[i] = (float) cDataDbl[i];
}
c.put(0, 0, cData);
//! [setup2]
// ------------------------- Set up the labels for the classes---------------------------------
labels.rowRange(0, NTRAINING_SAMPLES).setTo(new Scalar(1)); // Class 1
labels.rowRange(NTRAINING_SAMPLES, 2 * NTRAINING_SAMPLES).setTo(new Scalar(2)); // Class 2
// ------------------------ 2. Set up the support vector machines parameters--------------------
System.out.println("Starting training process");
//! [init]
SVM svm = SVM.create();
svm.setType(SVM.C_SVC);
svm.setC(0.1);
svm.setKernel(SVM.LINEAR);
svm.setTermCriteria(new TermCriteria(TermCriteria.MAX_ITER, (int) 1e7, 1e-6));
//! [init]
// ------------------------ 3. Train the svm----------------------------------------------------
//! [train]
svm.train(trainData, Ml.ROW_SAMPLE, labels);
//! [train]
System.out.println("Finished training process");
// ------------------------ 4. Show the decision regions----------------------------------------
//! [show]
byte[] IData = new byte[(int) (I.total() * I.channels())];
Mat sampleMat = new Mat(1, 2, CvType.CV_32F);
float[] sampleMatData = new float[(int) (sampleMat.total() * sampleMat.channels())];
for (int i = 0; i < I.rows(); i++) {
for (int j = 0; j < I.cols(); j++) {
sampleMatData[0] = j;
sampleMatData[1] = i;
sampleMat.put(0, 0, sampleMatData);
float response = svm.predict(sampleMat);
if (response == 1) {
IData[(i * I.cols() + j) * I.channels()] = 0;
IData[(i * I.cols() + j) * I.channels() + 1] = 100;
IData[(i * I.cols() + j) * I.channels() + 2] = 0;
} else if (response == 2) {
IData[(i * I.cols() + j) * I.channels()] = 100;
IData[(i * I.cols() + j) * I.channels() + 1] = 0;
IData[(i * I.cols() + j) * I.channels() + 2] = 0;
}
}
}
I.put(0, 0, IData);
//! [show]
// ----------------------- 5. Show the training data--------------------------------------------
//! [show_data]
int thick = -1;
int lineType = Imgproc.LINE_8;
float px, py;
// Class 1
float[] trainDataData = new float[(int) (trainData.total() * trainData.channels())];
trainData.get(0, 0, trainDataData);
for (int i = 0; i < NTRAINING_SAMPLES; i++) {
px = trainDataData[i * trainData.cols()];
py = trainDataData[i * trainData.cols() + 1];
Imgproc.circle(I, new Point(px, py), 3, new Scalar(0, 255, 0), thick, lineType, 0);
}
// Class 2
for (int i = NTRAINING_SAMPLES; i < 2 * NTRAINING_SAMPLES; ++i) {
px = trainDataData[i * trainData.cols()];
py = trainDataData[i * trainData.cols() + 1];
Imgproc.circle(I, new Point(px, py), 3, new Scalar(255, 0, 0), thick, lineType, 0);
}
//! [show_data]
// ------------------------- 6. Show support vectors--------------------------------------------
//! [show_vectors]
thick = 2;
Mat sv = svm.getUncompressedSupportVectors();
float[] svData = new float[(int) (sv.total() * sv.channels())];
sv.get(0, 0, svData);
for (int i = 0; i < sv.rows(); i++) {
Imgproc.circle(I, new Point(svData[i * sv.cols()], svData[i * sv.cols() + 1]), 6, new Scalar(128, 128, 128),
thick, lineType, 0);
}
//! [show_vectors]
Imgcodecs.imwrite("result.png", I); // save the Image
HighGui.imshow("SVM for Non-Linear Training Data", I); // show it to the user
HighGui.waitKey();
System.exit(0);
}
}

View File

@ -0,0 +1,98 @@
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.MatOfRect;
import org.opencv.core.Point;
import org.opencv.core.Rect;
import org.opencv.core.Scalar;
import org.opencv.core.Size;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.videoio.VideoCapture;
class ObjectDetection {
public void detectAndDisplay(Mat frame, CascadeClassifier faceCascade, CascadeClassifier eyesCascade) {
Mat frameGray = new Mat();
Imgproc.cvtColor(frame, frameGray, Imgproc.COLOR_BGR2GRAY);
Imgproc.equalizeHist(frameGray, frameGray);
// -- Detect faces
MatOfRect faces = new MatOfRect();
faceCascade.detectMultiScale(frameGray, faces);
List<Rect> listOfFaces = faces.toList();
for (Rect face : listOfFaces) {
Point center = new Point(face.x + face.width / 2, face.y + face.height / 2);
Imgproc.ellipse(frame, center, new Size(face.width / 2, face.height / 2), 0, 0, 360,
new Scalar(255, 0, 255));
Mat faceROI = frameGray.submat(face);
// -- In each face, detect eyes
MatOfRect eyes = new MatOfRect();
eyesCascade.detectMultiScale(faceROI, eyes);
List<Rect> listOfEyes = eyes.toList();
for (Rect eye : listOfEyes) {
Point eyeCenter = new Point(face.x + eye.x + eye.width / 2, face.y + eye.y + eye.height / 2);
int radius = (int) Math.round((eye.width + eye.height) * 0.25);
Imgproc.circle(frame, eyeCenter, radius, new Scalar(255, 0, 0), 4);
}
}
//-- Show what you got
HighGui.imshow("Capture - Face detection", frame );
}
public void run(String[] args) {
String filenameFaceCascade = args.length > 2 ? args[0] : "../../data/haarcascades/haarcascade_frontalface_alt.xml";
String filenameEyesCascade = args.length > 2 ? args[1] : "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
int cameraDevice = args.length > 2 ? Integer.parseInt(args[2]) : 0;
CascadeClassifier faceCascade = new CascadeClassifier();
CascadeClassifier eyesCascade = new CascadeClassifier();
if (!faceCascade.load(filenameFaceCascade)) {
System.err.println("--(!)Error loading face cascade: " + filenameFaceCascade);
System.exit(0);
}
if (!eyesCascade.load(filenameEyesCascade)) {
System.err.println("--(!)Error loading eyes cascade: " + filenameEyesCascade);
System.exit(0);
}
VideoCapture capture = new VideoCapture(cameraDevice);
if (!capture.isOpened()) {
System.err.println("--(!)Error opening video capture");
System.exit(0);
}
Mat frame = new Mat();
while (capture.read(frame)) {
if (frame.empty()) {
System.err.println("--(!) No captured frame -- Break!");
break;
}
//-- 3. Apply the classifier to the frame
detectAndDisplay(frame, faceCascade, eyesCascade);
if (HighGui.waitKey(10) == 27) {
break;// escape
}
}
System.exit(0);
}
}
public class ObjectDetectionDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new ObjectDetection().run(args);
}
}

View File

@ -0,0 +1,103 @@
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Scalar;
import org.opencv.imgcodecs.Imgcodecs;
import org.opencv.photo.CalibrateDebevec;
import org.opencv.photo.MergeDebevec;
import org.opencv.photo.MergeMertens;
import org.opencv.photo.Photo;
import org.opencv.photo.Tonemap;
class HDRImaging {
public void loadExposureSeq(String path, List<Mat> images, List<Float> times) {
path += "/";
List<String> lines;
try {
lines = Files.readAllLines(Paths.get(path + "list.txt"));
for (String line : lines) {
String[] splitStr = line.split("\\s+");
if (splitStr.length == 2) {
String name = splitStr[0];
Mat img = Imgcodecs.imread(path + name);
images.add(img);
float val = Float.parseFloat(splitStr[1]);
times.add(1/ val);
}
}
} catch (IOException e) {
e.printStackTrace();
}
}
public void run(String[] args) {
String path = args.length > 0 ? args[0] : "";
if (path.isEmpty()) {
System.out.println("Path is empty. Use the directory that contains images and exposure times.");
System.exit(0);
}
//! [Load images and exposure times]
List<Mat> images = new ArrayList<>();
List<Float> times = new ArrayList<>();
loadExposureSeq(path, images, times);
//! [Load images and exposure times]
//! [Estimate camera response]
Mat response = new Mat();
CalibrateDebevec calibrate = Photo.createCalibrateDebevec();
Mat matTimes = new Mat(times.size(), 1, CvType.CV_32F);
float[] arrayTimes = new float[(int) (matTimes.total()*matTimes.channels())];
for (int i = 0; i < times.size(); i++) {
arrayTimes[i] = times.get(i);
}
matTimes.put(0, 0, arrayTimes);
calibrate.process(images, response, matTimes);
//! [Estimate camera response]
//! [Make HDR image]
Mat hdr = new Mat();
MergeDebevec mergeDebevec = Photo.createMergeDebevec();
mergeDebevec.process(images, hdr, matTimes);
//! [Make HDR image]
//! [Tonemap HDR image]
Mat ldr = new Mat();
Tonemap tonemap = Photo.createTonemap(2.2f);
tonemap.process(hdr, ldr);
//! [Tonemap HDR image]
//! [Perform exposure fusion]
Mat fusion = new Mat();
MergeMertens mergeMertens = Photo.createMergeMertens();
mergeMertens.process(images, fusion);
//! [Perform exposure fusion]
//! [Write results]
Core.multiply(fusion, new Scalar(255,255,255), fusion);
Core.multiply(ldr, new Scalar(255,255,255), ldr);
Imgcodecs.imwrite("fusion.png", fusion);
Imgcodecs.imwrite("ldr.png", ldr);
Imgcodecs.imwrite("hdr.hdr", hdr);
//! [Write results]
System.exit(0);
}
}
public class HDRImagingDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new HDRImaging().run(args);
}
}

View File

@ -0,0 +1,79 @@
import org.opencv.core.Core;
import org.opencv.core.Mat;
import org.opencv.core.Point;
import org.opencv.core.Scalar;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import org.opencv.video.BackgroundSubtractor;
import org.opencv.video.Video;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.Videoio;
class BackgroundSubtraction {
public void run(String[] args) {
String input = args.length > 0 ? args[0] : "../data/vtest.avi";
boolean useMOG2 = args.length > 1 ? args[1] == "MOG2" : true;
//! [create]
BackgroundSubtractor backSub;
if (useMOG2) {
backSub = Video.createBackgroundSubtractorMOG2();
} else {
backSub = Video.createBackgroundSubtractorKNN();
}
//! [create]
//! [capture]
VideoCapture capture = new VideoCapture(input);
if (!capture.isOpened()) {
System.err.println("Unable to open: " + input);
System.exit(0);
}
//! [capture]
Mat frame = new Mat(), fgMask = new Mat();
while (true) {
capture.read(frame);
if (frame.empty()) {
break;
}
//! [apply]
// update the background model
backSub.apply(frame, fgMask);
//! [apply]
//! [display_frame_number]
// get the frame number and write it on the current frame
Imgproc.rectangle(frame, new Point(10, 2), new Point(100, 20), new Scalar(255, 255, 255), -1);
String frameNumberString = String.format("%d", (int)capture.get(Videoio.CAP_PROP_POS_FRAMES));
Imgproc.putText(frame, frameNumberString, new Point(15, 15), Core.FONT_HERSHEY_SIMPLEX, 0.5,
new Scalar(0, 0, 0));
//! [display_frame_number]
//! [show]
// show the current frame and the fg masks
HighGui.imshow("Frame", frame);
HighGui.imshow("FG Mask", fgMask);
//! [show]
// get the input from the keyboard
int keyboard = HighGui.waitKey(30);
if (keyboard == 'q' || keyboard == 27) {
break;
}
}
HighGui.waitKey();
System.exit(0);
}
}
public class BackgroundSubtractionDemo {
public static void main(String[] args) {
// Load the native OpenCV library
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new BackgroundSubtraction().run(args);
}
}

View File

@ -0,0 +1,75 @@
import java.util.Arrays;
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import org.opencv.video.Video;
import org.opencv.videoio.VideoCapture;
class Camshift {
public void run(String[] args) {
String filename = args[0];
VideoCapture capture = new VideoCapture(filename);
if (!capture.isOpened()) {
System.out.println("Unable to open file!");
System.exit(-1);
}
Mat frame = new Mat(), hsv_roi = new Mat(), mask = new Mat(), roi;
// take the first frame of the video
capture.read(frame);
//setup initial location of window
Rect track_window = new Rect(300, 200, 100, 50);
// set up the ROI for tracking
roi = new Mat(frame, track_window);
Imgproc.cvtColor(roi, hsv_roi, Imgproc.COLOR_BGR2HSV);
Core.inRange(hsv_roi, new Scalar(0, 60, 32), new Scalar(180, 255, 255), mask);
MatOfFloat range = new MatOfFloat(0, 256);
Mat roi_hist = new Mat();
MatOfInt histSize = new MatOfInt(180);
MatOfInt channels = new MatOfInt(0);
Imgproc.calcHist(Arrays.asList(hsv_roi), channels, mask, roi_hist, histSize, range);
Core.normalize(roi_hist, roi_hist, 0, 255, Core.NORM_MINMAX);
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
TermCriteria term_crit = new TermCriteria(TermCriteria.EPS | TermCriteria.COUNT, 10, 1);
while (true) {
Mat hsv = new Mat() , dst = new Mat();
capture.read(frame);
if (frame.empty()) {
break;
}
Imgproc.cvtColor(frame, hsv, Imgproc.COLOR_BGR2HSV);
Imgproc.calcBackProject(Arrays.asList(hsv), channels, roi_hist, dst, range, 1);
// apply camshift to get the new location
RotatedRect rot_rect = Video.CamShift(dst, track_window, term_crit);
// Draw it on image
Point[] points = new Point[4];
rot_rect.points(points);
for (int i = 0; i < 4 ;i++) {
Imgproc.line(frame, points[i], points[(i+1)%4], new Scalar(255, 0, 0),2);
}
HighGui.imshow("img2", frame);
int keyboard = HighGui.waitKey(30);
if (keyboard == 'q'|| keyboard == 27) {
break;
}
}
System.exit(0);
}
}
public class CamshiftDemo {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new Camshift().run(args);
}
}

View File

@ -0,0 +1,70 @@
import java.util.Arrays;
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import org.opencv.video.Video;
import org.opencv.videoio.VideoCapture;
class Meanshift {
public void run(String[] args) {
String filename = args[0];
VideoCapture capture = new VideoCapture(filename);
if (!capture.isOpened()) {
System.out.println("Unable to open file!");
System.exit(-1);
}
Mat frame = new Mat(), hsv_roi = new Mat(), mask = new Mat(), roi;
// take the first frame of the video
capture.read(frame);
//setup initial location of window
Rect track_window = new Rect(300, 200, 100, 50);
// setup initial location of window
roi = new Mat(frame, track_window);
Imgproc.cvtColor(roi, hsv_roi, Imgproc.COLOR_BGR2HSV);
Core.inRange(hsv_roi, new Scalar(0, 60, 32), new Scalar(180, 255, 255), mask);
MatOfFloat range = new MatOfFloat(0, 256);
Mat roi_hist = new Mat();
MatOfInt histSize = new MatOfInt(180);
MatOfInt channels = new MatOfInt(0);
Imgproc.calcHist(Arrays.asList(hsv_roi), channels, mask, roi_hist, histSize, range);
Core.normalize(roi_hist, roi_hist, 0, 255, Core.NORM_MINMAX);
// Setup the termination criteria, either 10 iteration or move by atleast 1 pt
TermCriteria term_crit = new TermCriteria(TermCriteria.EPS | TermCriteria.COUNT, 10, 1);
while (true) {
Mat hsv = new Mat() , dst = new Mat();
capture.read(frame);
if (frame.empty()) {
break;
}
Imgproc.cvtColor(frame, hsv, Imgproc.COLOR_BGR2HSV);
Imgproc.calcBackProject(Arrays.asList(hsv), channels, roi_hist, dst, range, 1);
// apply meanshift to get the new location
Video.meanShift(dst, track_window, term_crit);
// Draw it on image
Imgproc.rectangle(frame, track_window, new Scalar(255, 0, 0), 2);
HighGui.imshow("img2", frame);
int keyboard = HighGui.waitKey(30);
if (keyboard == 'q' || keyboard == 27) {
break;
}
}
System.exit(0);
}
}
public class MeanshiftDemo {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new Meanshift().run(args);
}
}

View File

@ -0,0 +1,96 @@
import java.util.ArrayList;
import java.util.Random;
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import org.opencv.video.Video;
import org.opencv.videoio.VideoCapture;
class OptFlow {
public void run(String[] args) {
String filename = args[0];
VideoCapture capture = new VideoCapture(filename);
if (!capture.isOpened()) {
System.out.println("Unable to open this file");
System.exit(-1);
}
// Create some random colors
Scalar[] colors = new Scalar[100];
Random rng = new Random();
for (int i = 0 ; i < 100 ; i++) {
int r = rng.nextInt(256);
int g = rng.nextInt(256);
int b = rng.nextInt(256);
colors[i] = new Scalar(r, g, b);
}
Mat old_frame = new Mat() , old_gray = new Mat();
// Since the function Imgproc.goodFeaturesToTrack requires MatofPoint
// therefore first p0MatofPoint is passed to the function and then converted to MatOfPoint2f
MatOfPoint p0MatofPoint = new MatOfPoint();
capture.read(old_frame);
Imgproc.cvtColor(old_frame, old_gray, Imgproc.COLOR_BGR2GRAY);
Imgproc.goodFeaturesToTrack(old_gray, p0MatofPoint,100,0.3,7, new Mat(),7,false,0.04);
MatOfPoint2f p0 = new MatOfPoint2f(p0MatofPoint.toArray()) , p1 = new MatOfPoint2f();
// Create a mask image for drawing purposes
Mat mask = Mat.zeros(old_frame.size(), old_frame.type());
while (true) {
Mat frame = new Mat(), frame_gray = new Mat();
capture.read(frame);
if (frame.empty()) {
break;
}
Imgproc.cvtColor(frame, frame_gray, Imgproc.COLOR_BGR2GRAY);
// calculate optical flow
MatOfByte status = new MatOfByte();
MatOfFloat err = new MatOfFloat();
TermCriteria criteria = new TermCriteria(TermCriteria.COUNT + TermCriteria.EPS,10,0.03);
Video.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, p1, status, err, new Size(15,15),2, criteria);
byte StatusArr[] = status.toArray();
Point p0Arr[] = p0.toArray();
Point p1Arr[] = p1.toArray();
ArrayList<Point> good_new = new ArrayList<>();
for (int i = 0; i<StatusArr.length ; i++ ) {
if (StatusArr[i] == 1) {
good_new.add(p1Arr[i]);
Imgproc.line(mask, p1Arr[i], p0Arr[i], colors[i],2);
Imgproc.circle(frame, p1Arr[i],5, colors[i],-1);
}
}
Mat img = new Mat();
Core.add(frame, mask, img);
HighGui.imshow("Frame", img);
int keyboard = HighGui.waitKey(30);
if (keyboard == 'q' || keyboard == 27) {
break;
}
// Now update the previous frame and previous points
old_gray = frame_gray.clone();
Point[] good_new_arr = new Point[good_new.size()];
good_new_arr = good_new.toArray(good_new_arr);
p0 = new MatOfPoint2f(good_new_arr);
}
System.exit(0);
}
}
public class OpticalFlowDemo {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new OptFlow().run(args);
}
}

View File

@ -0,0 +1,72 @@
import java.util.ArrayList;
import org.opencv.core.*;
import org.opencv.highgui.HighGui;
import org.opencv.imgproc.Imgproc;
import org.opencv.video.Video;
import org.opencv.videoio.VideoCapture;
class OptFlowDense {
public void run(String[] args) {
String filename = args[0];
VideoCapture capture = new VideoCapture(filename);
if (!capture.isOpened()) {
//error in opening the video input
System.out.println("Unable to open file!");
System.exit(-1);
}
Mat frame1 = new Mat() , prvs = new Mat();
capture.read(frame1);
Imgproc.cvtColor(frame1, prvs, Imgproc.COLOR_BGR2GRAY);
while (true) {
Mat frame2 = new Mat(), next = new Mat();
capture.read(frame2);
if (frame2.empty()) {
break;
}
Imgproc.cvtColor(frame2, next, Imgproc.COLOR_BGR2GRAY);
Mat flow = new Mat(prvs.size(), CvType.CV_32FC2);
Video.calcOpticalFlowFarneback(prvs, next, flow,0.5,3,15,3,5,1.2,0);
// visualization
ArrayList<Mat> flow_parts = new ArrayList<>(2);
Core.split(flow, flow_parts);
Mat magnitude = new Mat(), angle = new Mat(), magn_norm = new Mat();
Core.cartToPolar(flow_parts.get(0), flow_parts.get(1), magnitude, angle,true);
Core.normalize(magnitude, magn_norm,0.0,1.0, Core.NORM_MINMAX);
float factor = (float) ((1.0/360.0)*(180.0/255.0));
Mat new_angle = new Mat();
Core.multiply(angle, new Scalar(factor), new_angle);
//build hsv image
ArrayList<Mat> _hsv = new ArrayList<>() ;
Mat hsv = new Mat(), hsv8 = new Mat(), bgr = new Mat();
_hsv.add(new_angle);
_hsv.add(Mat.ones(angle.size(), CvType.CV_32F));
_hsv.add(magn_norm);
Core.merge(_hsv, hsv);
hsv.convertTo(hsv8, CvType.CV_8U, 255.0);
Imgproc.cvtColor(hsv8, bgr, Imgproc.COLOR_HSV2BGR);
HighGui.imshow("frame2", bgr);
int keyboard = HighGui.waitKey(30);
if (keyboard == 'q' || keyboard == 27) {
break;
}
prvs = next;
}
System.exit(0);
}
}
public class OpticalFlowDenseDemo {
public static void main(String[] args) {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
new OptFlowDense().run(args);
}
}